An Investigation of the Reaction Between $[\{Fe(\eta^5-C_5H_5)(CO)_2\}_2]$ and Aryl Isonitriles †

By Neil J. Coville * and Michel O. Albers, Department of Chemistry, University of Witwatersrand, Johannesburg, 2001, South Africa

Eric Singleton, National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria 0001, South Africa

The direct reaction between $[\{Fe(\eta^5-C_5H_4X)(CO)_2\}_2]$ (X = H, Me, or COOMe) and aryl isonitriles RNC (R = 2,6-Me₂C₆H₃ or C₆H₅) in refluxing toluene readily yields the tetrasubstituted derivatives $[\{Fe(\eta^5-C_5H_4X)(RNC)_2\}_2]$. The intermediate derivatives $[Fe_2(\eta^5-C_5H_5)_2(CO)_{4-n}(RNC)_n]$ (n=1 or 2) can be prepared by the exchange reaction between $[\{Fe(\eta^5-C_5H_5)(RNC)_2\}_2]$ and $[\{Fe(\eta^5-C_5H_5)(CO)_2\}_2]$. Reaction rates for the substitution of $[\{Fe(\eta^5-C_5H_5X)(CO)_2\}_2]$ by RNC are dependent on both the nature of R and X, and increase with both the nucleophilicity of R and the electron-withdrawing power of X. An alternative route to $[Fe_2(\eta^5-C_5H_5)_2(CO)_{4-n}(RNC)_n]$ (n=1 or 2) is via the reaction between Na[Fe($\eta^5-C_5H_5$)(CO)₂] and 2,6-Me₂C₆H₃NC in the presence of C₇H₇+BF₄. The isonitrile complexes have been characterized by i.r. and n.m.r. spectroscopy.

As part of our current program on the investigation of the catalytic behaviour of metal dimers 1,2 we have found it necessary to synthesize complexes of the type $[Fe_2-(\eta^5-C_5H_5)_2(CO)_{4-n}(RNC)_n]$ (RNC = isonitrile, n=1-4). Complexes with n=1-3, R= alkyl group, can readily be synthesized by the direct reaction between $[\{Fe-(\eta^5-C_5H_5)(CO)_2\}_2]$ (1) and RNC.³⁻⁷ Surprisingly, the corresponding reaction between (1) and aryl isonitriles has been reported to yield at most the disubstituted product $[\{Fe-(\eta^5-C_5H_5)(CO)(RNC)\}_2]$ (2) and then in poor yield [e.g. for $R=C_6H_5$, yields of <1% of (2) have been reported 8]. An indirect method starting from $[Fe-(\eta^5-C_5H_5)(CO)_{3-n}(C_6H_5NC)_n]^+$ (n=1-3) has, however, allowed for the synthesis of $[Fe_2(\eta^5-C_5H_5)_2(CO)_{4-n}-(C_6H_5NC)_n]$ (n=1,2, or 4) in moderate to good yields.^{9,10}

We thus decided to investigate the direct reaction between (1) and aryl isonitriles and our results are reported herein.

EXPERIMENTAL

Phenyl isocyanide was prepared by the literature method 11 and 2,6-dimethylphenyl isocyanide was purchased from Fluka A.G. The compound [{Fe($\eta^5\text{-}C_5H_5$)-(CO)_2}_2] was purchased from Strem Chemicals and [{Fe($\eta^5\text{-}C_5H_4X)(\text{CO})_2$ }_2] (X = Me or COOMe) prepared by the literature method 12 from [Fe(CO)_5] and $C_{10}H_{10}Me_2$ or $C_5H_5\text{COOMe}$ in octane. Tropylium tetrafluoroborate was prepared from C_7H_8 and $(C_6H_5)_3C^+BF_4^-.^{14}$ Reactions were routinely carried out under nitrogen in purified solvents.

I.r. spectra were recorded on a Pye Unicam SP 300 spectrophotometer, ¹H n.m.r. spectra on a Bruker WP80 spectrometer. Elemental analyses were carried out by the Microanalytical Laboratories, C.S.I.R.

