Preparation of Trimeric and Tetrameric Bis(trifluoromethyl)arsazene; X-Ray Study of [(CF₃)₂AsN]₄ †

Rakesh Bohra, Herbert W. Roesky,* Joachim Lucas, Mathias Noltemeyer, and George M. Sheldrick Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

Two new aminoarsines, $(CF_3)_2AsN(SiMe_3)_2$ (1) and $CF_3As[N(SiMe_3)_2]_2$ (2), are formed by reaction of $(CF_3)_2AsCl$ and $(CF_3)_4Scl_2$ with LiN(SiMe₃)₂. Chlorination of (1) yields $[(CF_3)_2As(Cl)N(SiMe_3)]_2$ (3). On refluxing (3) in n-hexane or n-heptane, the synthesis of trimeric and tetrameric bis(trifluoromethyl)-arsazenes, $[(CF_3)_2AsN]_3$ (4) and $[(CF_3)_2AsN]_4$ (5), is accomplished. Pyrolysis of (3) also produced (4) and (5). Crystals of (5) are triclinic, space group $P\overline{1}$, with a=991.2(5), b=1 012.9(6), c=1 432.8(7) pm, $\alpha=108.21(4)$, $\beta=96.03(4)$, $\gamma=109.44(4)$ °, and Z=2. The structure was solved by direct methods and refined to R 0.069 for 2 183 unique observed diffractometer data. The molecular symmetry approximates to $\overline{4}$ (S_4), with a slight alternation in As-N distances [171.6(7) and 173.2(9) pm].

The chemistry of trimeric and tetrameric phosphazenes, $(NPX_2)_n$ (n=3 or 4, and X is a halogen or an organic substituent) is well established.¹ Analogous compounds with arsenic are rare. To our knowledge only two phenyl-substituted arsazenes, $(NAsPh_2)_n$ (n=3 or 4), involving six- and eight-membered As-N rings, have been investigated by X-ray analysis.^{2, 3} We were interested in the preparation and characterisation of compounds which contain electron-withdrawing groups attached to arsenic, because it is known that phosphazenes with similar groups exhibit unusual properties.⁴ We report here the isolation and characterisation of the pure trimer and tetramer of $(CF_3)_2AsN$.

Experimental

All manipulations were conducted under dry nitrogen using standard techniques; i.r. spectra were recorded on a Perkin-Elmer model 180 spectrometer and are accurate to ± 1 cm⁻¹. Bruker WP 80SY and 60E spectrometers were used to obtain ¹⁹F n.m.r. spectra. The iodoarsenes (CF₃)₂AsI and CF₃AsI₂ were made by the literature methods ^{5,6} and converted to (CF₃)₂AsCl and CF₃AsCl₂ by repeated treatment with HgCl₂.⁷ The compound LiN(SiMe₃)₂ was prepared by the usual method.⁸

Preparation of $(CF_3)_2AsN(SiMe_3)_2$ (1).—To a mixture of $(CF_3)_{3-n}AsCl_n$ (n=0-2; 22 g) in n-hexane (40 cm³) at -20 °C was added a n-hexane solution of LiN(SiMe₃)₂ (10 g, 40 cm³). The mixture was allowed to warm up slowly and stirred for about 4 h. LiCl was filtered off, and solvent and unreacted $(CF_3)_3As$ removed under vacuum. From the remaining residue, $(CF_3)_2AsN(SiMe_3)_2$ (1) distilled out at 23 °C (0.1 mmHg) as a colourless liquid (0.8 g) [Found: C, 26.5; H, 5.2; F, 30.6; N, 3.8. Calc. for $(CF_3)_2AsN(SiMe_3)_2$: C, 25.75; H, 4.8; F, 30.55; N, 3.75%]. I.r. (neat) 2 965s, 2 910m, 2 860w, 1 434w, 1 405m, 1 272vs, 1 258vs, 1 178vs, 1 132vs, 1 118vs,

Supplementary data available (No. SUP 23536; 15 pp.): structure factors, thermal parameters. See Notices to Authors No. 7, J. Chem. Soc., Dalton Trans., 1981, Index issue.

