Preparation of Monomeric Neutral or Anionic Tris(polyfluorophenyl)-thallium(III) and of Anionic Heteronuclear Tris(polyfluorophenyl)-thallium—Metal Carbonyl Complexes

Rafael Usón,* Antonio Laguna, J. Antonio Abad, and Ernesto de Jesús
Department of Inorganic Chemistry, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain

The complex $[TIR_3(diox)]$ (diox = 1,4-dioxan) has been prepared by the reaction of $TICl_3$ with LiR $(R=2,4,6-C_6F_3H_2)$, or of $[NBu_4][TIR_4]$ with HBF₄ ($R=C_6F_5$) and subsequent addition of dioxan. The displacement of dioxan by (a) neutral ligands leads to $[TIR_3L]$ (L = OPPh₃, pyridine, PPh₃, or Ph₂PCH₂PPh₂); (b) anionic ligands affords $Q[TIR_3X]$ { $Q=[NBu_4]^+$ or $[N(PPh_3)_2]^+$; X = Cl⁻, CN⁻, NO₃⁻, or CF₃CO₂⁻}; and (c) metal carbonylate gives $Q[TIR_3M^*]$ { $M^*=[Mo(cp)(CO)_3]^-$ (cp = η -C₅H₅), $[W(cp)(CO)_3]^-$, $[Co(CO)_4]^-$ or $[Mn(CO)_5]^-$ }.

Triaryl- (or alkyl-)thallium(III) complexes are only poorly represented in the literature, especially in comparison with the large number of organothallium derivatives with one or two organic groups attached to the thallium atom.^{1,2} The synthesis of tris(polyfluorophenyl)thallium(III) derivatives by the reaction of TlR_2Br with Cu metal ^{3,4} or with $Ba(O_2-SR)_2$ followed by isolation as the dioxan adducts [TlR_3 -(diox)] ($R = C_6F_5$, p- C_6F_4H , m- C_6F_4H , o- C_6F_4H , or 2,4,6- $C_6F_3H_2$) has been reported.

In the present paper we describe how [TlR₃(diox)] (R = C_6F_5 or 2,4,6- $C_6F_3H_2$) can be obtained more straightforwardly and in higher yields by the reaction of TlCl₃ with Li(2,4,6- $C_6F_3H_2$) or of [NBu₄][Tl(C_6F_5)₄] with HBF₄. The dioxan ligand can readily be replaced by other neutral ligands [L = OPPh₃, pyridine (py), PPh₃, or bis(diphenylphosphino)-methane (dppm)], or anionic ligands (X = Cl⁻ or CN⁻), or by metal carbonylate {M* = [Co(CO)₄]⁻, [Mn(CO)₅]⁻, [Mo(cp)(CO)₃]⁻ or [W(cp)(CO)₃]⁻ (cp = η -C₅H₅)} to give novel derivatives of the types [TlR₃L], Q[TlR₃X], or Q[TlR₃M*] (Q = [NBu₄]⁺ or [N(PPh₃)₂]⁺), respectively.

Results and Discussion

Preparation of the Starting Complexes.—Recently 6 we have reported the preparation of TlR_2Cl ($R=C_6F_5$ or 2,4,6- $C_6F_3H_2$) by arylation of $TlCl_3$ with LiR in 1:2 molar ratio. Moreover, use of an excess of the lithium derivative gives rise to two different types of behaviour:

(a) An excess of LiR ($R = C_6F_5$) leads to $[TlR_4]^-$, or even to $[TlR_6]^3$, which can be isolated upon addition of a bulky cation. Formation of TlR_3 , however, was not observed; use of a 1:3 molar ratio gives a mixture of TlR_2Cl and $[TlR_4]^-$.

(b) An excess of LiR ($R = 2,4,6-C_6F_3H_2$) does not afford $[TlR_4]^-$ but gives stable diethyl ether solutions of TlR_3 [equation (i)]. Evaporation of these solutions yields a dense

$$TlCl_3 + 3 Li(C_6F_3H_2) \longrightarrow 3 LiCl + Tl(C_6F_3H_2)_3$$
 (i)

oil, which tends to decompose rapidly. Moreover, previous addition of 1,4-dioxan (diox) allows the isolation of [Tl- $(C_6F_3H_2)_3(\text{diox})$] (1).