Preparations.—(a) [$\{Fe(\eta^5-C_5H_4X)(RNC)_2\}_2$] (X = H or Me, R = 2,6-Me₂C₆H₃ or C₆H₅; X = COOMe, R = 2,6-Me₂C₆H₃). The compounds [$\{Fe(\eta^5-C_5H_5)_2(CO)_2\}_2$] (0.5 mmol) and RNC (\approx 2.2 mmol) were added to either benzene or toluene (15 cm³) and the solution brought to reflux. In toluene, the reactions take place rapidly (5—60 min) but in

† Regarded as Part 4 in the series 'Metal Dimers as Catalysts'.1

benzene they occur more slowly (15 min—8 h) and can readily be monitored by changes in the i.r. spectrum (2 200—1 600 cm⁻¹). At the end of the reaction, the solution which had turned green (2,6-Me₂C₆H₃NC) or brown (C₆H₅NC) was filtered through a cellulose column. Recrystallization from tetrahydrofuran (thf) or benzenehexane gave the required product in >60% yield.

(b) $[Fe_2(\eta^5-C_5H_5)_2(CO)_{4-n}(2,6-Me_2C_6H_3NC)_n]$ (n = 1 or 2). The salt Na[Fe(η^5 -C₅H₅)(CO)₂] (≈ 20 mmol) was prepared from [{Fe(η^5 -C₅H₅)(CO)₂}₂] (3.5 g, 10 mmol) and Na/Hg (1.10 g in 75 g) in thf (60 cm³). 12 After the Hg had been separated by decantation under nitrogen, 2,6-Me₂C₆H₃NC (10 mmol) and $C_7H_7^+BF_4^-$ (1.1 g, 10 mmol) were added to the reaction solution. Vigorous evolution of CO occurred. The solution was stirred for 10 min, decanted, and the solvent removed in vacuo. The crude reaction material was chromatographed on grade IV alumina (Merck) using initially dichloromethane-hexane (1:1) mixtures and finally CH₂Cl₂. Bitropylium ¹⁵ was eluted first. This was followed $\mbox{by} \quad [\{\mbox{Fe}(\eta^5\mbox{-}\mbox{C_5}\mbox{H_5})(\mbox{CO})_2\}_2], \quad \mbox{then} \quad [\mbox{Fe}_2(\eta^5\mbox{-}\mbox{C_5}\mbox{H_5})_2(\mbox{CO})_3(2,6\mbox{-}\mbox{$-$}\mb$ $\text{Me}_2\text{C}_6\text{H}_3\text{NC})$ ($\approx 30\%$), and finally [{Fe($\eta^5\text{-C}_5\text{H}_5$)(CO)- $(2,6-\text{Me}_2\text{C}_6\text{H}_3\text{NC})$ ₂] ($\approx 10\%$). The reaction yield of the disubstituted product can be increased by increasing the amount of 2,6-Me₂C₆H₃NC added to Na[Fe(η^5 -C₅H₅)(CO)₂].

DISCUSSION

In contrast to earlier reports ^{7,8} we have found that the direct reaction between [$\{Fe(\eta^5-C_5H_4X)(CO)_2\}_2$] (e.g. X=H) and aryl isonitriles readily yields the complexes [$\{Fe(\eta^5-C_5H_4X)(RNC)_2\}_2$]. Thus, addition of four equivalents of RNC ($R=C_6H_5$ or 2,6-Me₂C₆H₃) to [$\{Fe(\eta^5-C_5H_4X)(CO)_2\}_2$] (X=H, Me, or COOMe) gives [$\{Fe(\eta^5-C_5H_4X)(RNC)_2\}_2$] (3), with reaction times dependent on both the nature of X and the isonitrile (Table 1) (see below). The reaction in benzene can readily be monitored by i.r. spectroscopy; the $\nu(\mu$ -CO) absorption at ≈ 1.780 cm⁻¹ provides a ready measure of product disappearance. The i.r. spectra indicate that (3) is formed immediately with little sign of intermediate product formation. This is exemplified by the reaction between (1) and 2,6-Me₂C₆H₃NC (1:1). The i.r. spectrum after ≈ 20 min (benzene) indicates that only

Table 1
Reaction times a and analytical data for the dimeric iron isonitrile complexes

