Structural Studies of Matrix-isolated Alkali Metal Chlorates; an Example of Tridentate Co-ordination by the Chlorate Ion lan R. Beattie * and John E. Parkinson Department of Chemistry, The University, Southampton SO9 5NH The vapours from heated alkali metal chlorates isolated in nitrogen and argon matrices have been studied by infrared spectroscopy. The use of $^{16}O^{-18}O$ partial isotopic substitution demonstrates the presence of a C_3 axis for the molecule $CsClO_3$ isolated in an argon matrix. This is interpreted as the ClO_3^- ion showing a tridentate interaction with the caesium ion. The vapours above alkali metal salts of oxo-anions can be studied conveniently by trapping in inert gas matrices at cryogenic temperatures. Subsequent infrared spectroscopy coupled with partial ¹⁶O-¹⁸O substitution can lead to rigorous determination of the symmetry of the oxo-anion, and hence to an understanding of the nature of the interaction with the alkali metal ion. The species NO_2^- ; PO_2^- , AsO_2^- , SbO_2^- ; NO_3^- ; PO_3^- ; CrO_4^2 , MOO_4^2 , and MOO_4^2 all appear to co-ordinate to the alkali metal ion via two oxygens. The oxoanions thus behave as bidentate ligands. In the case of XO₂-(X = N, P, As, or Sb) the idealised free ion is of C_{2v} symmetry, while for XO_3^- (X = N or P) the free ion has idealised D_{3h} symmetry. This behaviour is quite unlike that of a variety of van der Waals molecules such as Ar(Kr)SO₃6,7 isoelectronic with K(Rb)PO₃, ArBF₃⁸ isoelectronic with KNO₃, or ArSO₂⁹ isoelectronic with KPO₂, all of which can be described as based on an inert gas atom lying on a line perpendicular to the plane of the molecular component and approximately above the centre of mass. 10 It is interesting, however, that in ArCH₃Cl 11 the argon is not situated on the C₃ axis and the molecule (in a similar way to ArClCN 12) can be loosely described as T-shaped. The related 'ionic' molecule KCN has been shown to be T-shaped in the gas phase,13 by using nozzle-beam electric-dipole techniques. This result is perhaps not so surprising when it is remembered that species such as KO₂ 14 have equivalent oxygen atoms and hence are also T-shaped. In the case of XO_4^{2-} (X = Cr, Mo, or W), at first sight the possibility of tridentate co-ordination to the alkali metal ion (M^+) might look attractive. However the change from tridentate co-ordination (alkali metal atoms in *necessarily* adjacent faces) to bidentate co-ordination (alkali metal atoms on opposite edges of the XO_4^{2-} tetrahedron) leads to a considerable reduction in $M^+ \cdots M^+$ interactions. We were interested in attempting to obtain an example of tridentate co-ordination. As long ago as 1968, Andrews and Carver ¹⁵ showed that in LiCCl₃ the lithium lay on the C_3 axis. As recently as 1979 it was pointed out ¹⁶ that the correct structural interpretation requires the lithium to be adjacent to the carbon. There are many calculations on the structures of related lithiated organics. ¹⁷ Bearing in mind the relationship between CCl₃ and SiF₃, we decided to look at ClO₃, which is isoelectronic with SiF₃ and has the advantage of the possibility of isotopic substitution at the oxygen. We knew from previous experience that the splitting patterns derived from partial 16 O/ 18 O substitution are normally of high quality. Further, use of the caesium salts