Transfer of Cyclopentadienyl Groups between Platinum Atoms

Ronald J. Cross * and Alistair J. McLennan Department of Chemistry, University of Glasgow, Glasgow G12 8QQ

Replacement of a chloride ion of cis-[PtCl₂(CO)(PR₃)] (PR₃ = tertiary phosphine) by a cyclopentadienyl group from Tl(C₅H₅) or Hg(C₅H₅)₂ results exclusively in the isomers of [PtCl(σ -C₅H₅)(CO)(PR₃)] with C₅H₅ trans to PR₃. The second chloride can be replaced when excess Tl(C₅H₅) is used. The σ -bonded cyclopentadienyl groups of either mono- or di-substituted compounds can readily exchange in solution with a chloride of cis-[PtCl₂(CO)(PR₃)] again producing exclusively the same isomers of [PtCl(σ -C₅H₅)(CO)(PR₃)]. The cyclopentadienyl groups do not transfer as fast as chloride ions between the same species, but do so considerably faster than any accompanying CO scrambling processes. Cyclopentadienyl groups from the σ -bonded complexes, and from [Pt(η ⁵-C₅H₅)(PR₃)₂]Cl, can also be readily transferred to mercury when treated with HgCl₂.

A large number of cyclopentadienyl complexes of platinum are now known. They can be conveniently prepared via halide displacement by $C_5H_5^-$ from $Tl(C_5H_5)^{1-5}$ or $Hg(C_5H_5)_2^{.5}$. The products are σ -bonded 16-electron molecules, or η^5 -bonded 18-electron molecules, depending on the number and type of other ligands present. Interconversions between the two types have been reported 1,4,5 [equations (1) and (2); cod = cyclo-octa-1,5-diene].

$$[PtMe(\sigma-C_5H_5)(cod)] \xrightarrow{PR_3} [PtMe(\eta^5-C_5H_5)(PR_3)] \quad (1)$$

$$[Pt(PBu^t_2CMe_2CH_2)(\eta^5-C_5H_5)] \xrightarrow{PPh_3}$$

$$[Pt(PBu^t_2CMe_2CH_2)(\sigma-C_5H_5)(PPh_3)] \quad (2)$$

We report here a remarkable stereospecificity in forming σ -bonded cyclopentadienyls from cis-[PtCl₂(CO)(PR₃)] (PR₃ = tertiary phosphine), and in the easy intermolecular transfer of C_5H_5 groups between metal atoms.

Results and Discussion

A suspension of cis-[PtCl₂(CO)(PPh₃)] and Tl(C₅H₅) in benzene reacted over 1 h to yield [PtCl(C₅H₅)(CO)(PPh₃)] and insoluble TlCl. The cyclopentadienylplatinum complex was crystallized with difficulty from acetone-pentane mixtures to produce an orange powder. Although in the solid phase the compound appears to be indefinitely stable (samples have survived unchanged in air in diffuse light for more than 6 months), decomposition in solution proceeds over several days at ambient temperatures.

The ³¹P n.m.r. spectrum of the platinum complex revealed a ¹⁹⁵Pt-³¹P coupling constant of only 1 780 Hz, typical of complexes with phosphine *trans* to an organic group in compounds of this type. ⁶ The ¹H n.m.r. signals from the cyclopentadienyl group showed averaged proton signals with *J*(PtH) 31.0 and *J*(PH) 4.4 Hz, both in the range expected for a fluxional σ-cyclopentadienyl group *trans* to PR₃. ⁵ We therefore assign the structure (I) to this compound.

The complexes cis-[PtX₂(CO)(PR₃)] (X = Cl, PR₃ = PMePh₂, PMe₂Ph, or PEt₃; X = Br, PR₃ = PMe₂Ph) also reacted with one equivalent of Tl(C_5H_5) to produce quantitative yields of complexes with structure (I). The same materials were produced when Tl(C_5H_5) was replaced by Hg(C_5H_5)₂ (X = Cl, PR₃ = PMePh₂ or PMe₂Ph); the by-product in these cases was the soluble HgCl(C_5H_5). These compounds (I) appear to be somewhat less stable than their PPh₃ analogue. Although they survive in solution for up to 24 h attempted isolation tended to lead to decomposition. The

complex $[PtCl(\sigma-C_5H_5)(CO)(PMe_2Ph)]$ was finally obtained as an impure yellow solid; no attempts were made to isolate the others, and they were examined in solution after TlCl had been removed by filtration. Spectroscopic parameters are listed in the Table. The compounds are not affected by O_2 , H_2O , CO, CO_2 , or light.