Non-S.1. unit employed: $1 \text{ mmHg} = (101 \ 325/760) \text{ Pa.}$

1 096vs, 890vs, 865vs, 848vs, 828vs, 805 (sh), 760m, 734w, 722s, and 676m cm⁻¹. ¹⁹F N.m.r. (CH₂Cl₂): δ (CF₃) -51.5 p.p.m.

Preparation of CF₃As[N(SiMe₃)₂]₂ (2).—In the above reaction, (2) is also formed and was isolated by further distillation of the residue at 75 °C (0.1 mmHg) as a yellow-brown liquid (1.5 g) (Found: C, 33.8; H, 8.0; N, 5.9. Calc. for CF₃As-[N(SiMe₃)₂]₂: C, 33.6; H, 7.75; N, 6.05%). I.r. (neat) 2 958s, 2 905m, 1 435w, 1 405w, 1 256vs, 1 180m, 1 152vs, 1 108vs, 1 078s, 1 016w, 965 (sh), 922vs, 902vs, 868 (sh), 848vs, 792s, 762s, 732w, 701s, and 672s cm⁻¹. ¹⁹F N.m.r. (CH₂Cl₂): δ(CF₃) −54.2 p.p.m.

Preparation of [(CF₃)₂As(Cl)N(SiMe₃)]₂ (3).—Chlorine [1.37 g, 19.5 mmol (5% excess)] was condensed onto a solution of (1) (6.95 g, 18.6 mmol) in CH₂Cl₂ (20 cm³) cooled to liquid-air temperature and the mixture was allowed to warm up slowly and stirred at room temperature for 2 h. The progress of the reaction was checked by ¹⁹F n.m.r. A strong signal at $\delta(CF_3)$ -54.2 p.p.m. was initially observed which disappeared completely within 24 h with increase of another signal at $\delta(CF_3)$ -58.1 p.p.m., indicating initial formation of (CF₃)₂As(Cl)=N(SiMe₃) and its complete conversion to the dimer (3). When the mixture was kept at -30 °C for one day, the dimer separated out as a white crystalline solid (3.9 g, 56%). Compound (3) can be recrystallised from n-hexane or CH₂Cl₂. It can also be sublimed without change at 40 °C and 1 mmHg (Found: C, 17.5; H, 2.8; Cl, 10.7; N, 4.7. Calc. for [(CF₃)₂As(Cl)N(SiMe₃)]₂: C, 17.9; H, 2.7; Cl, 10.55; N, 4.15%). I.r. (Nujol) 2 960vs, 2 930vs, 2 875 (sh), 2 860vs, 1 460s, 1 408w, 1 376m, 1 258vs, 1 206vs, 1 188vs, 1 166vs, 1 104s, 1 085 (sh), 978w, 882vs, 852vs, 828vs, 810 (sh), 768w, 742vs, and 678w cm⁻¹. ¹⁹F N.m.r. (CH₂Cl₂): δ (CF₃) -58.1 p.p.m. M.p. 116 °C (sealed capillary).

Preparation of $[(CF_3)_2AsN]_3$ (4) and $[(CF_3)_2AsN]_4$ (5).—A mixture of arsazenes (4) and (5) was obtained when (3) (3 g) was refluxed (bath temperature 120 °C) in n-hexane (or n-heptane) (20 cm³) for about 8 h. The progress of the reaction was followed by ¹⁹F n.m.r. The signal at $\delta(CF_3)$ –58.1 p.p.m. disappeared and two signals at $\delta(CF_3)$ –60.8 and –62.8 p.p.m. were observed. The solvent and SiMe₃Cl were removed from

[†] Cyclotetra[bis(trifluoromethyl)-λ⁵-arsazene].

