# Redox-induced Reactions of Nickel Maleonitriledithiolate \alpha \alpha'-Di-imine Complexes

Graham A. Bowmaker, Peter D. W. Boyd, and Graeme K. Campbell Chemistry Department, University of Auckland, Auckland, New Zealand

The complex  $[Ni^{1}(NC)_{2}C_{2}S_{2}]\{(CH_{3})_{2}C_{2}N_{2}Ph_{2}\}\]$  has been found to undergo one-electron reduction to a species containing  $Ni^{1}$ . This species is unstable and disproportionates to the known  $[Ni^{1}(NC)_{2}C_{2}S_{2}]_{2}]^{2}$  and  $[Ni\{(CH_{3})_{2}C_{2}N_{2}Ph_{2}\}_{2}]$ . The complex also reacts upon oxidation to give  $[Ni\{(NC)_{2}C_{2}S_{2}\}_{2}]^{-}$ . A similar one-electron reduction of  $[Ni(Ph_{2}C_{2}S_{2})(phen)]$  (phen = 1,10-phenanthroline) has been found to give a stable species with greater delocalisation of the unpaired electron over the ligand.

Transition-metal complexes of the ligand maleonitriledithiolate,  $[(NC)_2C_2S_2]^{2-}$  (mnt), show many unusual properties. In particular, the extensive series of redox reactions observed indicate changes in both metal and ligand oxidation state. Recent studies on mixed-ligand complexes of nickel(II) with  $[(NC)_2C_2S_2]^{2-}$  and phosphine ligands of the type [Ni-(dppe){(NC)\_2C\_2S\_2}] [dppe = 1,2-bis(diphenylphosphino)-ethane] have shown that molecules such as this undergo reversible one-electron reductions of Ni<sup>II</sup>. Previous studies had been made of the analogous four-co-ordinate dithiolene and di-imine complexes of nickel(II).

The complex  $[Ni\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]$  was reported 4 to undergo a one-electron reduction at a solvent-dependent potential ranging from -0.61 to -0.72 V (vs. saturated calomel electrode) and an irreversible oxidation at ca. 0.9 V. The reduction couple was chemically reversible and the reduced complexes stable for short periods in solution.

We now report a study of the redox properties of the complex  $[Ni\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]$  and characterisations of electrochemically produced species and their reaction products by e.s.r. spectroscopy.

#### **Experimental**

Complexes [Ni{(NC)<sub>2</sub>C<sub>2</sub>S<sub>2</sub>}{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}], [Ni{(CH<sub>3</sub>)<sub>2</sub>-C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}<sub>2</sub>]I<sub>2</sub>, and [Ni(Ph<sub>2</sub>C<sub>2</sub>S<sub>2</sub>)(phen)] (phen = 1,10-phen-anthroline) were prepared by previously reported methods: <sup>4,5</sup> [Ni{(NC)<sub>2</sub>C<sub>2</sub>S<sub>2</sub>}{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}], m.p. 208—210 °C (Found: C, 55.55; H, 4.20; N, 12.45. Calc. for  $C_{20}H_{16}N_4NiS_2$ : C, 55.2; H, 3.70; N, 13.85%); [Ni(Ph<sub>2</sub>C<sub>2</sub>S<sub>2</sub>)(phen)], m.p. >303 °C (Found: C, 64.25; H, 3.85; N, 5.75. Calc. for  $C_{26}H_{18}N_2-NiS_2$ : C, 64.9; H, 3.75; N, 5.80%).

Electrochemical measurements were performed at a platinum electrode using a PAR 173 potentiostat with PAR 179 digital calorimeter with *iR* compensation and an ECG 175 universal programmer. The reference electrode was Ag-AgCl (saturated LiCl in CH<sub>2</sub>Cl<sub>2</sub>) separated from the voltammetric cell by a 0.1 mol dm<sup>-3</sup> NBu<sub>4</sub>ClO<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> salt bridge. Measurements were carried out in CH<sub>2</sub>Cl<sub>2</sub> with NBu<sub>4</sub>ClO<sub>4</sub> supporting electrolyte. Potentials are referenced to the ferrocene-ferrocenium couple as reported previously.<sup>3</sup>

X-Band e.s.r. spectra were recorded on a Varian E4 spectrometer. Controlled-potential electrolysis at a platinum electrode was used to generate the oxidised and reduced species in situ.