The formation of (I) with C_5H_5 trans to PR₃ was expected from the reaction of the organomercurial. Numerous reactions with other organomercury compounds have produced just this geometry.⁶⁻⁸ Nucleophilic attack by anions on cis-[PtX₂(CO)(PR₃)] usually displaces the halide trans to CO, however,⁶ so the isomer with C_5H_5 trans to CO [structure (II)] might have been expected from the reaction of Tl(C_5H_5). The non-appearance of this isomer is interesting, and might indicate the operation of a non-ionic reaction mode for Tl-(C_5H_5), an anomalous reaction of C_5H_5 ⁻ compared to other carbanions, or a rapid rearrangement of (II) to (I) (see later).

With other organic groups, the isomers analogous to (I) readily undergo migration-insertion reactions to produce acyl derivatives. $^{6-8}$ We have found no evidence for carbonyl insertion in any of the cyclopentadienyl complexes described, either spontaneously in solution (CHCl₃, C_6H_6 , or Me₂CO) or on treatment with tertiary phosphine or halide.

The reaction of cis-[PtCl₂(CO)(PPh₃)] with excess Tl(C₅H₅) leads to the formation of the bis(cyclopentadienyl) complex, cis-[Pt(σ -C₅H₅)₂(CO)(PPh₃)]. This decomposed much more readily than the mono-cyclopentadienyls, and could not be isolated. Spectroscopic data are shown in the Table. As with compounds (I), bis-cyclopentadienyl complexes of the other phosphines appear to be even less stable, and relatively small amounts were obtained in solution before decomposition products became apparent.

Transfer Reactions.—When CDCl₃ solutions of cis-[PtCl₂-(CO)(PPh₃)] and cis-[Pt(σ -C₅H₅)₂(CO)(PPh₃)] were mixed at ambient temperatures, a rapid redistribution reaction took place leaving only (I) in solution [equation (3)]. A similar result was obtained from mixtures of cis-[Pt(σ -C₅H₅)₂(CO)-(PMe₂Ph)] and cis-[PtBr₂(CO)(PMe₂Ph)]; when complexes of different phosphines were employed, geometry (I) was observed for both products [equation (4)].

Table. Spectroscopic data

Compound	$\delta(C_5H_5)^a/$ p.p.m.	J(PtH)/ Hz	J(PH)/Hz	$\delta(P)^b/p.p.m.$	J(PtP)/Hz	J(P ¹³ C)/Hz	v(CO) °/ cm ⁻¹
$[PtCl(C_5H_5)(CO)(PPh_3)]$	6.21	31.0	4.4	18.6	1 780	10.0	2 085
$[PtCl(C_5H_5)(CO)(PMePh_2)]$	6.25	30.5	4.5	6.3	1 760	10.5	2 080
$[PtCl(C_5H_5)(CO)(PMe_2Ph)]$	6.18	30.0	4.5	-5.0	1 733	10.5	2 080
$[PtCl(C_5H_5)(CO)(PEt_3)]$	6.17	29.0	4.3	21.3	1 763		2 075
$[PtBr(C_5H_5)(CO)(PMe_2Ph)]$	6.23	30.0	4.5	-8.7	1 749	9.5	2 080
$[PtBr(C_5H_5)(CO)(PMePh_2)]$				2.9	1 780		
cis-[Pt(C ₅ H ₅) ₂ (CO)(PPh ₃)]	5.90	33.0	3.5	20.0	2 127		2 075
	5.45	33.0	5.0				
cis-[Pt(C ₅ H ₅) ₂ (CO)(PMePh ₂)]				3.0	2 107		
cis-[Pt(C ₅ H ₅) ₂ (CO)(PMe ₂ Ph)]				-9.8	2 095		
$[Pt(\eta^5-C_5H_5)(PPh_3)_2]Cl$	5.39	11.5	1.5	3.9	4 736		
$[Pt(\eta^5-C_5H_5)(PMe_2Ph)_2]Cl$	6.05	11.0	1.5	-28.2	4 498		
$[Pt(\eta^5-C_5H_5)(PMePh_2)_2]Cl$	5.55	12.0	1.5	-14.1	4 578		
$[Pt(\eta^5-C_5H_5)(CO)(PMe_2Ph)][SO_3CF_3]^d$	6.15	13.3	1.3	-25.2	3 724		2 065