the mixture under reduced pressure. Vacuum sublimation of the residue yielded (4) (23 °C, 1 mmHg; 0.75 g, 25%) and (5) (38 °C, 1 mmHg; 0.9 g, 30%) as crystalline solids. Compound (4) was recrystallised from CH₂Cl₂-CCl₄ (ca. 1 : 1) (Found: C, 10.7; N, 6.1. Calc. for [(CF₃)₂AsN]₃: C, 10.55; N, 6.15%). I.r. (Nujol) 2 956vs, 2 915vs, 2 865 (sh), 2 856vs, 1 455s, 1 378m, 1 276m, 1 180vs, br, 1 162vs, 1 118vs, 978vs, and 742m cm⁻¹. ¹⁹F N.m.r. (CH₂Cl₂): δ (CF₃) -60.8 p.p.m. M.p. 40 °C (sealed capillary). Compound (5) was crystallised from n-hexane (Found: C, 10.3; N, 6.1. Calc. for [(CF₃)₂AsN]₄: C, 10.55; N, 6.15%). I.r. (Nujol) 2 955vs, 2 926vs, 2 875 (sh), 2 858vs, 1 454m, 1 402w, 1 370w, 1 184s, 1 165s, 1 124s, 986m, and 745w cm⁻¹. ¹⁹F N.m.r. (n-hexane): δ (CF₃) -62.8 p.p.m. M.p. 65 °C (sealed capillary).

When (3) was pyrolysed under vacuum (150 °C; 0.01 mmHg) in a system which was directly connected to the mass spectrometer, formation of only the two products (4) and (5) was observed.

Mass spectra. Field ionisation mass spectra were obtained on a Varian CH5 at room temperature. They showed the high stability of the molecular ions; no fragmentation occurred. The electronic ionisation mass spectra, using a direct-probe inlet system, were recorded with a Varian MAT 731 with data system at 70 eV ionisation voltage and 100 °C source temperature. Accurate mass measurements were made by peakmatching. Measured masses are generally accurate to better than 5 p.p.m. Table 1 shows the most intense ions (characteristic peaks) of [(CF₃)₂AsN]₃ (4) and [(CF₃)₂AsN]₄ (5).

Crystal Structure Determination.—A colourless prismatic crystal of (5) $(0.25 \times 0.02 \times 0.01 \text{ mm})$ prepared as described above was sealed in a Lindemann glass capillary. Intensities were measured by profile analysis 9 on a Stoe-Siemens four-circle diffractometer with graphite-monochromated Mo- K_{α} radiation.

Crystal data. $C_8As_4F_{24}N_4$, M=907.76, Triclinic, space group $P\overline{1}$, a=991.2(5). $b=1\,012.9(6)$, $c=1\,432.8(7)$ pm, $\alpha=108.21(4)$, $\beta=96.03(4)$, $\gamma=109.44(4)^\circ$, U=1.2530 nm³, Z=2, $D_c=2.406$ Mg m³, F(000)=848, Mo- K_α radiation, $\lambda=71.069$ pm, $\mu=5.46$ mm³.

3 267 Unique data were collected in the range $7 < 20 < 50^{\circ}$, of which 2 183 with $F > 4\sigma(F)$ were used for all calculations. Lorentz, polarisation, and semi-empirical absorption corrections were applied. The structure was solved by multisolution sigma-2 refinement and refined with all atoms anisotropic, complex neutral-atom scattering factors, and weights $w^{-1} = [\sigma^2(F) + 0.0012 \ F^2]$ to $R' = \Sigma w^{\frac{1}{2}} \Delta / \Sigma w^{\frac{1}{2}} |F_o| = 0.068$, $R = \Sigma \Delta / \Sigma |F_o| = 0.069$. The final atomic co-ordinates are given in Table 2, bond lengths and angles in Table 3.

Crystallographic calculations were performed using an Eclipse S-250 mini-computer and programs written by G. M. S. Data collection programs were written by Dr. W. Clegg.

Results and Discussion

In a recent study ¹⁰ on As-N systems in which electron-withdrawing CF₃ groups are attached to arsenic we were able to synthesise and characterise compound (3) (Scheme 1). The formation of the intermediate monomer (CF₃)₂As(Cl)=N(SiMe₃) was indicated by ¹⁹F n.m.r. spectroscopy; however, it could not be isolated. This suggests that overlap of the 2p nitrogen orbitals with the 4d arsenic orbitals is ineffective even though electron-withdrawing groups are attached to arsenic. Compound (3) is a white crystalline solid, characterised by X-ray crystallography. When it is refluxed in inert solvents or pyrolysed under vacuum, (4) and (5) are formed (Scheme 2). A number of experiments have indicated that (4) and (5), which are white crystalline solids, can be obtained pure by repeated vacuum sublimation.

