Reactions and Catalytic Properties of Ruthenium Dioxide Hydrate with Aqueous Solutions of Cerium(IV) By Andrew Mills, Davy Faraday Research Laboratory, The Royal Institution, 21 Albemarle Street, London W1X 4BS The redox catalytic properties of ruthenium dioxide hydrate (RuO₂·xH₂O) were studied using a test system of Ce⁴⁺ in 0.5 mol dm⁻³ H₂SO₄. In powder form RuO₂·xH₂O appeared a poor redox catalyst unless bound to an inert support, such as titanium dioxide (TiO₂). This was attributed to the production of ruthenium tetraoxide (RuO₄), which was observed with RuO₂·xH₂O and a RuO₂·xH₂O—TiO₂ mixture but not with a TiO₂-bound RuO₂ catalyst. In the absence of a catalyst, or when TiO₂ or Al₂O₃ were used, no decay of the Ce⁴⁺ was observed (t > 200 h). For many years considerable effort has been directed towards finding chemical processes which are capable of collecting and storing light energy. More recently $^{3-9}$ work has focused on the photochemical production of H_2 from water, of which one approach is the combination of a photo-redox process, equation (1) (where S represents $$S + R \xrightarrow{h\nu} S^{+} + R^{-} \tag{1}$$ the photoactive donor and R the electron acceptor), with the catalytic step, equation (2). In many of the systems $$R^{-} + H_{2}O \xrightarrow{\text{catalyst}} \frac{1}{2}H_{2} + OH^{-} + R \qquad (2)$$ developed so far ¹⁰ the back-conversion of S⁺ into S is achieved using a donor which undergoes irreversible oxidation according to equation (3). Due to the irreversibility of equation (4), such systems are often called 'sacrificial.' $$D + S^+ \longrightarrow D^+ + S \tag{3}$$ $$D^+ \longrightarrow permanent products$$ (4) Ultimately, however, a practical device must use water as the electron donor as in equation (5). For this $$4S^{+} + 2H_{2}O \xrightarrow{\text{catalyst}} 4S + O_{2} + 4H^{+}$$ (5) reason there is a great deal of work and interest surrounding the study of catalysts capable of O₂ production from equation (5). The difficulties lie in finding a catalyst able to operate, without corrosion, under the very oxidising conditions necessary to oxidise water. In addition, the catalyst must be specific to water oxidation, especially as they are often used in the presence of readily oxidisable organic material, such as dye sensitisers. Such problems are not new and a great deal of electrochemical work has gone into finding suitable anode materials for water oxidation. Interestingly, ruthenium dioxide hydrate (RuO2*xH2O) has a low overpotential and great stability toward Cl2 and O2 evolution when bound to an electrode surface.¹¹ In the study of suitable catalysts for equation (5), it is mostly the noble metal oxides 11-18 that have been used with any success and, of these RuO2.xH2O has been used most extensively. 13-18 Indeed, whether it is used as a powder, 13 colloid,14,15 or bound to some inert material, such as titanium dioxide, ¹⁷ RuO₂·xH₂O is now generally recognised as one of the best catalysts capable of mediating O₂ evolution from water via equation (5). In a previous communication ¹⁹ we briefly outlined work on $RuO_2\cdot xH_2O$, both in powder and TiO_2 -bound forms, as a mediator in equation (5) using a test system of Ce^{4+} in 0.5 mol dm⁻³ H_2SO_4 . Under these conditions the Ce^{4+} ion is stable, although from its redox potential $[E^0(Ce^{4+}/Ce^{3+})=+1.44\ V]$ it should spontaneously liberate O_2 from water. This reaction fails due to kinetic factors ²⁰ and a redox catalyst is required. In this paper I describe, in more detail, this and subsequent work which brings into question the redox catalytical properties of $RuO_2\cdot xH_2O$ in the presence of strong oxidising agents and offers RuO_2 bound to TiO_2 as an alternative catalyst. ## EXPERIMENTAL Materials.