^a In CDCl₃ at 25 °C, downfield from internal SiMe₄. ^b In CDCl₃ at 25 °C, downfield from 85% H₃PO₄. ^c CHCl₃ solution. ^d [Pt(η⁵-C₅H₅)-(CO)(PPh₃)][ClO₄] has been reported by Kurosawa *et al.*³

$$[Pt(C5H5)2(CO)(PMePh2)] + [PtCl2(CO)(PMe2Ph)] \longrightarrow (I; PR3 = PMePh2) + (I; PR3 = PMe2Ph) (4)$$

Intermolecular exchange of cyclopentadienyl with chloride also occurred when (I) reacted with cis-[PtX₂(CO)(PR'₃)]. Thus n.m.r. investigations revealed that solutions of cis-[PtCl₂(CO)(PPh₃)] and [PtCl(σ -C₅H₅)(CO)(PMe₂Ph)] equilibrated with cis-[PtCl₂(CO)(PMe₂Ph)] and [PtCl(σ -C₅H₅)-(CO)(PPh₃)] in less than 30 min at ambient temperatures. This and related systems [see equations (5)—(7)] revealed that at equilibrium the C₅H₅ group showed a preference for the platinum atom with the less basic phosphine (or that with the smaller *trans* influence ⁷). Equilibrium constants for reactions (5)—(7) were approximately 0.3, 0.2, and 0.45, respectively.

(I;
$$PR_3 = PPh_3$$
) + cis -[$PtCl_2(CO)(PMePh_2)$] \rightleftharpoons
(I; $PR_3 = PMe_2Ph$) + cis -[$PtCl_2(CO)(PPh_3)$] (5)

(I;
$$PR_3 = PPh_3$$
) + cis -[$PtCl_2(CO)(PMe_2Ph)$] \rightleftharpoons
(I; $PR_3 = PMe_2Ph$) + cis -[$PtCl_2(CO)(PPh_3)$] (6)

(I;
$$PR_3 = PMe_2Ph$$
) + $cis-[PtCl_2(CO)(PEt_3)]$ (I; $PR_3 = PEt_3$) + $cis-[PtCl_2(CO)(PMe_2Ph)]$ (7)

That the migrating groups in these reactions were C_5H_5 and Cl, and not PR₃, was established by using samples labelled with ¹³CO [equation (8)]. Phosphorus-31 n.m.r. spectra easily

$$[PtCl(C5H5)(13CO)(PMePh2)] + cis-[PtCl2(CO)(PPh3)] \rightleftharpoons cis-[PtCl2(13CO)(PMePh2)] + [PtCl(C5H5)(CO)(PPh3)] (8)$$

identified the coupling of 13 C to P as of *cis* geometry, showing that these parts of the molecules retained their integrity in the time of scrambling C_5H_5 and Cl (<30 min). Over 24 h, however, a slower reaction was also observed, leading to scrambling of the CO (or PR₃) groups.

Experiments on compounds with different halides indicated that reactions of the type (5)—(8) were accompanied by exchange of halides. Thus, ³¹P n.m.r. spectroscopic examination of the reaction between [PtCl(C₅H₅)(CO)(PMe₂Ph)] and cis-[PtBr₂(CO)(PMe₂Ph)] showed that it reached equilibrium in less than 10 min, producing [PtBr(C₅H₅)(CO)(PMe₂Ph)] and one isomer of [PtClBr(CO)(PMe₂Ph)] [δ 8.1 p.p.m., J(PPt) 2 832 Hz: the coupling constant suggests that a halide is trans to PMe₂Ph 9]. This isomer is presumably the thermodynamically stable one since it is the only one produced when solutions of cis-[PtCl₂(CO)(PMe₂Ph)] and cis-[PtBr₂(CO)-(PMe₂Ph) are mixed.* Phosphorus-31 n.m.r. examination of the reactions between [PtBr(σ-C₅H₅)(CO)(PMe₂Ph)] and cis-[PtCl₂(¹³CO)(PMe₂Ph)] revealed that all the materials contained ¹³CO after only 15 min. Since it is unlikely [from equation (8)] that CO exchange would have progressed this far in such a short time, the scrambling must originate from rapid halide and C_5H_5 migration. Mixing [PtCl(σ -C₅H₅)(CO)-(PMePh₂)] and cis-[PtBr₂(CO)(PMe₂Ph)] resulted in rapid (<10 min) conversion of half of the cyclopentadienyl complex to its bromide analogue before C5H5 had been transferred to any great extent to the other platinum. Halide exchange in these systems appears to be two or three times faster than cyclopentadienyl exchange.