#### Results and Discussion

The d.c. cyclic voltammogram of  $[Ni^{11}\{(NC)_2C_2S_2\}\{(CH_3)_2-C_2N_2Ph_2\}]$  in dichloromethane solvent shows three main

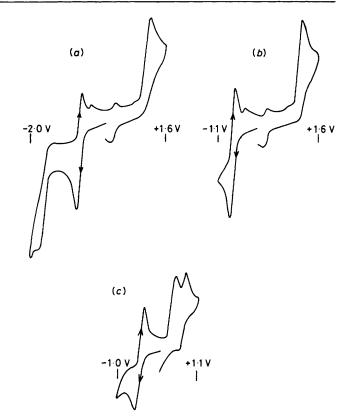



Figure 1. Cyclic voltammogram of  $[Ni\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]$  at scan rate 200 mV s<sup>-1</sup> and ca. 290 K (CH<sub>2</sub>Cl<sub>2</sub> solvent): (a) in the range -2.0 to +1.6 V; (b) in the range -1.1 to +1.6 V. (c) Cyclic voltammogram of  $[Ni\{(CH_3)_2C_2N_2Ph_2\}_2]I_2$  in dichloromethane solvent at ca. 290 K at scan rate 200 mV s<sup>-1</sup>

features in the potential range -2.0 to +1.6 V. At scan rates of 200 mV s<sup>-1</sup> these features are an irreversible reduction at  $E_{pc} = -1.84$  V, a quasi-reversible reduction  $E_0' = -0.73$  V  $(i_p'/i_p'^f = 1.0)$ , and a further irreversible oxidation  $E_{pa} = +1.14$  V [Figure 1(a), Table 1]. Miller and Dance <sup>4</sup> assigned these processes to the redox sequences z = -2 - 1, -1 - 1, and 0 - 1 for [Ni{(NC)<sub>2</sub>C<sub>2</sub>-S<sub>2</sub>}{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}]<sup>z</sup>. In the reverse scan from -2.0 V, Figure 1(a), several smaller anodic peaks are observed above and below 0 V. When a voltammogram is recorded (at 200 mV s<sup>-1</sup>) sweeping from 0 V to a potential just below that of the quasi-reversible reduction and back to +1.6 V three small

104 4(14NT)/cm-1

Table 1. Cyclic voltammetry parameters (V) for the complexes [Ni<sup>11</sup>{(NC)<sub>2</sub>C<sub>2</sub>S<sub>2</sub>}{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}] and [Ni<sup>11</sup>(Ph<sub>2</sub>C<sub>2</sub>S<sub>2</sub>)(phen)] in dichloromethane solvent at ca. 290 K

| Complex                                    | $E_{\mathtt{pc}}^{a}$ | $E_0'^b$ | $\Delta E_{ m pp}$ $^a$ | $E_{\mathtt{pa}}^{}b}$ | $E_0'$ b | $\Delta E_{pp}$ a |
|--------------------------------------------|-----------------------|----------|-------------------------|------------------------|----------|-------------------|
| $[Ni{(NC)_2C_2S_2}{(CH_3)_2C_2N_2Ph_2}]$ ° | -1.84                 | -0.73    | 0.11                    | 1.14                   |          |                   |
| $[Ni(Ph_2C_2S_2)(phen)]$                   |                       | -1.44    | 0.09                    |                        | 0.30     | 0.07              |

<sup>&</sup>quot; At a scan rate of 200 mV s<sup>-1</sup>. b Potential measured halfway between the potentials of the peak cathodic and anodic currents.

Table 2. E.s.r. parameters for reduced complexes in dichloromethane

|                                            |       |       |       |            | 10'A(-'N)/cm - |       |       |
|--------------------------------------------|-------|-------|-------|------------|----------------|-------|-------|
| Complex <sup>a</sup>                       | g     | 81    | 82    | <b>g</b> 3 | $A_1$          | $A_2$ | $A_3$ |
| $[Ni{(NC)_2C_2S_2}{(CH_3)_2C_2N_2Ph_2}]^-$ | 2.148 | 2.321 | 2.119 | 2.030      |                |       | 8.9   |
| $[Ni(Ph_2C_2S_2)(phen)]^-$                 | 2.056 | 2.119 | 2.040 | 1.998      |                |       |       |
| $[Cu{(NC)_2C_2S_2}{(CH_3)_2C_2N_2Ph_2}]^b$ | 2.068 | 2.138 | 2.022 | 2.022      | 15.4           | 9.14  | 9.14  |

<sup>&</sup>lt;sup>a</sup> Frozen-solution data at −160 °C. <sup>b</sup> Ref. 7.

