Metallation of Aliphatic Carbon Atoms. Part 1. Synthesis and Characterization of the Cyclopalladated Complexes of 2-Neopentylpyridine Yoshio Fuchita, Katsuma Hiraki,* and Toshinobu Uchiyama Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852, Japan Metallation of the methyl group in 2-neopentylpyridine occurs with palladium(II) acetate to afford a novel six-membered cyclopalladated complex [$\{Pd(CH_2CMe_2CH_2C_5H_4N)(O_2CMe)\}_2$]. This complex is readily converted into the chloro-bridged analogue, [$\{Pd(CH_2CMe_2CH_2C_5H_4N)(Cl\}_2\}$], by metathetical reaction with LiCl. The chloro-bridged complex undergoes bridge-splitting reactions with 3,5-dimethylpyridine and thallium(I) acetylacetonate to give the corresponding mononuclear cyclopalladated complexes. All the complexes are characterized by means of elemental analysis and i.r. and 1H n.m.r. spectroscopy. The inversion of the six-membered chelate ring in these complexes is discussed on the basis of temperature-dependent 1H n.m.r. spectra. The activation of alkyl groups with transition-metal compounds has been one of the most important and challenging problems.^{1,2} Many investigations have been reported concerning the activation of the alkyl groups through the cyclopalladation and cycloplatination of bulky tertiary alkylphosphines.^{2,3} However, only a few papers have been published concerning the cyclopalladation of alkyl groups of nitrogen bases, *i.e.*, 8-alkylquinolines,^{4,5} o-NN-dimethylaminotoluene,⁶ alkyl t-butyl ketoxime,⁷ and t-butyl methyl ketone dimethylhydrazone.⁷ All the cyclopalladated complexes of these nitrogen bases had five-membered chelate structures.⁴⁻⁷ In this study, we present the activation of the t-butyl group in 2-neopentylpyridine using palladium(II) acetate, leading to the formation of a novel six-membered cyclopalladated complex. It has been reported recently from our laboratory that 2-benzyl- and 2-benzoyl-pyridines gave six-membered cyclopalladated complexes, which involved an aryl-palladium σ bond.^{8,9} ### **Results and Discussion** Preparations and General Properties of the Cyclopalladated Complexes.—2-Neopentylpyridine reacted with palladium(II) acetate in acetic acid at 100 °C to give a novel six-membered cyclopalladated complex, [{Pd(CH₂CMe₂CH₂C₅H₄N)(O₂-CMe)}₂] (1). This acetato-bridged complex (1) was readily converted into [{Pd(CH₂CMe₂CH₂C₅H₄N)Cl}₂] (2), chlorobridged analogue, by the metathetical reaction with excess lithium chloride. Complex (2) reacted with 3,5-dimethylpyridine (dmpy) and thallium(I) acetylacetonate, Tl(acac), to afford the corresponding mononuclear cyclopalladated complexes, [Pd(CH₂CMe₂CH₂C₅H₄N)Cl(dmpy)] (3) and [Pd(CH₂CMe₂CH₂C₅H₄N)(acac)] (4), respectively (Scheme). The yields and microanalytical data of the complexes obtained in this study are summarized in Table 1. The microanalytical data of (1)-(4) are consistent with the struc- Scheme. (i) [Pd(O₂CMe)₂] in acetic acid at 100 °C; (ii) LiCl in acetone-water (10:1); (iii) dmpy in CH₂Cl₂; (iv) Tl(acac) in CH₂Cl₂. Dotted lines represent the groups situated behind the plane of the paper Table 1. Yields and elemental analyses of the cyclopalladated complexes | Com-
plex | Yield
(%) | M.p.