These C_5H_5 transfer reactions appear to proceed quite rapidly compared to other organic radical transfers. Exchange reactions of methyl and aryl groups between platinum(II) bisphosphine complexes have been reported to take anything up to a month for completion, for example.¹⁰ This comparison may be misleading, however, as the nature of the other ligands might exert as big an influence on the transfer rate as the organic groups themselves. We detected no reactions between $[PtCl(\sigma-C_5H_5)(CO)(PMe_2Ph)]$ and $cis-[PtCl_2(PR_3)_2]$ (PR₃ = PMe_2Ph or PPh_3) or $[PtCl(\sigma-C_5H_5)(CO)(PPh_3)]$ and $[PtCl(C_2Cl_3)(CO)(PMePh_2)]$ (Cl trans to CO) in 24 h. Also, although the aryl group of $[PtCl(C_6H_4CO_2Me-p)(CO)(PMe_2Ph)]$

^{*} If it were the kinetic product resulting from a single exchange of two halide ions, it would mean the involvement of different specific sites on each Pt. The similarity of Cl and Br makes this unlikely.

(Cl trans to CO) was appreciably transferred to the platinum of cis-[PtCl₂(CO)(PPh₃)] after 1 h (about three times slower than for C₅H₅ transfer), the ortho-substituted aryl of [PtCl-(C₆H₄Me-o)(CO)(PMe₂Ph)] showed no substantial movement to the same dichloroplatinum complex until ca. 12 h had elapsed. Interestingly, the exchange of C₆H₄Cl-o for Cl in the reaction between [PtCl(C₆H₄Cl-o)(CO)(PMe₂Ph)] and cis-[PtCl₂(¹³CO)(PPh₃)], which also required longer than 12 h, was not accompanied by ¹²CO-¹³CO scrambling in this time. Such scrambling would be appreciable in the analogous cyclopentadienyl system [e.g. reaction (8)], suggesting the possibility of a link between the various transfers.

The reaction of cyclopentadienylthallium with cis-[PtCl₂-(PR₃)₂] (PR₃ = PPh₃, PMePh₂, or PMe₂Ph) produced the η^5 -bonded complexes [Pt(η^5 -C₅H₅)(PR₃)₂]Cl. Proton n.m.r. parameters were typical of compounds of this type ⁵ (see Table). Replacement of the chlorides by SO₃CF₃⁻ from Ag(SO₃CF₃) created no change in the n.m.r. parameters, indicating no close association of Cl⁻ with the cation in CDCl₃. Silver salts also abstracted halide from complexes (I) to yield η^5 -bonded materials [equation (9)].

(I;
$$PR_3 = PMe_2Ph) + Ag(SO_3CF_3) \xrightarrow{-AgCl}$$

 $[Pt(\eta^5-C_5H_5)(CO)(PMe_2Ph)][SO_3CF_3]$ (9)

The complex $[Pt(\eta^5-C_5H_5)(PMe_2Ph)_2]Cl$ reacts rapidly with $HgCl_2$ by C_5H_5 transfer [equation (10)]. Mercury(II) chloride also rapidly cleaves C_5H_5 from (I) [equation (11)]. It

$$[Pt(\eta^{5}-C_{5}H_{5})(PR_{3})_{2}]Cl + HgCl_{2} \longrightarrow HgCl(C_{5}H_{5}) + cis-[PtCl_{2}(PR_{3})_{2}]$$
(10)

$$(I; PR3 = PMe2Ph) + HgCl2 \longrightarrow HgCl(C5H5) + cis-[PtCl2(CO)(PMe2Ph)] (11)$$

is possible that the transfer reaction in equation (10) may be preceded by a $\eta^5 \longrightarrow \sigma$ conversion of C_5H_5 . Transfer of η^5 - C_5H_5 between cobalt atoms has been reported, however, although the mechanism is unknown.¹¹