	Reaction time (min)		Analytical data (%) °		
Complex b	Benzene	Toluene	С	H	N
$[\mathrm{Fe_2}(\eta^5-\mathrm{C_5H_5})_2(\mathrm{CO})_8(\mathrm{RNC})]$			58.4 (57.8)	4.15 (4.20)	3.10 (3.05)
$[\{Fe(\eta^5-C_5H_5)(CO)(RNC)\}_2]\cdot 0.5C_6H_6$			65.6 (66.1)	5.20 (5.20)	4.30 (4.60)
$[{\rm Fe}(\eta^5-{\rm C_5H_5})({\rm RNC})_2]_2]$	90	5	72.1 (72.8)	6.65 (6.05)	7.55 (7.30)
$[\{\operatorname{Fe}(\eta^{5}\text{-}\operatorname{C}_{5}\operatorname{H}_{4}\operatorname{Me})(\operatorname{RNC})_{2}\}_{2}]$	$\frac{240}{(70\%)}$ d	40	72.6 (73.4)	6.75 (6.35)	7.60 (7.05)
$[\{\operatorname{Fe}(\eta^{5}-\operatorname{C}_{5}\operatorname{H}_{4}\operatorname{COOMe})(\operatorname{RNC})_{2}\}_{2}]$	15		68.9 (68.1)	5.95 (5.70)	6.45 (6.35)
$[\{Fe(\eta^5-C_5H_5)(C_6H_5NC)_2\}_2]$	$\frac{120}{(80\%)}$ d	25	70.8 (69.8)	4.85 (4.60)	9.00 (8.55)
$[\{{\rm Fe}(\eta^{5}{\text -}{\rm C}_{5}{\rm H}_{4}{\rm Me})({\rm C}_{6}{\rm H}_{5}{\rm NC})_{2}\}_{2}]$	450	60	70.9 (70.4)	5.25 (5.00)	8.45 (8.20)

 $^{\sigma}$ For the reaction $[\{Fe(\eta^{5}\text{-}C_{5}H_{5})(CO)_{3}\}_{2}]+RNC\longrightarrow [\{Fe(\eta^{5}\text{-}C_{5}H_{5})(RNC)_{2}\}_{2}].$ b $R=2,6\text{-Me}_{2}C_{6}H_{3}.$ $^{\sigma}$ Calculated values are given in parentheses. $^{\sigma}$ Extent of reaction.

the starting material (1) ($\approx75\%$) and [{Fe(η^5 -C₅H₅)-(2,6-Me₂C₆H₃NC)₂}₂] ($\approx25\%$) are present. Further heating (≈15 h) results in the slow formation of [Fe₂-(η^5 -C₅H₅)₂(CO)_{4-n}(2,6-Me₂C₆H₃NC)_n] (n=1 or 2) as detected by i.r. spectroscopy. Since equimolar solutions of (1) and [{Fe(η^5 -C₅H₅)(2,6-Me₂C₆H₃NC)₂}₂] also yield the intermediate products (n=1 or 2) on being heated together (benzene) the appearance of these intermediate products must arise from secondary reactions, after rapid formation of (3).

Our qualitative results thus suggest that the intermediate products react more rapidly than (1), with RNC, 16,* a phenomenon which has precedent in the substitution reactions of other complexes containing metal-metal bonds. 17,18

The intermediate derivatives $[Fe_2(\eta^5-C_5H_5)_2(CO)_{4-n}-(2,6-Me_2C_6H_3NC)_n]$ (n=1 or 2) can also be prepared in moderate yields by indirect methods. Thus, the reaction of Na $[Fe(\eta^5-C_5H_5)(CO)_2]$, $C_7H_7^+BF_4^-$, and 2,6-Me $_2C_6H_3NC$ (2:1:1 ratio) yields the products $[Fe_2-(\eta^5-C_5H_5)_2(CO)_3(2,6-Me_2C_6H_3NC)]$ $(\approx 30\%)$ and $[\{Fe-(\eta^5-C_5H_5)(CO)(2,6-Me_2C_6H_3NC)\}_2]$ $(\approx 10\%)$. The mechanism of product formation presumably involves radical formation as suggested for the corresponding reaction between $[Mn(CO)_5]^-$ and $P(C_6H_5)_3$ in the presence of $(C_6H_5)_3C^+Br^-$. These derivatives (n=1 or 2) also react with further isonitrile to give $[\{Fe(\eta^5-C_5H_5)-(2,6-Me_2C_6H_3NC)_2\}_2]$.