Table 1. Mass spectral data for [(CF₃)₂AsN]₃ and [(CF₃)₂AsN]₄

	[(CF ₃) ₂ AsN] ₃ Relative intensity	[(CF ₃) ₂ AsN] ₄ Relative intensity
Mass	(%)	(%)
908		10.81
		M^+
839		100
		$(M-\mathrm{CF_3})^+$
789		5.8
	_	$(M-C_2F_5)^+$
681	3	
612	<i>M</i> ⁺ 100	25.4
012	$(M - CF_3)^+$	23.4
562	7	11.7
202	$(M-C_2F_5)^+$	
474	25	13.2
429	16.9	30.3
385	51.4	32.9
340	20.3	17.7
202	37.7	51.4
183	29.6	42.2
1.64	26.6	42.6
158	23.5	88.9
113	43	82.9
69	85.4	96.3

$$(CF_3)_2 AsCl + LiN(SiMe_3)_2 \xrightarrow{n-hexane} (CF_3)_2 AsN(SiMe_3)_2 + LiCl$$

$$Cl$$

$$(CF_3)_2 AsN(SiMe_3)_2 + Cl_2 \xrightarrow{CH_2Cl_2} (CF_3)_2 As=N(SiMe_3) + SiMe_3Cl$$

$$\downarrow Cl$$

$$(CF_3)_2 As-N-SiMe_3$$

$$\downarrow degree (CF_3)_2 As-N-SiMe_3$$

$$\downarrow degree (CF_3)_3 As-N-SiMe_3$$

$$\downarrow$$

Scheme 1.

CI
[(CF₃)₂AsN(SiMe₃)]₂
$$\longrightarrow$$

(3)
 $\frac{1}{3}$ [(CF₃)₂AsN]₃ + $\frac{1}{4}$ [(CF₃)₂AsN]₄ + 2 SiMe₃Cl
(4) (5)
Scheme 2.

Although the molecule of (5) possesses no crystallographic symmetry, it approximates fairly accurately to 4 (S_4) local molecular symmetry. The Figure shows the view down the pseudo-4 axis. The As and N atoms lie alternatively at ± 38 and ± 63 pm respectively from the mean plane through the eight ring atoms. There is a barely significant alternation of the As-N bond lengths, bonds in which both atoms are on the same side of the mean plane being slightly shorter [mean 171.6(7) pm] than those which cross the mean plane [mean 173.2(9) pm]. A much more pronounced bond-length alternation [167(3) and 179(3) pm] was observed 2 in [Ph₂AsN]₄. The trimer [Ph₂AsN]₃ exhibited no alternation, but a longer mean As-N distance of 175.8(4) pm. The ring conformation