(θ _e /°C) | Analysis ^a (%) | | | | |--------------|--------------|------------------------------|---------------------------|----------------|----------------|--| | | | | ́ С | Н | N | | | (1) | 33 | 204—208 ^b | 45.8
(45.95) | 5.5
(5.45) | 4.3
(4.45) | | | (2) | 94 | 241—244 ^b | 41.15
(41.4) | 4.85
(4.85) | 4.8
(4.85) | | | (3) | 82 | 171—173 | 50.85
(51.4) | 5.75
(5.85) | 6.75
(7.05) | | | (4) | 34 | 109—111 | 50.7
(50.95) | 6.05
(6.0) | 4.1
(3.95) | | ^a Calculated values are given in parentheses. ^b With decomposition. Pd CH₃ Pd CH₃ Pd CH₃ B Figure 1. Inversion of the six-membered Pd-CH₂CMe₂CH₂CN ring Table 2. Proton n.m.r. data a of the cyclopalladated complexes | | | Other ligands | | | | | | |------------------|-----------------------|-----------------------|----------------------|-----------------------|--------------------------------------|--------------------|---| | Complex | Pd-CH ₂ | py–CH₂ | CMe ₂ | H ⁶ (py) | H ³⁻⁵ (py) | Me | Others | | (1)-ah b | 1.81 (q) ^c | 2.48 (q) ^d | 0.82 (s)
0.44 (s) | 8.93 (d) e | 6.99 (d), e 7.43 (t) e
7.51 (t) e | 1.98 (s) | | | (1) -ag b | 2.16 (s) | 2.69 (s) | 0.82 (s) | 8.24 (d) e | 6.61 (t), 6.95 (m) | 1.90 (s), 2.03 (s) | _ | | (3) | 1.78 (s) | 2.99 (s) | 0.90 (s) | 9.48 (d) ^f | 7.58 (t), ^f 7.0—7.3 (m) | 2.29 (s) | 7.34 (s) ^a 8.47 (s) ^b | | (4) | 2.08 (s) | 2.81 (s) | 0.87 (s) | 9.08 (d) ^f | 7.65 (t), 7.15 (m) ^f | 1.93 (s), 1.95 (s) | 5.36 (s) ¹ | ^a δ Relative to SiMe₄; recorded at 100 MHz on a JEOL JNM-MH-100 spectrometer in CDCl₃, at 27 °C except for (1); s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. ^b Measured at -28 °C. ^c $\Delta\delta = 0.46$, ²J(HH) = 8 Hz. ^d $\Delta\delta = 0.39$, ²J(HH) = 13 Hz. ^e ³J(HH) = ca. 6 Hz. ^f ³J(HH) = 8 Hz. ^g γ-H(dmpy). ^h α-H(dmpy). ^l CH(acac). tures drawn in the Scheme. The 1H n.m.r. spectra of (1), (3), and (4) exhibited new resonances in the range δ 1.6—2.2, due to the palladium-bonded methylene protons (Table 2), indicating unambiguously that these complexes are cyclopalladated with one methyl group of 2-neopentylpyridine, forming a novel six-membered chelate ring.* All the complexes, having the aliphatic carbon-palladium σ bond, are fairly stable in air and water. It is noteworthy that the acetatobridged complex (1) is stable also in acetic acid at 100 °C. The stability of the aliphatic carbon-palladium σ bond is probably due to both the cyclopalladated structure and the lack of β -hydrogen in the aliphatic moiety. Acetato-bridged Binuclear Complexes (1).-The i.r. spectrum of (1) showed two bands at 1 580 and 1 420 cm⁻¹, characteristic of the bridging acetato-ligand. 10 The 1H n.m.r. spectrum of (1) at 27 °C showed two sets of signals: one set consisting of stronger signals at δ 1.85 (s, br, 2.7 H, Pd- CH_2), 2.5 (s, br, 2.7 H, py- CH_2), 0.65 [s, br, 8 H, $C(CH_3)_2$], and 1.98 (s, 4 H, CH_3CO_2); the other consisting of weaker signals at δ 2.20 (s, 1.3 H, Pd-C H_2), 2.76 (s, 1.3 H, py-C H_2), 0.84 [s, 4 H, $C(CH_3)_2$], 1.95 (s, 1 H, CH_3CO_2), and 1.98 (s, 1 H, CH_3CO_2).