Finally, we note that the rapid transfer of σ-cyclopentadienyl between platinum atoms, or the easy conversions between η⁵- and σ-bonding of these groups, offer the possibility that isomer (I) is universally obtained simply because it may be the thermodynamic isomer. Thus if isomer (II) (where C₅H₅ is trans to CO) was the initial product from Tl(C₅H₅) and cis-[PtCl₂(CO)(PR₃)] [and/or included in the products from equations (3) and (4)] it could be converted rapidly into (I) by intermolecular transfers,* or reversible conversion to an η⁵-bonded compound. Attempts were made to detect intermediates during the formation of (I) by n.m.r. spectroscopic investigation at low temperatures. None was observed, however: the first detectable products from Tl(C₅H₅) and [PtCl₂-(CO)(PR₃)] were (I). Thus if such isomerisations are part of the preparative routes to (I), they must be faster than the initial formation of the precursor to (I).

Experimental

Nuclear magnetic resonance spectra were recorded in CDCl₃ solutions on a Varian XL100 spectrometer operating in the Fourier transform mode (³¹P) or on a Perkin-Elmer R32 90-

MHz continuous-wave spectrometer (¹H). Infrared spectra were recorded on a Perkin-Elmer 580 or 257 spectrophotometer as KBr discs (for solid materials) or as 0.02 mol dm⁻³ CHCl₃ solutions in NaCl cells (0.5 mm path length).

The starting materials $Tl(C_5H_5)$, $Hg(C_5H_5)_2$, cis-[PtCl₂(CO)-(PR₃)], and cis-[PtCl₂(PR₃)₂] were prepared and purified by standard methods.^{13–15}

Preparations.—[PtCl(σ -C₅H₅)(CO)(PPh₃)]. cis-Carbonyldichloro(triphenylphosphine)platinum(II) (293 mg, 0.53 mmol) and cyclopentadienylthallium (146 mg, 0.54 mmol) were stirred together in benzene (5 cm³) under a nitrogen atmosphere for 1 h. After removal of TlCl by filtration, the solvent was removed under vacuum leaving an orange semi-solid which was dissolved in acetone (3 cm³). Addition of pentane (10 cm³) precipitated the *product*, [PtCl(σ -C₅H₅)(CO)(PPh₃)] as an orange powder, m.p. 106—108 °C, yield 181 mg, 59% (Found: C, 49.35; H, 3.5. Calc. for C₂₄H₂₀ClOPPt: C, 49.2; H, 3.4%).

[PtCl(C_sH_s)(CO)(PMe₂Ph)]. The complex cis-[PtCl₂(CO)-(PMe₂Ph)] (306 mg, 0.71 mmol) and Tl(C_sH_s) (193 mg, 0.72 mmol) were stirred together in benzene (5 cm³) for 45 min. Removal of TlCl and the solvent left a sticky orange semisolid. Attempts to crystallise the orange material from several solvents led to decomposition and formation of brown or black solids or oils. Finally, the remaining material was dissolved in a minimum of benzene and the product precipitated as a slightly impure yellow powder on addition of pentane: m.p. 73—79 °C, yield 64 mg, 20% (Found: C, 35.5; H, 3.0. Calc. for $C_{14}H_{16}ClOPPt$: C, 36.4; H, 3.5%).

Solutions of [PtCl(σ-C₅H₅)(CO)(PMe₂Ph)] were stable in various solvents (CHCl₃, C₆H₆, or Me₂CO) indefinitely at –60 °C, and no decomposition products were detected by ³¹P n.m.r. at ambient temperatures for several hours. Decomposition in solution was not accelerated by light, oxygen, moisture, or CO, but proceeded rapidly on attempted crystallisations: it may therefore be a bimolecular process. No attempts were made to isolate other examples of these monocyclopentadienyls. Solutions were prepared *in situ* for examination of their reactions. Spectroscopic parameters are listed in the Table.

cis-[Pt(σ -C₅H₅)₂(CO)(PPh₃)]. The complex cis-[PtCl₂(CO)(PPh₃)] (32.2 mg, 0.06 mmol) and Tl(C₅H₅) (63 mg, 0.23 mmol) were stirred together in CDCl₃ solution (0.5 cm³) under a nitrogen atmosphere. The reaction was monitored by ¹H and ³¹P n.m.r. spectrometry. Resonances assigned to [Pt(C₅H₅)₂-(CO)(PPh₃)] (Table) grew in strength, as those due to [PtCl-(C₅H₅)(CO)(PPh₃)] diminished. Increasing quantities of decomposition products were also apparent in solution after 2 h, and the bis-cyclopentadienyl complex could not be obtained in a pure state.