Reaction times for the reaction of [$\{Fe(\eta^5-C_5H_4X)-(CO)_2\}_2$] (X = H, Me, or COOMe) with C_6H_5 NC and 2,6-Me₂ C_6H_3 NC are listed in Table 1. It is apparent from these data that 2,6-Me₂ C_6H_3 NC reacts more rapidly than C_6H_5 NC, *i.e.* electron-donating groups on the isonitrile assist the reaction. The data reveal further that electron-withdrawing groups on the cyclopentadienyl ring also assist the reaction, *i.e.* the reaction rate follows the sequence C_5H_4 COOMe $> C_5H_5 > C_5H_4$ Me. The overall effects thus suggest that the substitution reaction is enhanced by attack of good nucleophiles at an electrophilic centre.

The ability of aryl isonitriles to substitute the CO groups on (1) to a greater degree than alkyl isonitriles is in agreement with the known electronic properties of the

* See, however, the synthesis of $[{\rm Fe_2}(\eta^5\text{-}{\rm C_5H_5})_2({\rm CO})_3({\rm C_6H_5-NC})]^{16}$

isonitrile ligand.²⁰ The previously reported poor yields for the reaction between (1) and aryl isonitriles ^{7,8} must therefore be a consequence of experimental product work-up procedures rather than the nature of the products [(3) rapidly decomposes on silica or alumina columns and plates].

The use of catalysts in the synthesis of substituted dimeric iron aryl isonitrile complexes, which prompted this study, 1,2 has to date been unsuccessful. Thus, the use of Pd/C, PdO, Pt/C, and activated carbon 21 have led to no detectable increase in the rate of substitution of CO by RNC in (1). (Further, the use of CoCl₂ as a potential catalyst 22 has resulted in reaction inhibition.) These results are in contrast to our finding that the reaction $[\text{Fe}_2(\eta^5\text{-C}_5\text{H}_5)_2(\text{CO})_3(\text{Bu}^t\text{NC})] + \text{Bu}^t\text{NC} \longrightarrow [\{\text{Fe}(\eta^5\text{-C}_5\text{H}_5)_2(\text{CO})_3(\text{Bu}^t\text{NC})] + \text{Bu}^t\text{NC} \longrightarrow [\{\text{Fe}(\eta^5\text{-C}_5\text{H}_5)_2(\text{CO})_3(\text{Bu}^t\text{NC})\}_2]$ is catalysed by PtO₂ ($\approx 30\%$ rate increase in refluxing benzene over 4 h).²³

The dimeric iron isonitrile complexes have been characterized by i.r. spectroscopy (Table 2). The i.r.

TABLE 2
I.r. data (cm⁻¹) a

$[\mathrm{Fe_2(\eta^5\text{-}C_5H_5)_2(CO)_3(RNC)}]^{\ b}$	2 085m, 1 974m, 1 953s, 1 752s
$[\{\mathrm{Fe}(\eta^5\text{-}\mathrm{C}_5\mathrm{H}_5)(\mathrm{CO})(\mathrm{RNC})\}_2]$	2 074s, 1 983w, 1 948w,
$[\{Fe(\eta^5-C_5H_5)(RNC)_3\}_2]$	1 764m, 1 747m, 1 708ms 2 025m, 1 992m, 1 670ms
$\begin{array}{l} \left[\left\{Fe\left(\eta^{5}-C_{5}H_{5}\right)\left(C_{6}H_{5}NC\right)_{2}\right\}_{2}\right] \\ \left[\left\{Fe\left(\eta^{5}-C_{5}H_{4}COOMe\right)\left(RNC\right)_{2}\right\}_{2}\right] \end{array}$	2 070m, 1 987mw, 1 658ms 2 074m, 1 998w, 1 720ms
$[\{Fe(\eta^5-C_5H_4Me)(RNC)_2\}_2]$	2 030m, 1 992m, 1 668ms
$[\{\operatorname{Fe}(\eta^{5}-\operatorname{C}_{5}\operatorname{H}_{4}\operatorname{Me})(\operatorname{C}_{6}\operatorname{H}_{5}\operatorname{NC})_{2}\}_{2}]$	2 060m, 1 985mw, 1 655m

 $^{\sigma}$ Recorded in CS₂ unless otherwise stated. m = Medium, s = strong, and w = weak; R = 2,6-Me₂C₆H₃. b In C₆D₆. $^{c}\nu(\text{COOMe})$ 1 764 cm⁻¹.