Ether solutions of $Tl(C_6F_5)_3$ can be obtained by the reaction between $[TlR_4]^-$ and inorganic acids with poorly co-ordinating anions [equation (ii)]. Addition of diox permits the isolation of $[Tl(C_6F_5)_3(\text{diox})]$ (2).

$$[NBu_4][Tl(C_6F_5)_4] + HBF_4 \longrightarrow$$

 $[NBu_4][BF_4] + C_6F_5H + Tl(C_6F_5)_3$ (ii)

These methods allow the isolation of compounds (1) and (2) in better yields (68 and 83%, respectively) than those reported.³⁻⁵ The properties of the compounds coincide with those previously described.

Neutral Mononuclear Complexes.—The dioxan in compounds (1) and (2) can be readily replaced by other neutral ligands [equation (iii)]. The white complexes (3)—(6)

$$[TlR_3(diox)] + L \longrightarrow [TlR_3L] + diox$$
 (iii)

$$R = C_6F_3H_2$$
; $L = OPPh_3$ (3), py (4), PPh₃ (5), or dppm (6)

are air- and moisture-stable solids, non-conducting in acetone solution and monomeric in chloroform (see Table 1).

Anionic Complexes.—Substitution of X = Cl or CN for dioxan leads to organothallate(III) derivatives [equation (iv)].

$$[TlR_3(diox)] + QX \longrightarrow Q[TlR_3X] + diox$$
 (iv)

$$Q = [NBu_4]^+ \text{ or } [N(PPh_3)_2]^+$$

 $R = C_6F_3H_2$; $X = Cl$ (7) or CN (8)
 $R = C_6F_5$; $X = Cl$ (9) or CN (10)

The i.r. spectra of the chloro-complexes (7) and (9) show bands arising from $v(Tl-Cl)^{8,9}$ at 230 and 250 cm⁻¹, respectively. Complexes (8) and (10) do not exhibit vibrations due to $v(C\equiv N)^{.10,11}$ Nonetheless, the presence of the CN group is clearly shown by addition of a silver salt, which in both cases causes precipitation of AgCN [equations (v) and (vi)]

$$Q[TIR_3(CN)] + AgX \longrightarrow AgCN \begin{cases} +QX + TIR_3 & (v) \\ X = CIO_4 \\ + Q[TIR_3X] & (vi) \end{cases}$$

$$R = C_6F_5$$
; $X = NO_3$ (11) or CF_3CO_2 (12)

and two different reaction courses; if X is a non-co-ordinating anion (ClO₄) the process represented in equation (v) takes place and addition of dioxan (after removal of AgCN and QX by filtration) allows isolation of (1) or (2). If X is a co-ordinating anion (NO₃ or CF₃CO₂) the reaction takes place according to equation (vi), and complex (11) or (12), respectively, can be isolated after removal of AgCN.

The presence of the CF_3CO_2 group is supported by a strong band at 1 680 cm⁻¹ [$v_{asym}(CO)$].¹² Other absorptions, as well as those expected for $X = NO_3$,¹³ are masked by vibrations

Table 1. Physical data for complexes (1)—(12)

	M.p. (°C)	Λ _M / ohm ^{−1} cm² mol ^{−1}	M Found (calc.)
(1) $[Tl(C_6F_3H_2)_3(diox)]$	182 (decomp.)	1	
(2) [Tl(C6F5)3(diox)]	259 (decomp.)	ī	
(3) $[Tl(C_6F_3H_2)_3(OPPh_3)]$	141	1	897 (876)
(4) $[Tl(C_6F_3H_2)_3(py)]$	133	2	694 (677)
(5) $[Tl(C_6F_3H_2)_3(PPh_3)]$	209 (decomp.)	3	835 (860)
(6) $[Tl(C_6F_3H_2)_3(dppm)]$	100	2	933 (982)
(7) $[N(PPh_3)_2][Tl(C_6F_3H_2)_3Cl]$	115	85	
(8) $[N(PPh_3)_2][Tl(C_6F_3H_2)_3(CN)]$	115	89	
(9) $[NBu_4][Tl(C_6F_5)_3Cl]$	83	97	
(10) $[N(PPh_3)_2][Tl(C_6F_5)_3(CN)]$	90	98	
(11) $[N(PPh_3)_2][Tl(C_6F_5)_3(NO_3)]$	123 (decomp.)	105	
(12) $[N(PPh_3)_2][Tl(C_6F_5)_3(O_2CCF_3)]$	106	98	