‡ At -28 °C, the former two methylene signals at δ 1.85 and 2.5 changed into two AB quartets at δ 1.81 [$\Delta \delta = 0.46$, ${}^2J(HH) = 8$ Hz] and 2.48 [$\Delta \delta = 0.39$, $^{2}J(HH) = 13$ Hz], respectively, whereas the methyl proton signal at δ 0.65 separated into two sharp singlets at δ 0.44 (4 H) and 0.82 (4 H) (Table 2). The signals of the latter set changed very little above -50 °C. These data imply that (1) consists of an $(a-C^1, b-N)-(g-N, h-C^1)$ -type (an ah-type) isomer and an $(a-C^1, b-N)-(g-C^1, h-N)$ -type (an ag-type) one in a ratio of 2:1, which correspond to the stronger signals rings, Pd-CH₂CMe₂CH₂CN, took place rapidly on the n.m.r. time-scale above 20 °C (Figure 1), and was quenched below -28 °C. It is possible that the six-membered chelate ring has two conformations, i.e., 'half-boat' and 'half-chair' types, as in the case of cyclohexene.12 However, the half-chair type is unfavourable, since molecular models indicate that it must hold remarkable ring strain owing to the relatively small bond angle CH₂-Pd-N(py) (almost 90°), in contrast to cyclohexene involving two sp3 carbons adjacent to the olefinic bond. Accordingly, the six-membered chelate ring is ascribed to the half-boat type 8 having little ring strain, shown in the Scheme. Considering that two co-ordination planes in an acetato-bridged cyclopalladated dimer are combined by two mutually cis μ -acetato-ligands with a dihedral angle of ca. 24°, 13 (1)-ah was expected to have three conformations (C, D, and E) at low temperature, as shown in Figure 2. However, D is less favourable, because molecular models indicate that one of the pyridyl protons (H⁶) and protons of an inner methyl group in D are located very close to each other. Compound (1)-ah looks unlikely to have conformation E, since two methylene groups in E are very close to each other. Since a new set of signals for D did not appear in the ¹H n.m.r. spectra at low temperature, D is probably a quasi-stable conformation, formed in a limited proportion only at high temperature. On the other hand, the inversion of the sixmembered chelate rings in the ag-type isomer was not quenched even at -50 °C, as for the mononuclear complexes (3) and (4) (see below). and the weaker ones, respectively (Scheme).¹¹ The temperature dependency of the ¹H n.m.r. spectra of the *ah*-type isomer indicates that the inversion of the six-membered chelate ^{*} The 'H n.m.r. spectrum of (2) could not be obtained owing to its poor solubility. [‡] This signal overlapped with the acetato-methyl proton signal for the stronger set (see before). Figure 2. Possible conformations for (1)-ah. Dotted lines represent the groups situated behind the plane of the paper Mononuclear Complexes.—Each of the mononuclear complexes [Pd(CH₂CMe₂CH₂C₅H₄N)Cl(dmpy)] (3) and [Pd(CH₂CMe₂CH₂C₅H₄N)(acac)] (4) showed only one sort of ¹H n.m.r. spectrum without temperature dependency in the range 27 to -50 °C, indicating that the inversion of the six-membered chelate ring is rapid. The i.r. spectrum of (4) exhibited two bands at 1 590 and 1 400 cm⁻¹ characteristic of OO'-chelating acac ligand. The mass spectrometry of (4) gave the parent peak at m/e 354 corresponding to ¹⁰⁶Pd. # **Conclusions** It is concluded that 2-neopentylpyridine reacts with palladium(II) acetate to give the acetato-bridged binuclear cyclopalladated complex (1), which consists of the *ah*- and *ag*-type isomers in the ratio of 2:1, and that (1) and its derivatives (3) and (4) have a six-membered chelate ring, which exhibits the inversion motion. Only the (1)-*ah* isomer shows the temperature-dependent ¹H n.m.r. spectra due to quenching of the inversion motion. ## Experimental 2-Neopentylpyridine, ¹⁴ and Tl(acac) ¹⁵ were prepared according to literature methods. General procedures were as described previously. ¹¹ Preparations.