Table 2. Fractional atomic co-ordinates (× 10 ⁴) with estimated standard deviations in parentheses									
Atom	x	y	z	Atom	x	y	z		
As(1)	19 959(2)	2 383(1)	3 183(1)	F(15)	20 873(17)	4 284(13)	2 187(11)		
As(2)	16 718(2)	1 725(2)	2 494(1)	F(16)	22 587(13)	4 166(14)	3 023(16)		
As(3)	16 152(2)	-1 459(2)	2 401(1)	F(21)	17 481(20)	1 871(18)	759(11)		
As(4)	19 202(2)	-933(2)	2 003(1)	F(22)	17 197(18)	3 822(13)	1 604(12)		
N(1)	18 380(13)	2 642(12)	3 386(10)	F(23)	15 443(15)	1 860(18)	777(11)		
N(2)	15 810(13)	-205(12)	1 928(9)	F(24)	14 112(11)	2 006(15)	2 701(13)		
N(3)	17 809(12)	-1 648(12)	2 571(9)	F(25)	15 409(17)	2 396(21)	4 043(12)		
N(4)	20 067(13)	937(11)	2 197(8)	F(26)	15 873(13)	4 024(12)	3 427(14)		
C(11)	20 855(22)	2 536(23)	4 519(16)	F(31)	14 311(14)	-1379(18)	3 691(9)		
C(12)	21 287(22)	4 179(20)	3 029(15)	F(32)	15 626(16)	-2528(17)	3 920(9)		
C(21)	16 747(21)	2 395(20)	1 320(15)	F(33)	16 559(15)	-223(15)	4 433(8)		
C(22)	15 395(18)	2 606(18)	3 158(15)	F(34)	13 320(11)	-3 456(12)	1 538(11)		
C(31)	15 654(21)	-1332(21)	3 739(14)	F(35)	14 745(13)	-4 526(10)	1 646(9)		
C(32)	14 595(18)	-3 397(16)	1 460(13)	F(36)	14 734(14)	-3628(11)	559(8)		
C(41)	18 721(18)	-1 924(19)	515(15)	F(41)	17 730(15)	-1 596(16)	112(8)		
C(42)	20 669(20)	-1 709(19)	2 398(18)	F(42)	18 142(17)	-3 395(12)	244(10)		
F (11)	20 936(15)	3 716(15)	5 251(9)	F(43)	19 827(13)	-1 565(13)	131(9)		
F(12)	20 279(16)	1 37 0 (16)	4 709(9)	F(44)	21 210(19)	-1 106(22)	3 346(12)		
F(13)	22 309(14)	2 787(17)	4 591(10)	F(45)	20 162(15)	-3 1 00 (13)	2 119(16)		
F(14)	21 452(16)	5 390(13)	3 696(13)	F(46)	21 807(14)	-1289(18)	2 010(13)		
(a) Distances			timated standard dev			C(12)_F(1	() 120 2/20)		
As(1)-N(1)	171.0(15)	C(12)-F(15)	128.1(29)	As(1)-N(4)	173.1(12)	C(12)-F(1			
As(1)-C(11)	196.1(24)	C(21)-F(21)	125.4(30)	As(1)-C(12)		C(21)-F(2			
As(2)-N(1)	173.4(12)	C(21)-F(23)	127.6(23)	As(2)-N(2)	172.5(11)	C(22)-F(2			
As(2)-C(21)	200.0(24)	C(22)-F(25)	135.0(30)	As(2)-C(22)		C(22)-F(2			
As(3)-N(2)	172.1(16)	C(31)-F(31)	131.0(27)	As(3)-N(3)	171.7(14)	C(31)-F(3			
As(3)-C(31)	200.6(22)	C(31)-F(33)	122.4(18)	As(3)-C(32)		C(32)-F(3			
As(4)=N(3)	174.2(14) 197.7(20)	C(32)- $F(35)$	130.2(23)	As(4)=N(4)	171.4(12)	C(32)-F(3			
As(4)-C(41) C(11)-F(11)	129.3(25)	C(41)-F(41) C(41)-F(43)	127.5(28) 127.4(24)	As(4)-C(42) C(11)-F(12)		C(41)-F(4			
C(11) F(11) C(11) F(13)	136.4(26)	C(41) F(43) C(42) F(45)	123.7(21)	$C(11)^{-}F(12)$ $C(12)^{-}F(14)$		C(42)-F(4			
C(11) F(13)	130.4(20)	C(42) F(43)	123.7(21)	C(12) F(14)	124.3(23)	C(42)-F(4	131.3(26)		
(b) Angles									
	As(1)-N(4)	125.6(5)	As(3)-C(31)-F(31)	109.2(14)			23.5(8)		
	As(1)=C(11)	113.5(9)	F(31)-C(31)-F(32)	105.1(17)	As(1)=C		13.8(11)		
	As(1)=C(12)	102.6(8)	F(31)-C(31)-F(33)	112.7(19)			09.9(16)		
	As(2)-N(2)	124.8(7)	As(3)-C(32)-F(34)	112.1(11)			06.9(22)		
	As(2)-C(21)	103.1(7)	F(34)-C(32)-F(35)	107.3(15)			12.8(11)		
	As(2)-C(22)	109.4(6)	F(34)-C(32)-F(36)	111.5(17)			11.7(17)		
	As(3)-N(3)	124.9(6)	As(4)-C(41)-F(41)	110.4(14)			04.4(21)		
	As(3)-C(31)	101.4(8)	F(41)-C(41)-F(42)	105.0(14)			11.8(14)		
	As(3)-C(32)	110.1(7)	F(41)-C(41)-F(43)	108.2(20)			09.6(15)		
	As(4)-N(4)	124.8(6)	As(4)-C(42)-F(44)	111.0(17)		(21)-F(23) 10	06.5(21)		
	As(4)-C(41)	103.0(7)	F(44)-C(42)-F(45)	110.5(25)			07.1(15)		
	As(4)-C(42)	109.6(7)	F(44)-C(42)-F(46)	103.8(16)			13.2(14)		
	N(1)-As(2)	123.8(7)	N(1)-As(1)-C(11)	101.6(9)			03.2(17)		
	·N(3)-As(4)	122.9(9)	N(1)-As(1)-C(12)	108.2(8)			09.9(14)		
	C(11)-F(11)	113.9(18)	C(11)-As(1)-C(12)	103.6(9)			11.8(15)		
` '	C(11)-F(12)	110.4(20)	N(1)=As(2)=C(21)	112.9(7))7.9(19)		
	C(11)-F(13)	100.9(14)	N(1)-As(2)-C(22)	103.8(7)		1: 1:	10.6(12)		
	C(12)-F(14)	114.6(17)	C(21)-As(2)- $C(22)$	100.3(10)			10.4(11)		
	·C(12)-F(15) ·C(12)-F(16)	105.9(20) 106.6(15)	N(2)-As(3)-C(31) N(2)-As(3)-C(32)	114.8(8)			04.6(15)		
, ,	C(12)-F(16) C(21)-F(21)	110.5(18)		101.2(7)	. 11	` ' ' '	10.4(16)		
	C(21) - F(21) C(21) - F(22)	110.3(18)	C(31)-As(3)-C(32) N(3)-As(4)-C(41)	102.5(8) 114.4(6)			13.3(10) 09.0(17)		
	C(21) F(22) C(21) F(23)	105.9(16)	N(3) As(4) C(41) N(3) As(4) C(42)	101.7(9)	. `	` ' ` '	12.7(13)		
	C(22) F(24)	114.9(13)	C(41)-As(4)- $C(42)$	100.9(9))9.9(18)		
	C(22) F(25)	105.5(18)	As(2)-N(2)-As(3)	123.9(7)	, ,	````	08. 5 (19)		
	C(22)-F(26)	111.9(19)	-(-) - (-) 120(0)	(1)	1(10)	(, - () N			
` ''		` '							