spectrum of $[Fe_2(\eta^5-C_5H_5)_2(CO)_3(2,6-Me_2C_6H_3NC)]$ is consistent with the RNC group adopting a terminal position, 4viz . v(NC) at 2 085 cm $^{-1}$. This is in contrast to the reported spectrum of $[Fe_2(\eta^5-C_5H_5)_2(CO)_3(C_6H_5NC)]$ which indicates that C_6H_5NC adopts a bridging position, viz. v(NC) at 1 702 cm $^{-1}$. The effect could arise from either steric or electronic factors, 4,7 both of which would favour the 2,6-Me₂ C_6H_3NC adopting a terminal position relative to C_6H_5NC . The i.r. spectrum of $[\{Fe(\eta^5-C_5H_5)(CO)(2,6-Me_2C_6H_3NC)\}_2]$, by analogy with the spectra recorded for other disubstituted isonitrile derivatives, 7 is consistent with at least one of the 2,6-Me₂- C_6H_3NC groups adopting a terminal position [v(NC)]

2 074 cm⁻¹]. The band at 1 708 cm⁻¹ is, however, consistent with at least one isomer containing a bridging 2,6-Me₂C₆H₃NC group.

Thus, modification of the aryl isonitrile through substitution of the benzene ring is in agreement with the earlier definitive studies 4,5,7 on the effect of the modification of electronic and steric effects of alkyl isonitriles on the bridge/terminal RNC ratio.

The i.r. spectra of the tetrasubstituted derivatives (3) all show two terminal v(NC) stretches of varying intensity and one broad v(NC) bridging absorption. Although the presence of an electron-donating group on the η^5 - C_5H_5 ring has little effect on the $\nu(NC)$ band positions, the effect of electron-withdrawing groups is more noticeable. The move to higher frequency is in keeping with the greater reactivity of the ester-substituted ring derivative (see above).

The ¹H n.m.r. spectrum of $[Fe_2(\eta^5-C_5H_5)_2(CO)_3(2,6-1)]$ Me₂C₆H₃NC)] (benzene, 35 °C) shows singlet resonances for both the C₅H₅ ring and CH₃ groups (Table 3), thus

TABLE 3 Nmr data a

N.m.r. data	**	
	$C_{5}H_{5}$	Me
$[\mathrm{Fe_2}(\eta^5\text{-}\mathrm{C_6H_5})(\mathrm{CO})_3(\mathrm{RNC})]$	4.40	2.21
$[\{\mathrm{Fe}(\eta^5\text{-}\mathrm{C}_5\mathrm{H}_5)(\mathrm{CO})(\mathrm{RNC})_2\}_2]$	4.51	2.43, 2.22
$[\{Fe(\eta^5-C_5H_5)(RNC)_2\}_2]$	4.72,	2.56,
	4.61 [°] ¢	2.35, b
		2.07 .

 a Recorded in CeDe (8/p.p.m.) relative to SiMe. $R=2.6\text{-}Me_2C_6H_3.$ b trans isomer. a cis isomer.

suggesting that the molecule is fluxional at 35 °C. The disubstituted derivative shows broadened resonances for all the protons (35 °C) suggesting that the complex is close to the coalescence temperature for bridge-terminal CO-RNC interchange and/or cis-trans isomerism.⁷ The ¹H n.m.r. spectra of the tetrasubstituted derivatives are complicated and will require a variable-temperature study for their complete interpretation. The n.m.r. spectrum of $[\{Fe(\eta^5-C_5H_5)(2,6-Me_2C_8H_3NC)_2\}_2]$, reported in Table 3, can however be tentatively assigned, using the Cotton-Adams rules,²⁴ as a mixture of trans (40%) and cis (60%) isomers.

Since the tetrasubstituted complexes (X = H) containing 2,6-Me₂C₆H₃NC and C₆H₅NC have different i.r. spectra [terminal v(NC) region] and further, have different colours, it was thought that these effects could result from the different steric and/or electronic properties of the different ligands. However, an X-ray structure determination 25 of [{Fe(η^5 -C₅H₅)(2,6-Me₂C₆H₃-NC), $_{2}$ has revealed that this complex and [{Fe(η^{5} -C₅H₅)-(C₆H₅NC)₂}] are similar in all respects. The bridging ligands adopt an anti-trans arrangement in both molecules and the Fe-Fe bond lengths are 2.518 Å (2,6-Me₂- C_6H_3NC) and 2.525 Å (C_6H_5NC) ²⁶ respectively.