Table 2. Physical data for complexes (13)—(20)

	M.p. (decomp.) (°C)	$\Lambda_{ extsf{M}}/$ ohm $^{-1}$ cm 2 mol $^{-1}$	ν(CO) */cm ⁻¹
(13) $[NBu_4][Tl(C_6F_3H_2)_3\{Mo(cp)(CO)_3\}]$	48	120	1 962vs, 1 879vs (sh), 1 868vs, br
(14) $[NBu_4][Tl(C_6F_3H_2)_3\{W(cp)(CO)_3\}]$		138	1 956vs, 1 880vs (sh), 1 867vs, br
(15) $[N(PPh_3)_2][Tl(C_6F_3H_2)_3\{Co(CO)_4\}]$	58	115	2 042m, 1 968m (sh), 1 956s
(16) $[N(PPh_3)_2][Tl(C_6F_3H_2)_3\{Mn(CO)_5\}]$	90	112	2 070m, 1 967vs, br
(17) $[NBu_4][Tl(C_6F_5)_3\{Mo(cp)(CO)_3\}]$	107	91	1 977vs, 1 900vs (sh), 1 888vs
(18) $[NBu_4][Tl(C_6F_5)_3\{W(cp)(CO)_3\}]$	84	90	1 973vs, 1 892vs (sh), 1 878vs
(19) $[N(PPh_3)_2][Tl(C_6F_5)_3\{Co(CO)_4\}]$	139	127	2 055m, 1 990m (sh), 1 970s
(20) $[N(PPh_3)_2][Tl(C_6F_5)_3\{Mn(CO)_5\}]$	100	84	2 065m, 1 985vs, br
hlazamathana			

* In dichloromethane.

arising from the cation. A similar reaction is observed for $R = C_6F_3H_2$, $X = CF_3CO_2$, though evaporation of the filtrate (after removal of AgCN) leads to oils, which could not be separated and whose i.r. spectra show absorption due to $v_{asym}(CO)$ at 1 658 cm⁻¹.

Complexes (7)—(12) are white air- and moisture-stable solids, conducting in acetone solution (1:1 electrolytes), as may be seen from Table 1.

Anionic Heteronuclear Complexes with Thallium-Transition Metal Bonds.—The foregoing behaviour is similar to that observed for [Au(C₆F₅)₃(tht)], where the substitution of halide or pseudohalide for tetrahydrothiophen (tht) leads to organoaurate(III),14 or the use of metal carbonylate gives anions containing gold(III)-transition metal bonds.15 Since [AsPh₄][Tl{Co(CO)₄}₄] ¹⁶ is the only reported anionic complex with a thallium(III)-transition metal bond, it seemed of interest to explore analogous reactions of [TlR₃(diox)]. In fact, addition of an equimolecular amount of QM* [Q = NBu₄ or N(PPh₃)₂] to a suspension of [TlR₃(diox)] in dichloromethane leads to the ready substitution of the carbonylate anion M* for dioxan and to the formation [equation (vii)] of the thallium-metal bonded (M = Mo, W, Co, or Mn)complexes (13)—(19). [TlR₃(diox)] need not necessarily be isolated, since the complexes can also be prepared directly by adding the carbonylate to ethereal solutions of TlR₃ [equation (viii)]. The colour of the resulting complexes varies from white [(19), (20)] to orange (14). They are conducting in acetone solution (Table 2). At room temperature the solids are airand moisture-stable, except for (14) which must be stored at low temperature.