—Samples of RuO₂:xH₂O from both Aldrich Chemicals and Alpha Inorganics were used. Concentrated volumetric solutions of cerium sulphate were purchased (B.D.H.) and diluted with 0.5 mol dm⁻³ H₂SO₄ as required. Ruthenium tetraoxide and titanium dioxide were obtained from Pierce Inorganics and B.D.H. respectively. The RuO₂-TiO₃ 'unbound 'catalyst was prepared by thoroughly grinding TiO₂ (1 g) with RuO₂:xH₂O (8 mg). The TiO₂-bound RuO₂ catalyst was prepared as outlined by Grätzel and co-workers, ²¹ using TiO₂ in place of CdS. Using ca. 10 mg of RuO₄ to 1 g of TiO₂, the final product had a ruthenium content of 5.7 mg/g as determined by atomic absorption. Methods.—Absorption spectra were recorded on a Perkin-Elmer-Hitachi 200 spectrophotometer. Dissolved oxygen measurements were made on a Clark membrane oxygen electrode purchased from Rank Brothers (Cambridge). A detailed description of the experimental arrangement, sensitivity, and calibration of this instrument is given elsewhere.22 The Ce4+ concentrations were determined by absorption spectroscopy ($\lambda_{max.}=320~\text{nm}$; $\epsilon_{320}=5~580~\text{dm}^3~\text{mol}^{-1}~\text{cm}^{-1}$) ²³ after filtration through a 0.2 μ m disposable filter holder (Schleicher and Schüll) coupled with a 1 cm³ syringe to remove any powder. This allowed samples (1 cm³) to be taken free from catalyst, diluted with 0.5 mol dm⁻³ H₂SO₄, and the optical density at 320 nm determined in a 1 cm quartz cell. Analysis of the RuO2 bound to TiO2 powder for Ru, using atomic absorption, was performed by Butterworths Ltd. (Teddington). Electron micrographs were recorded at Westfield College, University of London on a AEI 801 transmission electron microscope, with the help of C. Walker. ## RESULTS AND DISCUSSION Previous work by Kiwi and Grätzel ^{13,14} established RuO₂·xH₂O as a suitable redox catalyst to mediate O₂ production from water using the test system of Ce⁴⁺ in 0.5 mol dm⁻³ H₂SO₄. They reported ¹⁴ a rate constant of 0.3 h⁻¹ for equation (5), where S⁺ represents Ce⁴⁺. Unfortunately I have been unable to reproduce these results. Indeed, small amounts of RuO₂·xH₂O, well dispersed in 0.5 mol dm⁻³ H₂SO₄, on addition to a Ce⁴⁺ solution appeared to dissolve completely with no concomitant rapid Ce⁴⁺ decay, the solution remaining stable over several weeks. In an attempt to resolve this situation a more rigorous study was undertaken. If a sonicated RuO₂·xH₂O suspension (5 cm³) (1 mg cm⁻³ in 0.5 mol dm⁻³ H_2SO_4) is added to 250 cm³ of a 3.5 \times 10⁻³ mol dm⁻³ Ce⁴⁺ solution, the black dioxide 'catalyst' appears to dissolve. Minutes later, any organic material introduced above the solution is rapidly blackened. Further work with starch-iodide paper indicated that a strong oxidant was released into the gas phase upon addition of the oxide to the Ce4+ solution. Using a 10 cm quartz cell, the change in optical density of the gas phase above a RuO2.xH2O-Ce4+ solution mixture was recorded, at intervals, over a period of 5 h. The results showed conclusively that a substance was indeed released into the gas phase on addition of RuO2·xH2O to the Ce4+ solution and, in addition, the absorption spectrum of this substance could be identified as that of RuO₄ vapour,²⁴ a very strong oxidant. The vapour could also be condensed onto a cold-finger and the resultant absorption spectrum of the collected solution identified as that of an aqueous RuO₄ solution.