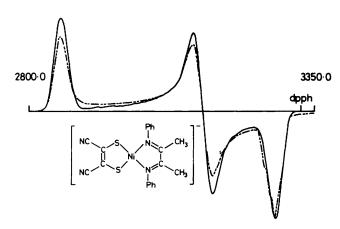



Figure 2. Frozen-solution e.s.r. spectrum (— · · —) of [Ni¹{(NC)<sub>2</sub>- $C_2S_2$ }{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}]<sup>-</sup> in dichloromethane solvent at -160 °C and spectrum simulated with  $g_1 = 2.321$ ,  $g_2 = 2.119$ ,  $g_3 = 2.030$ ,  $\sigma_z = 13$ ,  $\sigma_x = 13$ , and  $\sigma_y = 12$  G (——). Magnetic field given in G (G =  $10^{-4}$  T); dpph = diphenylpicrylhydrazyl

peaks are discerned on the anodic sweep, at  $E_{pa} = -0.39$ , +0.21, and +0.76 V, Figure 1(b). The peak at  $E_{pa} = +0.21$  V has a cathodic return peak corresponding to the one-electron oxidation of  $[Ni\{(NC)_2C_2S_2\}_2]^{2-}$ .

To identify the other peaks in the voltammogram,  $[Ni^{11}-\{(CH_3)_2C_2N_2Ph_2\}_2]I_2$ , a four-co-ordinate complex containing unco-ordinated iodide, was studied in dichloromethane. A reversible reduction at  $E_0' = -0.45$  V and two irreversible oxidation peaks  $E_{pa} = +0.36$  and +0.76 V (200 mV s<sup>-1</sup>) were observed, Figure 1(c). The peak at +0.36 V corresponds to the irreversible oxidation of the free iodide ion. The process at  $E_0' = -0.45$  V corresponds to the two-electron process (1). The peaks in the return sweep of the voltammogram, at

[Ni{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}<sub>2</sub>]<sup>2+</sup> 
$$\xrightarrow{+2e^{-}}$$
 [Ni{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}<sub>2</sub>] (1)

 $E_{pa} = -0.39$  to 0.76 V, Figure 1(b), are then identified as due to the species  $[Ni\{(CH_3)_2C_2N_2Ph_2\}_2]^2$ .

The appearance of the species [Ni{(NC)<sub>2</sub>C<sub>2</sub>S<sub>2</sub>}<sub>2</sub>]<sup>2-</sup> and [Ni{(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>N<sub>2</sub>Ph<sub>2</sub>}<sub>2</sub>] upon one-electron reduction of the mixed-ligand complex implies the reduced product is un-

stable to a 'symmetrisation' reaction to the bis(chelates). This behaviour has recently been observed in reduced mixed-ligand complexes of nickel(II) such as [Ni(dppe)(R<sub>2</sub>NCS<sub>2</sub>)]<sup>+</sup> which upon reduction disproportionates into [Ni<sup>II</sup>(R<sub>2</sub>NCS<sub>2</sub>)<sub>2</sub>] and [Ni<sup>0</sup>(dppe)<sub>2</sub>].<sup>3</sup> A similar disproportionation reaction is found here, Figure 3, although the detailed mechanism is at present unknown.

An in situ electrolysis of  $[Ni^{11}\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]$ at a potential below that of the first one-electron reduction at -60 °C gave a paramagnetic species. The e.s.r. spectrum in solution was a single line at g = 2.148. The frozen solution at -160 °C gave a rhombic spectrum, Figure 2. The component corresponding to  $g_3$ , Table 2, showed superhyperfine splitting due to two equivalent (I = 1) nitrogen nuclei. An estimate of the coupling constant  $A_3(^{14}N)$  of  $8.9 \times 10^{-4}$  cm<sup>-1</sup> was made from a direct measurement of the lines in the spectrum. The e.s.r. parameters of the frozen-solution spectrum are listed in Table 2. The anisotropic g values were obtained by comparison with simulated spectra. The anisotropy in the g values is greater in magnitude than those previously found for [Ni<sup>I</sup>(R<sub>2</sub>NCS<sub>2</sub>)<sub>2</sub>] and nickel(I) phosphine(dithiolate) complexes 3 and is in agreement with the formulation of the initial one-electron reduction product as a nickel(1) complex [equation (2)].

$$[Ni^{11}\{(NC)_{2}C_{2}S_{2}\}\{(CH_{3})_{2}C_{2}N_{2}Ph_{2}\}] \xrightarrow{+e^{-}} > [Ni^{1}\{(NC)_{2}C_{2}S_{2}\}\{(CH_{3})_{2}C_{2}N_{2}Ph_{2}\}]^{-}$$
 (2)

The isoelectronic complex  $[Cu^{II}\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2-Ph_2\}]$  has been studied by e.s.r. spectroscopy.<sup>6,7</sup> A covalency parameter of  $\alpha^2=0.57$  determined from the spin-Hamiltonian parameters indicated that the unpaired electron was extensively delocalised from the central copper atom onto the maleonitriledithiolate ligand. A comparison of the g values for the copper and nickel complexes, Table 2, indicates an anisotropy for the formally nickel(1) complex greater than observed for the copper(II) complex.