Solutions of (16)—(20) are stable under nitrogen. Above -20 °C the solutions of (15) yield $[Co(CO)_4]^-$, as may be seen from the appearance of v(CO) bands arising from the

$$[TlR_3(diox)] + QM^* \longrightarrow Q[R_3Tl-M^*] + diox$$
 (vii)

$$R = C_6F_3H_2$$
; $M^* = [Mo(cp)(CO)_3]^-$ (13), $[W(cp)(CO)_3]^-$ (14), $[Co(CO)_4]^-$ (15), or $[Mn(CO)_5]^-$ (16)

$$R = C_6F_5$$
; $M^* = [Mo(cp)(CO)_3]^-$ (17),
 $[W(cp)(CO)_3]^-$ (18), or $[Co(CO)_4]^-$ (19)

$$Tl(C_6F_5)_3 + [N(PPh_3)_2]M^* \longrightarrow [N(PPh_3)_2][(C_6F_5)_3Tl-M^*]$$
 (viii)

$$M^* = [Co(CO)_4]^-$$
 (19) or $[Mn(CO)_5]^-$ (20)

free carbonylate. Lowering the temperature causes regeneration of the complex with re-formation of the thallium-cobalt bond. Solutions of (13) and (14) are also unstable above -20 °C. Appearance of free carbonylate followed by release of CO (more rapid in the tungsten derivative) can be observed; no regeneration is therefore possible in these cases.

The i.r. spectra of complexes (13)—(20) in the carbonyl region are in agreement with the expected pattern; the v(CO) bands in all cases are displaced towards higher energies, relative to the metal carbonylate anions. The manganese derivatives show only two of the three expected absorptions ¹⁷ $(2a_1 + e)$; probably the broad lower-energy band results from overlapping of the two vibrations due to $(a_1 + e)$. The Co, Mo, and W complexes exhibit the three expected absorptions $(2a_1 + e)$ for Co ¹⁸ and 2a' + a'' for Mo and W ¹⁹). As may be seen from Table 2, the absorption bands of the $R = C_6F_5$ derivatives are at higher energies than those where R = 2,4,6- $C_6F_3H_2$, which seems in accord with the higher electronegativity of the former.

All the complexes with $R = C_6F_5$ described in the present paper are characterized by two bands at 780 and 770 cm⁻¹.

This X-sensitive vibration of the C_6F_5 group is assignable 9,20 to a mode involving predominantly Tl-C stretching and can be related to the symmetry of the compounds as has been shown for Tl,⁶ Au,²¹ and Pd or Pt ²² derivatives. A similar situation is also observed for compounds containing the 2,4,6- $C_6F_3H_2$ group; ²¹ the complexes described herein show these two bands at ca. 845 and 838 cm⁻¹.

Experimental

I.r. spectra were recorded with a Perkin-Elmer 599 spectro-photometer for solutions in dichloromethane, or for Nujol mulls between polyethylene sheets. Conductivities were measured for $ca. 5 \times 10^{-4}$ mol dm⁻³ solutions in acetone with a Philips 9501/01 conductometer. Molecular weights were determined for solutions in chloroform with a Hitachi-Perkin-Elmer 115 osmometer. Analyses (C, H, N) were carried out with a Perkin-Elmer 240 microanalyser. All solvents were distilled from drying agents under nitrogen, and all operations were conducted in oxygen-free anhydrous nitrogen.

[TI($C_6F_3H_2$)₃(diox)](1).—To a solution of Li(2,4,6- $C_6F_3H_2$) ⁶ (21 mmol) in diethyl ether (100 cm³) at -78 °C was added anhydrous TICl₃ (0.93 g, 3 mmol) and the mixture was stirred for 10 min. Dioxan (4 cm³) was added and the mixture stirred for 1 h; the solution was then warmed to -40 °C and stirred for 45 min. After warming to room temperature the excess of lithium derivative was destroyed with solid CO₂. Evaporation to dryness and treatment of the residue with a mixture of dioxan (10 cm³) and hexane (30 cm³), filtration, and subsequent evaporation of the filtrate to dryness gave white solid (1), which was recrystallized from ether–hexane (1.40 g, 68%) (Found: C, 38.05; H, 2.0. C₂₂H₁₄F₉O₂Tl requires C, 38.55; H, 2.05%).