minimises lattice energies and also minimises $Cs^+ \cdots$ central atom repulsion terms. ## **Results and Discussion** Preliminary infrared matrix-isolation experiments on CsClO₃ in argon in the region 450—1 000 cm⁻¹ showed principal bands at 963.7, 925.6, and 618.4 cm⁻¹ which correspond closely to the positions expected ¹⁸ for $v_3(e)$, $v_1(a_1)$, and $v_2(a_1)$ of $^{35}ClO_3^-$. Further experiments using other cations are summarised in Table 1 and show that the bands are cation dependent, suggesting that the molecule under study is CsClO₃. Bands whose relative intensity varied with matrix deposition conditions or annealing are recorded as footnotes to Table 1. The band observed at 1 020 cm⁻¹ for KClO₃ and previously ¹⁹ assigned to one component of (a split) v₃ did not appear in our spectra where a superheater was used during matrix deposition. The fact that the e mode is unsplit in CsClO₃ is a very strong indication that $C_{3\nu}$ symmetry is retained, and suggests that the previous assignment 19 of a bidentate interaction is incorrect. It is likely that the ClO₃⁻ is acting as a tridentate ligand. Proof of the correctness of the assumption of C_{3v} symmetry comes from partial isotopic substitution using ¹⁸O. The Figure shows the infrared spectrum of Cs35Cl16/18O3 isolated in a matrix. The calculated frequencies and intensities (for a 50: 50 16O: 18O mixture) are given for v_1 , v_2 , and v_3 of the ion. The patterns can easily be understood by considering the vibrations of the isotopomers.20 The ClO_3^- ion is pyramidal and of $C_{3\nu}$ symmetry. The ν_3 vibration may be represented by the two components (I) and (II). Assuming that the ClO_3^- ion in CsClO_3 retains $C_{3\nu}$ symmetry, the degeneracy of the e vibration is not resolved. However for the partially substituted ions (16 16 18 or 16 18 18) the symmetry falls to C_s . The plane of symmetry in this case passes through the chlorine and the unique 18 or 16 oxygen atom. Thus the resolution of the degeneracy leads to an a' mode and an a'' mode. In the a'' modes the unique oxygen atom does not move. Thus to a first approximation these components from the partially substituted species will occur at the same frequencies as the e modes of the corresponding all 16 or all 18 ions. For 50% ¹⁸O substitution the statistical occurrence of the four isotopomers will be in the ratio 1:3:3:1. This is approximately the intensity distribution found for v_1 and v_2 (see Figure). By contrast for v_3 because the degeneracy is removed for the two partially substituted isotopomers the intensity distribution in this case is $(1+1\frac{1}{2}):1\frac{1}{2}:1\frac{1}{2}:(1+1\frac{1}{2})$ or 5:3:3:5, which again is the approximate intensity distribution. Finally we note that v_1 occurs in the same region Table 1. Infrared bands (cm⁻¹) and assignments for matrix-isolated MClO₃ (M = K, Rb, or Cs) | Argon matrix | | | Nitrogen matrix | | | | |--------------------|--------------------|-------------------|--------------------|--------------------|------------------------------|---| | CsClO ₃ | RbClO ₃ | KClO ₃ | CsClO ₃ | RbClO ₃ | KClO ₃ | Assignment | | 963.7s | 967.2s | 969.4s | 978.2s,
973.8s | 980.9s,
976.6s | 981.2s,
979.0s,
977.0s | ν ₃ ³⁵ ClO ₃ - | | 953.8m | 957.6m | 957.4m | 967.8m,
964.0m | 971.0m,
967.2m | 971.4m,
969.6m,