The facile synthesis of the completely substituted complex (3) thus opens up the chemistry of these new complexes and present efforts are being extended to an understanding of the chemistry of the bridging isonitrile ligand.27

N. J. C. and M. O. A. thank the University of the Witwatersrand and the CSIR for financial support.

[1/1919 Received, 14th December, 1981]

REFERENCES

- ¹ Part 3, M. O. Albers, N. J. Coville, and E. Singleton, I. Organomet. Chem., in the press.
- N. J. Coville, M. O. Albers, T. V. Ashworth, and E. Singleton, J. Chem. Soc., Chem. Commun., 1981, 408.
- ³ K. K. Joshi, P. L. Pauson, and W. H. Stubbs, J. Organomet. Chem., 1963, 1, 51.
- ⁴ J. Bellerby, M. J. Boylan, M. Ennis, and A. R. Manning, J.
- Chem. Soc., Dalton Trans., 1978, 1885.

 ⁵ J. A. S. Howell and A. J. Rowan, J. Chem. Soc., Dalton
- Trans., 1980, 503.

 R. D. Adams and F. A. Cotton, Synth. React. Inorg. Metal-
- ⁶ R. D. Adams and F. A. Cotton, Synth. React. Inorg. Metalorg. Chem., 1974, 4, 477.
 ⁷ M. Ennis, R. Kumar, A. R. Manning, J. A. S. Howell, P. Mathur, A. J. Rowan, and F. S. Stephens, J. Chem. Soc., Dalton Trans., 1981, 1251.
 ⁸ J. A. S. Howell, M. J. Mays, I. D. Hunt, and O. S. Mills, J. Organomet. Chem., 1977, 128, C29.
 ⁹ W. P. Fehlhammer, A. Mayr, and G. Christian, Angew. Chem., Int. Ed. Engl., 1978, 17, 866.
 ¹⁰ W. P. Fehlhammer and A. Mayr, J. Organomet. Chem., 1980, 101

- 191, 153.

 11 R. E. Schuster, J. E. Scott, and J. Casanova, Org. Synth.,
- 1966, 41, 13.

 12 R. B. King, 'Organometallic Synthesis,' Academic Press, New York, 1965, vol. 1.

 13 D. Peters, J. Chem. Soc., 1959, 1757.

 14 Rieser 'Reagents for Organic Synthesis,'
- 14 L. F. Fieser and M. Fieser, 'Reagents for Organic Synthesis,'
- Wiley, New York, 1968, vol. 1.

 18 W. von E. Doering and L. H. Knox, J. Am. Chem. Soc., 1957, **79**, 352.
- M. H. Quick and R. J. Angelici, Inorg. Chem., 1981, 20, 1127.
 K. J. Karel and J. R. Norton, J. Am. Chem. Soc., 1974, 96,
- 6812.

 18 D. J. Darensbourg and M. J. Incorvia, Inorg. Chem., 1980,
- ¹⁹ D. R. Kidd and T. L. Brown, J. Am. Chem. Soc., 1978, 100, 4095.
- Y. Yamamoto, Coord. Chem. Rev., 1980, 32, 193.
- ²¹ M. O. Albers, N. J. Coville, and E. Singleton, J. Chem. Soc., Chem. Commun., 1982, 96.
- ²² M. O. Albers, N. J. Coville, T. V. Ashworth, H. E. Swanepoel, and E. Singleton, J. Organomet. Chem., 1980, 199, 55.
 ²³ M. O. Albers and N. J. Coville, unpublished work.
 ²⁴ R. D. Adams and F. A. Cotton, J. Am. Chem. Soc., 1973, 95,
- 6589.

 25 G. Kruger, personal communication.

 3. Mayr, and V
- ²⁶ W. P. Fehlhammer, A. Mayr, and W. Kehr, J. Organomet. Chem., 1980, 197, 327.
- ²⁷ P. M. Triechel, J. J. Benedict, R. W. Hess, and J. P. Stenson, Chem. Commun., 1970, 1627.