[Tl(C_6F_5)₃(diox)] (2).—To a solution of [NBu₄][Tl(C_6F_5)₄] ⁷ (1.12 g, 1 mmol) in diethyl ether (50 cm³) was added HBF₄ (1 cm³ of a 50% ethereal solution) and the mixture was stirred for 30 min at room temperature. The precipitated [NBu₄][BF₄] was removed by filtration and dioxan (1 cm³) was added to the filtrate. The white *complex* (2) crystallized upon evaporation (0.66 g, 83%) (Found: C, 33.4; H, 1.05. $C_{22}H_8F_{15}O_2Tl$ requires C, 33.3; H, 1.0%).

[TI($C_6F_3H_2$)₃L] [L = OPPh₃ (3), py (4), PPh₃ (5), or dppm (6)].—To a suspension of (1) (0.172 g, 0.25 mmol) in dichloromethane (10 cm³) was added L [L = OPPh₃ (0.070 g, 0.25 mmol), py (0.10 cm³, 1.2 mmol), PPh₃ (0.666, 0.25 mmol), or dppm (0.096 g, 0.25 mmol)]; instantaneous formation of a clear solution was observed. The solution was stirred for 10 min and evaporated to dryness. The resulting white solid was recrystallized from dichloromethane–hexane to give (3) (0.130 g, 60%) (Found: C, 49.7; H, 2.6. $C_{36}H_{21}F_9OPTI$ requires C, 49.35; H, 2.4%); (4) (0.091 g, 54%) (Found: C, 40.45; H, 1.85; N, 2.0. $C_{23}H_{11}F_9NTI$ requires C, 40.8; H, 1.65; N, 2.05%); (5) (0.165 g, 77%) (Found: C, 50.15; H, 2.5. $C_{36}H_{21}F_9PTI$ requires C, 50.3; H, 2.45%); or (6) (0.20 g, 81%) (Found: C, 52.3; H, 3.0. $C_{43}H_{28}F_9P_2TI$ requires C, 52.6; H, 2.85%).

Q[TIR₃CI] [Q = N(PPh₃)₂, R = C₆F₃H₂ (7); or Q = NBu₄, R = C₆F₅ (9)].—To a suspension of (1) (0.343 g, 0.5 mmol) or (2) (0.397 g, 0.5 mmol) in dichloromethane (20 cm³) was added [N(PPh₃)₂]Cl (0.287 g, 0.5 mmol) or [NBu₄]Cl (0.139 g, 0.5 mmol), respectively. After 10 min stirring at room temperature the clear solution was evaporated to dryness and the white residue was recrystallized from dichloro-

methane—hexane to give complex (7) (0.89 g, 69%) (Found: C, 54.85; H, 3.1; N, 1.55. $C_{52}H_{36}ClF_{9}NP_{2}Tl$ requires C, 55.35; H, 3.1; N, 1.2%); or (9) (0.38 g, 77%) (Found: C, 41.25; H, 3.45; N, 1.4. $C_{34}H_{36}ClF_{15}NTl$ requires C, 41.5; H, 3.7; N, 1.4%).

[N(PPh₃)₂][TIR₃(CN)] [R = $C_6F_3H_2$ (8) or C_6F_5 (10)].— To a solution of (1) (0.172 g, 0.25 mmol) or (2) (0.198 g, 0.25 mmol) in methanol (15 cm³) was added NaCN (0.025 g, 0.5 mmol) and the mixture was stirred for 45 min. [N(PPh₃)₂]ClO₄ (0.155 g, 0.25 mmol) was added, the stirring was continued for 20 min, and the solution was evaporated to dryness. The residue was treated with dichloromethane (30 cm³), and the solution was filtered and evaporated to dryness. The resulting solid was recrystallized from diethyl ether–hexane to give (8) (0.130 g, 45%) (Found: C, 56.45; H, 3.25; N, 2.4. $C_{55}H_{36}F_9N_2P_2Tl$ requires C, 56.85; H, 3.1; N, 2.4%); or (10) (0.096 g, 27%) (Found: C, 51.9; H, 2.4; N, 2.45. $C_{55}H_{30}F_{15}N_2P_2Tl$ requires C, 52.0; H, 2.4; N, 2.2%).