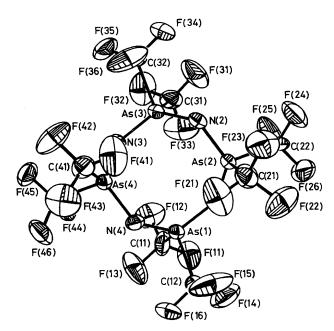


Figure. The molecule of [(CF₃)₂AsN]₄ (5) viewed down the pseudoinverse tetrad axis, showing 30% probability thermal motion ellipsoids

results in a clear differentiation of the CF₃ group environments, four being axial and four equatorial. As frequently observed, the CF₃ groups exhibit appreciable thermal motion about the As-C bond directions, and so 30% probability ellipsoids are shown in the Figure (instead of the usual 50%).

Acknowledgements

We thank the Verband der Chemischen Industrie for support. R. B. is grateful to the Alexander von Humbolt Foundation for financial support.

References

- 1 H. R. Allcock, Chem. Rev., 1972, 72, 315; 'Phosphorus-Nitrogen Compounds,' Academic Press, New York, 1972; P. W. Neilson, R. H. Neilson, and A. H. Cowley, Inorg. Chem., 1977, 16,
- 2 M. D. Glick, Diss. Abstr., Sect. B, 1965, 25, 5546.
- 3 L. K. Krannich, U. Thewalt, W. J. Cook, S. R. Jain, and H. H. Sisler, Inorg. Chem., 1973, 12, 2304.
- 4 H. R. Allcock, Science, 1976, 193, 1214.
- 5 G. R. A. Brandt, H. I. Emeléus, and R. N. Haszeldine, J. Chem. Soc., 1952, 2552. 6 E. G. Walaschewski, Chem. Ber., 1953, 86, 273.
- 7 A. B. Burg and I. Singh, J. Am. Chem. Soc., 1965, 87, 1213.
- 8 E. H. Amonoo-Neizer, R. A. Shaw, D. O. Skovlin, and B. C. Smith, Inorg. Synth., 1966, 8, 19.
- 9 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
- 10 H. W. Roesky, R. Bohra, and W. S. Sheldrick, J. Fluorine Chem., in the press.

Received 1st September 1982; Paper 2/1507