²⁴ Using chlorine as an oxidant, instead of Ce4+, it was found that this too would oxidise RuO₂·xH₂O to RuO₄. In contrast, neither Ce⁴⁺ nor chlorine appeared to oxidise anhydrous RuO₂. The reasons for this are not known. Further work showed that RuO_4 in 0.5 mol dm⁻³ H_2SO_4 appears to decay slowly in the dark back to the +4 state; not to RuO_2*xH_2O but instead to a red-brown water-soluble species, identified from its absorption spectrum ($\lambda_{max} = 500$ nm) ²⁵ as RuO^{2+} . This cationic species appeared readily oxidisable, using Cl_2 or Ce^{4+} , to RuO_4 . Addition of alkali to a RuO^{2+} solution resulted in precipitation of a fine dark brown-green solid which, in contrast with RuO_2*xH_2O , was soluble on reacidification. The identity of this precipitate is unclear but, if allowed to age, it appears to take on some of the characteristics of RuO_2*xH_2O (e.g. colour, acid insolubility etc.). In neutral solution, RuO₄ appears to decay over a period of days to a green, water-soluble species (possibly a Ru^{VI} complex) which, on further standing, decays to a fine black solid (probably RuO₂·xH₂O). In alkaline solution, RuO₄ is reduced (at a rate which is dependent upon OH⁻ concentration and impurities present) to the perruthenate ion (RuO₄⁻). This anionic species ($\lambda_{\text{max}} = 385$ and 310 nm) ²⁶ is unstable ²⁷ and decomposes to O₂ and the orange $(\lambda_{\rm max.}=465~{\rm nm})^{26}$ ruthenate ion (RuO₄²⁻). Both species were identified by absorption spectroscopy. The literature ^{26,28} is divided on the stability of the RuO₄²⁻ species, but I have found that solutions could be kept for long periods of time (t>6 months) with no decomposition. Here, as with the +7 and +8 oxidation states, the reduction of ruthenium appears to be very sensitive to minute traces of impurities.²⁶ In agreement with work by Gortsema and Cobble,²⁹ the Ce⁴⁺ concentration dropped rapidly on addition of the oxide powder and this fall in concentration corresponded to more than (up to two times) the number of equivalents necessary to oxidise the RuO₂·xH₂O to RuO₄. These extra equivalents are believed to oxidise water bound to the oxide.²⁹ From this work I propose the qualitative scheme shown in equations (6)—(11). $$RuO_{2} \cdot xH_{2}O \xrightarrow{\text{Ce}^{4} + (0.5 \text{ mol dm}^{-2} H_{8}SO_{4})} RuO_{4} + nO_{2} \uparrow \qquad (6)$$ $$RuO_{2} \cdot xH_{2}O \xrightarrow{\text{fast}} RuO_{4} \qquad (7)$$ $$RuO_{4} \xrightarrow{\text{slow}} RuO^{2} + H_{2}O + O_{2} \qquad (8)$$ $$RuO_{4} \xrightarrow{\text{slow}} \text{green intermediate} \xrightarrow{\text{slow}} RuO_{2} \cdot xH_{2}O \qquad (9)$$ $$RuO_{4} \xrightarrow{\text{neutral}} RuO_{4} \xrightarrow{\text{oH}^{-}} \qquad (10)$$ $$RuO_{2} \cdot xH_{2}O$$ $$RuO_{2} \cdot xH_{2}O$$ $$RuO_{2} \cdot xH_{2}O \xrightarrow{\text{fast}} RuO_{4} \xrightarrow{\text{oH}^{-}} RuO_{4} \xrightarrow{\text{oH}^{-}} RuO_{4} \qquad (11)$$ The rapid nature of reaction (6) is illustrated in Figure 1 from which we can see that on addition of the dispersed oxide, the Ce^{4+} concentration drops 'instantaneously' (i.e., within