968.0m | v ₃ ³⁷ ClO ₃ - | | 925.6m | 926.8m | 927m | 934.7m | 935.8m | 937.2m | v ₁ 35ClO ₃ - | | 917.3w | 919.6w | | 927.7w | 928.8w | 934.4w | $v_1^{37}ClO_3^{3}$ | | 618.4m | 623.5m | 628. 0 m | 619.8m | 623.4m | 626.0m | v_2 35ClO ₃ - | | 614.0w | 618.6w | 623.0w | 614.8w | 618.4w | 620.8w | v_2 ³⁷ ClO ₃ – | | 474w | 478.2w | 481.5w | 481.2w,
479.1w | 483.8w, | 484w | v ₄ 35ClO ₃ - | | * | | | 4/9.1W | 482.0w | | ν ₄ ³⁷ ClO ₃ - | | 986.0 | 987.4 | 976.4 | | | | Bands of | | 984.0 | 976.0 | 961.0 | | | | variable | | 977.0 | 952.4 | | | | | intensity | | 974.6 | | | | | | · | | 967.6 | | | | | | | | 936.0 | 936.4 | | | | | | | 625.0 | | | | | | | | 1 020.5 | 1 021.5 | 1 020.5 | 1 014.5 | 1 015.8 | 1 016.0 | Bands not | | 1 017.5 | 1 018.5 | 1 018.0 | 1 011.0 | 1 013.2 | 1 013.7 | observed in | | 1 015.0 | 1 017.3
1 015.5 | | 1 008.5 | 1 010.5 | | superheater
experiments | | | 1 014.5 | | | | | | ^{*} Note that the calculated isotope splitting (35Cl/37Cl) for v₄(e) is only 1.1 cm⁻¹. Table 2. Observed (argon matrix) and calculated * infrared bands (cm⁻¹) for isotopically labelled CsClO₃ | | Observed | Calculated | Assignment | |---------|----------|-----------------|---| | ν_3 | 963.7 | {963.7
963.4 | e 35Cl16O3- | | | 949.4 | 949.5 | a' $\left.\right\}^{33}$ Cl ¹⁸ O ₂ ¹⁸ O ² | | | 957.2 | 957.1 | a' 35Cl ¹⁶ O ¹⁸ O ₂ | | | 931.5 | ∫932.5 | u | | | 931.3 | ₹ 932.1 | e 35Cl18O3 - | | | 062.0 | (952.8 | $e^{-37}\text{Cl}^{16}\text{O}_3^{-1}$ | | | 953.8 | ₹952.5 | " | | | 940.0 | 938.9 | ${a' \choose a'}$ 37Cl ¹⁶ O ₂ ¹⁸ O | | | 947.5 | 946.3 | a' 37Cl ¹⁶ O ¹⁸ O ₂ - | | | 001.0 | (921.1 | $a^{\prime\prime}$ | | | 921.2 | ₹ 920.7 | $e^{-37}\text{Cl}^{18}\text{O}_3^{-1}$ | | ν_1 | 925.6 | 925.6 | a_1 35Cl ¹⁶ O ₃ - | | • | 906.9 | 907.8 | a' 35Cl ¹⁶ O ₂ ¹⁸ O ~ | | | 897.2 | 898.7 | a' 35Cl ¹⁶ O ¹⁸ O ₂ - | | | 891.2 | 891.5 | a_1 35Cl ¹⁸ O ₃ | | | 917.3 | 917.1 | a_1 $^{37}\text{Cl}^{16}\text{O}_3$ | | | 898.7 | 898.5 | a' $^{37}\text{Cl}^{16}\text{O}_2^{18}\text{O}^-$ | | | 889.4 | 889.4 | a' $^{37}\text{Cl}^{16}\text{O}^{18}\text{O}_2^{-1}$ | | | | 882.3 | a_1 $^{37}\text{Cl}^{18}\text{O}_3$ | | V_2 | 618.4 | 618.4 | a_1 35Cl ¹⁶ O ₃ - | | - | 610.0 | 609.5 | a' 35Cl ¹⁶ O ₂ ¹⁸ O - | | | 601.5 | 600.4 | a' 35Cl ¹⁶ O ¹⁸ O ₂ - | | | 592.8 | 591.0 | a_1 $^{35}\text{Cl}^{18}\text{O}_3$ | | | 614 | 614.3 | a_1 ${}^{37}\text{Cl}^{16}\text{O}_3$ | | | 606 | 605.6 | a' $^{37}\text{Cl}^{16}\text{O}_2^{18}\text{O}^-$ | | | 597 | 596.5 | a' $^{37}\text{Cl}^{16}\text{O}^{18}\text{O}_2^{-}$ | | | _ | 587.3 | a_1 ${}^{37}\text{Cl}^{18}\text{O}_3$ | | | | | | ^{*} Force constants (mdyn Å⁻¹; 1 dyn = 10^{-5} N): $f_r = 5.541$; $f_{rr} = 0.247$; $f_{\alpha} = 1.033$; $f_{\alpha\alpha} = 0.306$. of the spectrum as v_3 (930 and 960 cm⁻¹, respectively). The a' components deriving from v_3 for the C_s point group clearly have the same symmetry as the a' vibrations deriving from v_1 . These two vibrations will interact with one another for each of the two partially substituted chlorate ions. Thus the two central components of v_3 will be pushed to higher frequencies while the two central components of v_1 will correspondingly be pushed to lower frequencies. Table 2 summarises our isotopomer data in a more formal manner. From Tables 1 and 2 it is apparent that in argon KClO₃, RbClO₃, and CsClO₃ contain a chlorate unit of essentially $C_{3\nu}$ symmetry. The CsClO₃ data