[N(PPh₃)₂][Tl(C_6F_5)₃X] [X = NO₃ (11) or CF₃CO₂ (12)].—A mixture of (10) (0.184 g, 0.14 mmol) and AgX [X = NO₃ (0.025 g, 0.14 mmol) or CF₃CO₂ (0.036 g, 0.14 mmol)] was dissolved in acetone (20 cm³) and stirred for 1 h at room temperature. The AgCN formed was filtered off, the filtrate was evaporated to dryness, and the white residue was recrystallized from diethyl ether-hexane to give (11) (0.100 g, 55%) (Found: C, 49.25; H, 2.75; N, 2.45. $C_{54}H_{30}F_{15}N_2O_3P_2Tl$ requires C, 49.65; H, 2.3; N, 2.15%); or (12) (0.078 g, 36%) (Found: C, 49.35; H, 2.25; N, 1.1. $C_{56}H_{30}F_{18}NO_2P_2Tl$ requires C, 49.55; H, 2.25; N, 1.05%).

 $Q[TI(C_6F_3H_2)_2M^*] \{Q = NBu_4, M^* = [Mo(cp)(CO)_3]^- (13)$ or $[W(cp)(CO)_3]^-$ (14); or $Q = N(PPh_3)_2$, $M^* = [Co(CO)_4]^-$ (15) or $[Mn(CO)_5]^-$ (16)}.—To a suspension of (1) (0.172 g, 0.25 mmol) in dichloromethane (10 cm³) at -50 °C was added QM* (0.25 mmol) {[NBu₄][Mo(cp)(CO)₃] ²³ (0.125 g), $[NBu_4][W(cp)(CO)_3]^{23}$ (0.144 g), $[N(PPh_3)_2][Co(CO)_4]^{24}$ (0.177 g), or $[N(PPh_3)_2][Mn(CO)_5]^{25}$ (0.184 g)}. The resulting solution was stirred for 10 min; addition of hexane (25 cm³) then caused separation of an oil, which was decanted and separated by vigorous stirring with hexane to give (13) (0.142 g, 52%) (Found: C, 45.55; H, 4.5; N, 1.4. C₄₂H₄₇F₉MoNO₃Tl requires C, 46.45; H, 4.35; N, 1.3%); (14) (0.207 g, 71%) (Found: C, 41.65; H, 4.55; N, 1.2. C₄₂H₄₇F₉NO₃TlW requires C, 43.0; H, 4.05; N, 1.2%; discrepancies can be explained by lack of stability at room temperature); (15) (0.244 g, 74%) (Found: C, 53.1; H, 3.0; N, 1.1. C₅₈H₃₆CoF₉NO₄P₂TI requires C, 53.3; H, 2.8; N, 1.05%); or (16) (0.209 g, 87%) (Found: C, 52.85; H, 2.95; N, 1.0. $C_{59}H_{36}F_{9}MnNO_{5}P_{2}Tl$ requires C, 53.25; H, 2.75; N, 1.05%).

Q[Tl(C_6F_5)₃M*] {Q = NBu₄, M* = [Mo(cp)(CO)₃]⁻ (17) or [W(cp)(CO)₃]⁻ (18); or Q = N(PPh₃)₂, M* = [Co(CO)₄]⁻ (19)}.—To a suspension of (2) (0.24 g, 0.30 mmol) in dichloromethane (30 cm³) was added QM* (0.30 mmol) {[NBu₄][Mo-(cp)(CO)₃] ²³ (0.150 g), [NBu₄][W(cp)(CO)₃] ²³ (0.173 g), or [N(PPh₃)₂][Co(CO)₄] ²⁴ (0.208 g)} and the mixture was stirred for 15 min at room temperature. Concentration to ca. 5 cm³ and addition of hexane led to the separation of (17) (0.257 g, 72%) (Found: C, 42.5; H, 3.5; N, 1.25. C₄₂H₄₁F₁₅MoNO₃Tl requires C, 42.3; H, 3.45; N, 1.15%); (18) (0.288 g, 75%) (Found: C, 38.8; H, 3.2; N, 1.05. C₄₂H₄₁F₁₅NO₃TlW requires C, 39.4; H, 3.25; N, 1.1%); or (19) (0.242 g, 57%) (Found: C, 49.9; H, 2.55; N, 1.2. C₅₈H₃₀CoF₁₅NO₄P₂Tl requires C, 49.25; H, 2.15; N, 1.0%).