—[$\{\dot{P}d(CH_2CMe_2CH_2C_5H_4\dot{N})(O_2CMe)\}_2$] (1). An acetic acid (20 cm³) suspension containing palladium(II) acetate (4.45 mmol) and 2-neopentylpyridine (4.91 mmol) was heated at 100 °C for 5 h, and filtered. The filtrate was diluted with water (100 cm³), and then extracted with dichloromethane (50 cm³). The concentrated extract was chromatographed on a silica gel column (200 mesh, 12 × 180 mm) to give a yellow fraction by eluting with diethyl ether–acetone (1:1). The yellow fraction was evaporated to dryness to give (1) as yellow crystals. [{Pd(CH₂CMe₂CH₂C₅H₄N)Cl}₂] (2). An acetone-water suspension (10:1, 33 cm³) containing (1) (0.77 mmol) and lithium chloride (3.85 mmol) was stirred for 15 h at room temperature. The resulting precipitates were filtered off and washed with methanol-water (1:1, 20 cm³) to give (2) as pale yellow solids. Reactions of (2).—(a) With 3,5-dimethylpyridine. A clear solution was obtained immediately by adding dmpy (0.88 mmol) to a suspension of (2) (0.43 mmol) in dichloromethane (15 cm³). After stirring for 20 h at room temperature, addition of hexane to the mixture gave [Pd(CH₂CMe₂CH₂C₅H₄N)Cl-(dmpy)] (3) as pale yellow crystals. (b) With Tl(acac). A dichloromethane suspension (15 cm³) containing (2) (0.43 mmol) and thallium(1) acetylacetonate (0.92 mmol) was stirred at room temperature for 1 d. After centrifuging the resulting milky suspension, the supernatant solution was purified by passing through a silica gel column (200 mesh, 12 × 50 mm) with dichloromethane as an eluant, and white needles of [Pd(CH₂CMe₂CH₂C₅H₄N)(acac)] (4) were obtained. #### Acknowledgements The authors thank Miss Yumi Kojima, Nagasaki University, for her technical assistance. # References - 1 J. Halpern, Discuss. Faraday Soc., 1968, 46, 7. - 2 D. E. Webster, 'Advances in Organometallic Chemistry,' eds. F. G. A. Stone and R. West, Academic Press, London, 1977, vol. 15, pp. 147—188. - 3 I. Omae, Coord. Chem. Rev., 1980, 32, 235. - 4 G. E. Hartwell, R. V. Lawrence, and M. J. Smas, Chem. Commun., 1970, 912. - 5 V. I. Sokolov, T. A. Sorokina, L. L. Troitskaya, L. I. Solovieva, and O. A. Reutov, J. Organomet. Chem., 1972, 36, 389. - 6 C. Mutet and M. Pfeffer, J. Organomet. Chem., 1979, 171, C34. - 7 A. G. Constable, W. G. McDonald, L. C. Sawkins, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1980, 1992. - 8 K. Hiraki, Y. Fuchita, and K. Takechi, *Inorg. Chem.*, 1981, 20, 4316. - 9 Y. Fuchita, K. Hiraki, and Y. Kage, Bull. Chem. Soc. Jpn., 1982, 55, 955. - 10 H. Onoue and I. Moritani, *J. Organomet. Chem.*, 1972, 43, 431. - 11 K. Hiraki, Y. Fuchita, H. Nakaya, and S. Takakura, Bull. Chem. Soc. Jpn., 1979, 52, 2531. - 12 J. B. Hendrickson, D. J. Cram, and G. S. Hammond, 'Organic Chemistry,' 3rd edn., McGraw-Hill, London, 1970. - 13 M. R. Churchill, H. J. Wasserman, and G. J. Young, *Inorg. Chem.*, 1980, 19, 762. - 14 R. Bokalski and A. R. Katritzky, J. Chem. Soc. B, 1968, 836. - 15 W. H. Nelson, W. J. Randall, and D. F. Martin, *Inorg. Synth.*, 1971, 9, 53.