A cyclic voltammogram of  $[Ni\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2-Ph_2\}]$  sweeping from 0 to +1.6 V (a potential past that of the irreversible oxidation) and returning to 0 V gave a cathodic peak  $E_{pc} = 0.11$  V (at 200 mV s<sup>-1</sup>) due to the one-electron reduction of  $[Ni\{(NC)_2C_2S_2\}_2]^-$  to  $[Ni\{(NC)_2C_2S_2\}_2]^-$ . No evidence could be found for the complex  $[Ni\{(CH_3)_2C_2N_2-Ph_2\}_2]^{2+}$ . An in situ electrolysis at a potential greater than the irreversible oxidation potential gave a species with an e.s.r. spectrum centred at g = 2.062. On freezing the solution to -160 °C a rhombic spectrum identical to that reported

$$[Ni\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]^+ \longrightarrow [Ni\{(NC)_2C_2S_2\}_2]^- + \text{ other products}$$

$$(e.s.r.)$$

$$[Ni^{II}\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]$$

$$[Ni^{II}\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]^- \longrightarrow [Ni\{(CH_3)_2C_2N_2Ph_2\}_2] + [Ni^{II}\{(NC)_2C_2S_2\}_2]^{2-1}$$

$$(e.s.r.)$$

$$[Ni^{I}\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]^- \longrightarrow [Ni\{(CH_3)_2C_2N_2Ph_2\}_2] + [Ni^{II}\{(NC)_2C_2S_2\}_2]^{2-1}$$

$$(e.s.r.)$$

$$(ii) | E_{pc} = -1.84$$

$$products$$

Figure 3. Reaction scheme for the electrochemistry of  $[Ni^{11}\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]$ . Potentials measured at scan rate 200 mV s<sup>-1</sup>. (i) Irreversible oxidation; (ii) irreversible reduction; (iii) disproportionation reaction with ligand exchange

for  $[Ni{(NC)_2C_2S_2}_2]^-$  ( $g_1 = 2.140$ ,  $g_2 = 2.043$ ,  $g_3 = 1.996$ ) was observed confirming the identity of this species.<sup>8</sup>

The initial reduction product of  $[Ni\{(NC)_2C_2S_2\}\{(CH_3)_2-C_2N_2Ph_2\}]$  to a nickel(I) species may be compared with the analogous  $[Ni(Ph_2C_2S_2)(phen)]$ . This complex was shown to undergo two electrochemical processes in the potential range -2.0 to +1.0 V in dichloromethane. A reversible one-electron reduction occurs at -1.44 V.<sup>4</sup> An e.s.r. spectrum of the reduction product at 0 °C gave a single peak which split on freezing to give a rhombic pattern, Table 2. The g-value anisotropy is considerably smaller than shown for  $[Ni^1-\{(NC)_2C_2S_2\}\{(CH_3)_2C_2N_2Ph_2\}]^-$  indicating a greater delocalisation of the unpaired electron onto the 1,10-phenanthroline relative to the di-imine ligand. A comparable delocalisation has been found in  $[Ni(Ph_2C_2S_2)_2]^{-9}$ .

## 2 J. A. McCleverty, Prog. Inorg. Chem., 1968, 10, 49.

- 3 G. A. Bowmaker, P. D. W. Boyd, and G. K. Campbell, *Inorg. Chem.*, 1982, 21, 2403.
- 4 T. R. Miller and I. G. Dance, J. Am. Chem. Soc., 1973, 95, 6970.
- 5 A. L. Balch and R. H. Holm, J. Am. Chem. Soc., 1966, 88, 5201.
   6 R. Kirmse W. Dietzsch and D. Rehorek. Z. Chem. 1977, 17
- 6 R. Kirmse, W. Dietzsch, and D. Rehorek, Z. Chem., 1977, 17, 33.
- 7 D. Rehorek, R. Kirmse, and W. Dietzch, Z. Chem., 1977, 17, 149.
- 8 W. E. Geiger, jun., C. S. Allen, T. E. Mines, and F. C. Senftleber, Inorg. Chem., 1977, 16, 2003.
- 9 G. A. Bowmaker, P. D. W. Boyd, and G. K. Campbell, *Inorg. Chem.*, in the press.

### References

1 R. P. Burns and C. A. McAuliffe, Adv. Inorg. Chem. Radiochem., 1979, 22, 303.

Received 17th September 1982; Paper 2/1599