the time taken for the measurement) to an approximately constant value (this variation in Ce^{4+} concentration is repeated when further amounts of oxide are added). If no more oxide is added, the Ce^{4+} con- FIGURE 1 Ce⁴⁺ concentration versus time profiles for RuO₂:xH₂O (15 mg), dispersed in 0.5 mol dm⁻² H₂SO₄ (15 cm²), added (at t=10 h) to a Ce⁴⁺ solution (100 cm³). Curve (A) represents no N₂ purging and (B) represents continuous N₂ purging (causing a slow increase in Ce⁴⁺ concentration due to solvent evaporation) centration remains constant over 1-2 h but over a period of days the Ce4+-RuO2 solution mixture decays to Ce3+ and RuO2+ [Figure 1, curve (A)] owing to the cyclic nature of equations (8) and (11). Some confirmation of the above hypothesis was obtained by passing a continuous stream of N_2 through the solution. Owing to the volatile nature (b.p. 40 °C) 27 of RuO₄, the N₂ should sweep it out, preventing the cyclic equations (8) and (11). The Ce4+ concentration versus time profile [Figure 1, curve (B)] was compared with that of an identical system, with no N₂ purging [Figure 1, curve (A)]. Although, in both cases, the Ce4+ concentration dropped instantaneously on addition of the oxide, only the non-N₂ purged solution decayed further over the following hours. In contrast there was no subsequent slow decay of the Ce4+ concentration in the continuously N₂ purged solution. Further work on RuO₄, using an oxygen-detecting membrane electrode, indicated that equation (8) was light catalysed. For example, a dilute solution of RuO₄ (10⁻⁴ mol dm⁻³) in the dark gave a rate of oxygen production of 2×10^{-8} mol dm⁻³ min⁻¹ and, upon illumination with a 900 W xenon lamp, the rate increased to 1.6×10^{-7} mol dm⁻³ min⁻¹. These findings bring into question the suitability of RuO₂·xH₂O as a redox catalyst to mediate water oxidation from strong oxidants, such as Ce4+. Also, these results, in particular the loss of RuO₄ to the gas phase, may help to explain the irreproducibility found by other workers using powdered RuO2.xH2O as a redox catalyst.30-32 Ruthenium dioxide hydrate appears to act more as a catalyst when bound to TiO₂ (ca. 9.5 mg RuO₂·xH₂O:1 g TiO₂). In contrast, if approximately the same amount of RuO₂·xH₂O, as that on the TiO₂bound RuO₂ catalyst, is added to an identical Ce⁴⁺ solution, only a slow Ce4+ decay is observed. In addition, there is evidence for RuO₄ in both vapour and liquid phases, whereas with the TiO₂-bound RuO₂ catalyst no such evidence for RuO₄ formation is found. The role of TiO₂ in the TiO₂-bound RuO₂ catalyst appears not to be one of simply absorbing the unstable RuO₄. Evidence for this comes from a study of the catalytic properties of an unbound RuO₂ powder. In the presence of Ce4+ this unbound catalyst shows many of the features of RuO2·xH2O alone (see above) and none of those associated with the bound form. There was no appreciable decrease in Ce4+ concentration in the absence of catalyst or when TiO2 or Al2O3 were used. In contrast, the TiO2-bound RuO2 powder was found to catalyse the Ce4+ to Ce3+ decay on the addition of not only one but several further aliquots of Ce4+ (Figure 2), although the rate of Ce4+ decay appears slower with each addition (this might partly result from the loss of available overpotential for O₂ evolution due to the accumulation of Ce³⁺). Initial transmission electron micrographs show the TiO₂-bound RuO₂ powder to