Reactions.—cis-[Pt(C_5H_5)₂(CO)(PPh₃)] with cis-[PtCl₂(CO)(PPh₃)]. The complex cis-[PtCl₂(CO)(PPh₃)] (27.7 mg, 0.05 mmol) and Tl(C_5H_5) (49.3 mg, 0.18 mmol) were stirred together in CDCl₃ (400 μ l) under nitrogen for 2 h. After filtration, ¹H n.m.r. investigation of the orange solution revealed the main product to be cis-[Pt(C_5H_5)₂(CO)(PPh₃)] (55%). A solution of cis-[PtCl₂(CO)(PPh₃)] (15.2 mg, 0.027 mmol) in CDCl₃ (100 μ l) was added. Proton n.m.r. investigation now revealed [PtCl(C_5H_5)(CO)(PPh₃)] as the main, and only cyclopentadienyl-containing product.

[PtCl(C₅H₅)(CO)(PMe₂Ph)] with cis-[PtCl₂(CO)(PPh₃)]. A solution of [PtCl(C₅H₅)(CO)(PMe₂Ph)] was prepared from the reaction of cis-[PtCl₂(CO)(PMe₂Ph)] (30.7 mg, 0.07 mmol) and Tl(C₅H₅) (19.8 mg, 0.075 mmol) in CDCl₃ (350 μl) and filtered. To it was added a solution of cis-[PtCl₂(CO)(PPh₃)] (18.2 mg, 0.033 mmol) in CDCl₃ (150 μl). Phosphorus-31 n.m.r. investigation of the solution revealed the presence of

^{*} This does not happen with [PtCl(R")(CO)(PR₃)] (R" = aryl). The isomer with aryl trans to CO converts only very slowly into that with Cl trans to CO and by a dissociative route.⁶ Neither is any reaction observed between [PtCl(R")(CO)(PR₃)] (R" trans to CO; R" = C=CMe or C=CPh) and cis-[PtCl₂(CO)(PR₃)] to produce the isomer with Cl trans to CO.¹²

cis-[PtCl₂(CO)(PMe₂Ph)], [PtCl(C_5H_5)(CO)(PMe₂Ph)], [PtCl(C_5H_5)(CO)(PPh₃)], and cis-[PtCl₂(CO)(PPh₃)]. A similar mixture was obtained starting from cis-[PtCl₂(CO)(PMe₂Ph)] and [PtCl(C_5H_5)(CO)(PPh₃)]. Integration of the ³¹P signals allowed the equilibrium constant to be calculated.

Similar reactions were carried out between [PtCl(C₅H₅)-(¹³CO)(PMePh₂)] and *cis*-[PtCl₂(CO)(PPh₃)]; [PtCl(C₅H₅)-(CO)(PEt₃)] and *cis*-[PtCl₂(CO)(PMe₂Ph)]; [PtCl(C₅H₅)(CO)-(PPh₃)] and *cis*-[PtCl₂(CO)(PMePh₂)]; [PtCl(C₅H₅)(CO)-(PMe₂Ph)] and *cis*-[PtBr₂(CO)(PMe₂Ph)]; [PtBr(C₅H₅)(CO)-(PMe₂Ph)] and *cis*-[PtCl₂(¹³CO)(PMe₂Ph)]; and [PtCl(C₅H₅)-(CO)(PMePh₂)] and *cis*-[PtBr₂(CO)(PMe₂Ph)]. No reactions were observed between [PtCl(C₅H₅)(CO)(PMe₂Ph)] and either *cis*-[PtCl₂(PMe₂Ph)₂] or *cis*-[PtCl₂(PPh₃)₂].

[Pt(η^5 -C₅H₅)(PMe₂Ph)₂]Cl. The complex *cis*-[PtCl₂(PMe₂-Ph)₂] (30.2 mg, 0.054 mmol) and Tl(C₅H₅) (16.9 mg, 0.063 mmol) were stirred together suspended in CDCl₃ (0.5 cm³) for 2 h under a nitrogen atmosphere. The orange-yellow solution was filtered [to remove TlCl and unreacted Tl(C₅H₅)] into an n.m.r. tube. Phosphorus-31 and ¹H n.m.r. spectra (Table) indicated the presence in solution of only [Pt(η^5 -C₅H₅)-(PMe₂Ph)₂]Cl.