are clear-cut within the normal limitations of the technique, but the quality of the spectra for KClO₃ were not as high as those for RbClO₃ and CsClO₃. In nitrogen the bands were generally narrower and there appeared to be less tendency towards aggregation. However a doubling of v₃ occurred for RbClO₃ and CsClO₃, while for KClO₃ three bands occurred in the region of v_3 . It is interesting that for CsClO₃ the a' components of the mixed ¹⁶O/¹⁸O isotopomer showed no doubling (while as indicated both the ¹⁶O parent and the all-¹⁸O species showed a doubling). The situation with the a'' components of the mixed isotopomer is unclear owing to overlap with (doubled) bands from the all-16O and all-18O species. Nonetheless our results suggest that the doubling of the v3 bands for RbClO3 and CsClO₃ is due to a lifting of the degeneracy. This study demonstrates, within the limitations of the 'natural' half width of the bands and the resolution of the infrared spectrometer used, that in argon $CsClO_3$ has a three-fold symmetry axis. Of the two possible positions for Cs^+ on the C_3 axis, it is reasonable to propose that the one adjacent to the three oxygens is preferred. The caesium ion then sits in the tripod provided by the chlorate ion. We thus have the perhaps unexpected result that for CsClO₃ Figure. High resolution infrared spectrum of isotopically pure 35 Cl in Cs 35 ClO₃ (with partial 18 O substitution) isolated in an argon matrix. The upper pattern in each case is that calculated on the basis of $C_{3\nu}$ symmetry for the 35 ClO₃ $^-$ ion (50% 18 O enrichment) (bands marked with an asterisk are of variable relative intensity) the molecule retains the C_3 axis but for CsClO₄ a bidentate or C_{2v} co-ordination is apparently preferred.²¹ The major difference between the two is addition of an oxygen. There have been recent structural studies on crystalline KClO₃.²² and KClO₄.²³ KClO₃: shortest K-O 2.804 Å; average angle 106.4°; average Cl-O 1.497 Å KClO₄: shortest K-O 2.862 Å; average angle 109.2°; average Cl-O 1.433 Å (The K-O distance on the basis of the sum of Pauling ionic radii is 2.73 Å.) Use of the bond lengths given above for KClO₄ with tetrahedral angles gives the following: $$C_{3\nu}$$ K-Cl 3.00 Å $C_{2\nu}$ K-Cl 3.44 Å K-(3)O 2.86 K-(1)O 4.43 K -(2)O 4.42 In essence the difference between the tridentate (C_{3v}) and the bidentate (C_{2v}) KClO₄ models is a reduction in the K-O attraction term by change of one oxygen distance from 2.86 to 4.42 Å (the other at 4.43 changing almost negligibly to 4.42 Å), coupled with a decrease in the K-Cl repulsion term (3.00 to 3.44 Å). Clearly it is extremely finely balanced on this simple ionic model. This is further exemplified by the observed change from C_{3v} CsClO₃ to C_{2v} CsClO₄, which in this case involves a change in the formal charge on chlorine from +5 to +7. ## Experimental The sample of KClO₃ (AR grade; Hopkins and Williams) was used without further purification. Samples of RbClO₃ and CsClO₃ were prepared by electrolysis of hot saturated aqueous solutions of the corresponding chlorides, using platinum electrodes.24 The product was recrystallised from water and fused under vacuum before use. Enriched samples of Cs35ClO3 were prepared by the foregoing method using ¹⁸O-enriched water (50 atom % ¹⁸O) and enriched Cs³⁵Cl (90 atom % 35Cl NaCl exchanged with caesium-enriched Dowex 50-X8 cation resin). High purity nitrogen and argon were supplied by B.O.C. Vaporisation was accomplished from borosilicate or silica sample holders heated by a resistive electrical furnace to ca. 750 K. Deposition times were typically ca. 1 h and during this period the CsI window on the cryostat was maintained at ca. 12 K. Spectra were recorded (200-5 000 cm⁻¹) on a Perkin-Elmer 225 spectrometer calibrated in the normal way. Vibrational Analysis.