consist of particles ca. 50—100 nm which, in a dispersed solution, form aggregates of ca. 600-700 nm. A more detailed study of these particles, using electron microscopy coupled with X-ray analysis, is in progress. FIGURE 2 Ce⁴⁺ concentration versus time profile on addition (at t=0) of a TiO₂-bound RuO₂ powder (100 mg), dispersed in 0.5 mol dm⁻³ H₂SO₄ (20 cm³), to a Ce⁴⁺ solution (80 cm³). The vertical arrows indicate further additions of Ce⁴⁺ Until this and further studies are completed an explanation as to how the TiO₂-bound RuO₂ catalyst works cannot be attempted. I thank the S.R.C., the E.E.C., and G.E. (Schenectady) for financial support, M. L. Zeeman for her assistance, C. Walker and Westfield College for the electron microscopy, and Professor Sir George Porter, Dr. A. Harriman, and the members of the Davy Faraday Research Laboratory for their help and advice. [1/1778 Received, 16th November, 1981] ## REFERENCES - ¹ G. Porter and M. D. Archer, Interdiscip. Sci. Rev., 1976, 1. 119. - R. J. Marcus, Science, 1956, 123, 399. B. V. Koryakin, T. S. Dzhabiev, and A. E. Shilov, Dokl. Akad. Nauk SSSR, 1977, 238, 620. J. M. Lehn and J. P. Sauvage, Nouv. J. Chim., 1977, 1, 441. K. Kalyanasundaram, J. Kiwi, and M. Grätzel, Helv. Chim. - Acta, 1978, 61, 2720. - A. Moradpour, E. Amouyal, P. Keller, and H. Kagan, Nouv. J. Chim., 1978, 2, 547. P. J. Delaive, B. P. Sullivan, T. J. Meyer, and D. G. Whitten, - J. Am. Chem. Soc., 1979, 101, 4007. A. I. Krasna, Photochem. Photobiol., 1979, 29, 267. - ⁹ M. Kirsch, J. M. Lehn, and J. P. Sauvage, Helv. Chim. Acta, 1979, 62, 1345. - 10 P. A. Brugger, P. Cuendet, and M. Grätzel, J. Am. Chem. Soc., 1981, 103, 2923, and refs. therein. 11 J. Kiwi and M. Grätzel, Chem. Phys. Lett. 1981 78, 241, and J. Kiwi and M. Grätzel, Chem. Phys. Lett., 1981, 78, 241, and - refs. therein. 12 J. Kiwi and M. Grätzel, Angew. Chem., Int. Ed. Engl., 1978, - 13 J. Kiwi and M. Grätzel, Chimia, 1979, 83, 289. - ¹⁴ J. Kiwi and M. Grätzel, Angew. Chem., Int. Ed. Engl., 1979, - 18, 624. 18 K. Kalyanasundaram and M. Grätzel, Angew. Chem., Int. - Ed. Engl., 1979, 18, 701. 18 K. Kalyanasundaram, O. Mećić, E. Pramauro, and M. Grätzel, Helv. Chim. Acta, 1979, 62, 2432. - ¹⁷ J. Kiwi, E. Borgarello, E. Pelizzetti, M. Visca, and M. Grätzel, Nature (London), 1981, 289, 158. - 18 J. M. Lehn, J. P. Sauvage, and R. Ziessel, Nouv. J. Chim., 1980, 4, 355. - 19 A. Mills and M. L. Zeeman, J. Chem. Soc., Chem. Commun., 1981, 948. - ²⁰ M. Grätzel, Ber. Bunsenges. Phys. Chem., 1980, 84, 981. - ²¹ K. Kalyanasundaram, E. Borgarello, and M. Grätzel, Helv. Chim. Acta, 1981, 64, 362. - ²² A. Harriman, G. Porter, and A. Mills, Anal. Chem., 1981, 1254. T. J. Sworski, J. Am. Chem. Soc., 1957, 79, 3655. - ²⁴ A. Muller and E. Diemann, Chem. Phys. Lett., 1971, 9, - 369. ²⁵ P. Wehner and J. C. Hindman, J. Am. Chem. Soc., 1950, 72, - 3911. 26 R. E. Connick and C. R. Hurley, J. Am. Chem. Soc., 1952, - 74, 5012. 27 W. P. Griffith, 'The Chemistry of the Rarer Platinum Metals,' Interscience, New York, 1967, p. 128. 28 E. D. Marshall and R. R. Rickard, Anal. Chem., 1950, 22, - 795. 29 F. P. Gortsema and J. W. Cobble, J. Am. Chem. Soc., 1959, - 81, 5516. 30 A. Harriman, G. Porter, and P. Walters, J. Chem. Soc., Faraday Trans. 2, 1981, 2373. - 31 P. Keller, A. Moradpour, E. Amouyal, and H. B. Kagan, - Nouv. J. Chim., 1980, 4, 377. 32 J. M. Lehn, J. P. Sauvage, and R. Ziessel, Nouv. J. Chim., 1979, **3**, 423.