[Pt(η⁵-C₅H₅)(PMe₂Ph)₂]Cl with HgCl₂. A solution of [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]Cl in CDCl₃ (0.5 cm³) was prepared as above from cis-[PtCl₂(PMe₂Ph)₂] (30.1 mg, 0.054 mmol) and Tl(C₅H₅) (15.1 mg, 0.056 mmol). To this was added HgCl₂ (8.4 mg, 0.032 mmol) and the solution examined by ¹H n.m.r. spectroscopy. As well as unreacted η⁵-C₅H₅ starting material, resonances were observed from HgCl(C₅H₅) (δ 6.1 p.p.m.) and cis-[PtCl₂(PMe₂Ph)₂] [phosphine methyl resonance: δ 1.76 p.p.m., J(PtH) 34.5, J(PH) 11.0 Hz].

[PtCl(R")(CO)(PMe₂Ph)] (R" = aryl) with cis-[PtCl₂(CO)-(PPh₃)]. Solutions of various [PtCl(R")(CO)(PMe₂Ph)] (Cl trans to CO) in CDCl₃ were prepared by standard methods ^{6,8} and characterised by their ³¹P n.m.r. spectroscopic parameters [R" = C₆H₆OMe-o, δ (P) - 5.4 p.p.m., J(PtP) 1 487 Hz; R" = C₆H₄Cl-o, δ (P) - 7.5 p.p.m., J(PtP) 1 541, J(PC) 8.5 Hz; R" = C₆H₄CO₂Me-p, δ (P) - 5.8 p.p.m., J(PtP) 1 410 Hz]. To each solution was added one mol equivalent of cis-[PtCl₂(CO)(PPh₃)₂] in CDCl₃, and the reactions followed by

³¹P n.m.r. spectroscopy. Transfer of the aryl group to produce [PtCl(R")(CO)(PPh₃)] (Cl trans to CO) took 1 h to reach detectable concentrations of [PtCl($C_6H_4CO_2Me-p$)(CO)(PPh₃)] [δ (P) + 18.3 p.p.m., J(PtP) 1 483 Hz], but greater than 12 h in the other two cases [R" = C_6H_4OMe-p , δ (P) 18.8 p.p.m., J(PtP) 1 552 Hz; R" = C_6H_4Cl-o , δ (P) 16.4 p.p.m., J(PtP) 1 607 Hz].

Acknowledgements

One of us (A. J. M.) thanks S.E.R.C. for a maintenance award.

References

- 1 H. C. Clark and A. Shaver, Can. J. Chem., 1976, 54, 2068.
- N. M. Boag, M. Green, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1200.
- 3 H. Kurosawa, T. Majima, and N. Asada, J. Am. Chem. Soc., 1980, 102, 6996.
- 4 A. B. Goel, S. Goel, D. van der Veer, and H. C. Clark, *Inorg. Chim. Acta*, 1981, 53, L117.
- 5 R. J. Cross and R. Wardle, J. Chem. Soc. A, 1971, 2000.
- 6 G. K. Anderson and R. J. Cross, J. Chem. Soc., Dalton Trans., 1979, 1246.
- 7 G. K. Anderson and R. J. Cross, J. Chem. Soc., Dalton Trans., 1980, 712.
- 8 R. J. Cross and J. Gemmill, J. Chem. Soc., Dalton Trans., 1981, 2317.
- 9 G. K. Anderson, R. J. Cross, and D. S. Rycroft, J. Chem. Res., 1979, (S) 120; (M) 1601.
- 10 J. K. Jawad, R. J. Puddephatt, and M. A. Stalteri, *Inorg. Chem.*, 1982, 21, 332.
- 11 H. E. Bryndza and R. G. Bergman, *Inorg. Chem.*, 1981, 20, 2988.
- 12 R. J. Cross and J. Gemmill, unpublished work.
- 13 F. A. Cotton and L. T. Reynolds, J. Am. Chem. Soc., 1958, 80, 269
- 14 A. N. Nesmeyanov, R. B. Materikova, and N. S. Kochetikova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1963, 1334.
- 15 F. R. Hartley, Organomet. Chem. Rev., 1970, 6, 119.

Received 2nd July 1982; Paper 2/1113