—The model used for the interpretation of these data is based on a C_{3v} ClO₃⁻ ion with an OClO bond angle of 106° and a Cl-O distance of 1.48 Å. The force constant data ²⁵ and results of calculations based on the SOTONVIBP ²⁶ program are summarised in Table 2 for CsClO₃. #### Acknowledgements We thank N.P.L. and S.E.R.C. for financial support and Dr. J. S. Ogden for discussions. ### References - 1 J. Parkinson, unpublished work. - 2 J. S. Ogden and S. J. Williams, J. Chem. Soc., Dalton Trans., 1982, 825. - R. Beattie, J. S. Ogden, and D. D. Price, J. Chem. Soc., Dalton Trans., 1979, 1460. - 4 S. N. Jenny and J. S. Ogden, J. Chem. Soc., Dalton Trans., 1979, 1465. - R. Beattie, J. S. Ogden, and D. D. Price, J. Chem. Soc., Dalton Trans., 1982, 505. - 6 K. H. Bowen, K. R. Leopold, K. V. Chance, and W. Klemperer, J. Chem. Phys., 1980, 73, 137. - 7 K. R. Leopold, K. H. Bowen, and W. Klemperer, J. Chem. Phys., 1981, 74, 4211. - 8 K. C. Janda, L. S. Bernstein, J. M. Steed, S. E. Novick, and W. Klemperer, J. Am. Chem. Soc., 1978, 100, 8074. - R. L. DeLeon, A. Yokozeki, and J. S. Muenter, J. Chem. Phys., 1980, 73, 2044. - 10 See, for example, J. K. Burdett, J. Chem. Phys., 1980, 73, 2825. - 11 J. H. Steed, L. S. Bernstein, T. A. Dixon, K. C. Janda, and W. Klemperer, J. Chem. Phys., 1979, 21, 4189; R. L. DeLeon and J. S. Muenter, ibid., 1981, 75, 1113. - 12 M. R. Keenan, D. B. Wozniak, and W. H. Flygare, J. Chem. Phys., 1981, 75, 631. - 13 T. Torring, J. P. Bekooy, W. Leo Meerts, J. Haeft, E. Tiemann, and A. Dymanus, J. Chem. Phys., 1980, 73, 4875. - 14 R. R. Smardzewski and L. Andrews, J. Chem. Phys., 1972, 57, 1327; L. Andrews, ibid., 1971, 54, 4935. - 15 L. Andrews and T. G. Carver, J. Phys., Chem., 1968, 72, 1743. - 16 T. Clark and P. von Rauge Schleyer, J. Am. Chem. Soc., 1979, 101, 7747. - 17 See, for example, J. B. Moffat, J. Chem. Soc., Chem. Commun., 1980, 1108. - 18 K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1963. - 19 N. Smyrl and J. P. Devlin, J. Chem. Phys., 1974, 60, 2540. - 20 See, for example, I. R. Beattie, H. E. Blayden, S. M. Hall, S. N. Jenny, and J. S. Ogden, J. Chem. Soc. Dalton Trans., 1976, 666. - 21 I. R. Beattie and J. Parkinson, unpublished work; G. Ritzhaupt and J. P. Devlin, J. Chem. Phys., 1975, 62, 1982. - 22 J. W. Bats, Acta Crystallogr, Sect. B, 1978, 34, 1679; S. C. Abrahams and J. L. Bernstein, ibid., 1977, 33, 3601; G. Brunton, Mat. Res. Bull., 1973, 8, 791. - 23 G. B. Johansson, and O. Lindqvist, Acta Crystallogr, Sect. B., 1977, 33, 2918. - 24 See for example, P. J. Durrant and B. Durrant, 'Introduction to Advanced Inorganic Chemistry,' Longmans, London, 1962. - 25 D. J. Gardiner, R. B. Girling, and R. E. Hester, J. Mol. Struct., 1972, 13, 105 and references therein. - 26 I. R. Beattie, N. Cheetham, M. Gardner, and D. E. Rogers, J. Chem. Soc. A, 1971, 2240. Received 4th October 1982; Paper 2/1704