 $[N(PPh_3)_2][Tl(C_6F_5)_3\{Mn(CO)_5\}]$ (20).—A solution of Tl-

(C₆F₅)₃ (prepared by treating [NBu₄][Tl(C₆F₅)₄] ⁷ (0.178 g, 0.16 mmol) with an excess of HBF₄ in diethyl ether (20 cm³) was added to [N(PPh₃)₂][Mn(CO)₅] ²⁵ (0.114 g, 0.16 mmol) and the mixture was stirred at room temperature for 15 min. The solution was evaporated to dryness and the resulting (20) was recrystallized from diethyl ether-hexane (0.132 g, 59%) (Found: C, 50.05; H, 2.45; N, 0.85. C₅₉-H₃₀F₁₅MnNO₅P₂Tl requires C, 49.25; H, 2.1; N, 0.95%).

Complex (19) was obtained similarly (0.106 g, 47%).

References

- 1 H. Kurosawa and R. Okawara, *Organomet. Chem. Rev.*, *Sect.* A, 1970, 6, 65.
- 2 H. Kurosawa, J. Organomet. Chem., 1976, 119, 131; 1978, 147, 193; 1978, 158, 221; 1979, 183, 265; 1980, 203, 313.
- 3 G. B. Deacon and D. G. Vince, J. Fluorine Chem., 1975, 5, 87
- 4 G. B. Deacon and D. G. Vince, Aust. J. Chem., 1975, 28, 1931.
- 5 G. B. Deacon and R. J. Phillips, J. Organomet. Chem., 1979, 171, C1.
- R. Usón, A. Laguna, and T. Cuenca, J. Organomet. Chem., 1980, 194, 271; R. Usón and A. Laguna, Inorg. Synth., 1982, 21, 71.
- 7 R. Usón, A. Laguna, and J. A. Abad, J. Organomet. Chem., 1980, 194, 265.
- 8 G. B. Deacon, J. H. S. Green, and R. S. Nyholm, *J. Chem. Soc.* 1965, 3411.
- G. B. Deacon, J. H. S. Green, and W. Kynaston, J. Chem. Soc. A, 1967, 158.

- 10 G. B. Deacon and J. C. Parrott, J. Organomet. Chem., 1968, 15, 11.
- 11 K. Nakamoto 'Infrared and Raman Spectra of Inorganic and Coordination Compounds,' 3rd edn., Wiley-Interscience, New York, 1978, p. 259.
- 12 M. J. Baillie, D. H. Brown, K. C. Moss, and D. W. A. Sharp, J. Chem. Soc. A, 1968, 3110.
- 13 Ref. 11, p. 244.
- 14 R. Usón, A. Laguna, M. Laguna, and E. Fernandez, *Inorg. Chim. Acta*, 1980, 45, L177.
- 15 R. Usón, A. Laguna, M. Laguna, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1981, 366.
- 16 W. R. Robinson and D. P. Shussler, J. Organomet. Chem., 1971, 30, C5.
- 17 P. M. Brier, A. A. Chalmers, J. Lewis, and S. B. Wild, J. Chem. Soc. A, 1967, 1889.
- 18 L. M. Bower and M. H. B. Stiddard, J. Chem. Soc. A, 1968, 706.
- 19 R. J. Haines, R. S. Nyholm, and M. H. B. Stiddard, J. Chem.
- 20 G. B. Deacon and J. H. S. Green, Spectrochim. Acta, Ser. A, 1968, 24, 1125.
- 21 R. Usón, A. Laguna, J. García, and M. Laguna, *Inorg. Chim. Acta*, 1979, 37, 201.
- 22 R. Usón, J. Forniés, P. Espinet, F. Martínez, and M. Tomás, J. Chem. Soc., Dalton Trans., 1981, 463.
- 23 J. M. Burlitch, M. E. Leonowicz, R. B. Peterson, and R. E. Hughes, *Inorg. Chem.*, 1979, 18, 1097.
- 24 J. K. Ruff and W. J. Shlientz, Inorg. Synth., 1974, 15, 84.
- 25 D. N. Duffy and B. K. Nicholson, J. Organomet. Chem., 1979, 164, 227.

Received 28th September 1982; Paper 2/1660