Haloalkyl Complexes of the Transition Metals. Part 3.¹ Reactions of Some Chloromethyl and Methoxymethyl Complexes of Molybdenum, Tungsten, Manganese, Rhenium, Iron, and Ruthenium with Some Tertiary Phosphine and Related Ligands Simon Pelling, Cheryl Botha, and John R. Moss * Department of Inorganic Chemistry, University of Cape Town, Rondebosch 7700, South Africa The reactions of some chloromethyl transition-metal complexes $[M'-CH_2CI]$ with PPh3 have been investigated. For $M' = Fe(\eta^5-C_5H_5)(CO)_2$ or $W(\eta^5-C_5H_5)(CO)_3$, cationic ylide complexes of the type $[M'-CH_2PPh_3]^+$ have been isolated, whereas for $M' = Mn(CO)_5$ or $Mo(\eta^5-C_5H_5)(CO)_3$, chloro-complexes were obtained and for $M' = Re(CO)_5$ or $Ru(\eta^5-C_5H_5)(CO)_2$, no ligand products were found under the reaction conditions used. The reactions have been investigated in methanol and acetonitrile. The reactions of $[Fe(\eta^5-C_5H_5)(CO)_2(CH_2CI)]$ with other ligands (L) have also been studied; cationic ylide complexes $[Fe(\eta^5-C_5H_5)(CO)_2(CH_2L)]^+$ have been obtained for $L = PMe_2Ph$, $PMePh_2$, PEt_2Ph , PEt_2Ph , or $AsPh_3$ and disubstituted cationic complexes $[Fe(\eta^5-C_5H_5)(CO)L_2]^+$ where $L = PMe_3$, PMe_2Ph , PEt_2Ph , or PEt_2Ph , or PEt_2Ph . Possible mechanisms for these reactions are discussed. The reactions of some methoxymethyl complexes $[M'-CH_2OMe]$ with PPh_3 are also described. Transition-metal complexes containing halogenomethyl, methoxymethyl, or halogenoalkyl groups have potential as precursors for important classes of compounds including those with bridging methylene or polymethylene groups, terminal carbene groups, and a range of compounds of the type [ML_n- (CH_2X)] (where M = transition metal, L_n = other ligands, and X = a nucleophile). Relative to main-group metal halogenomethyl compounds,2 transition-metal halogenomethyl compounds have not been extensively studied.^{1,3,4} We have previously reported that the reaction of PPh3 with the $[M'-CH_2Cl]$ complexes [where $M' = Fe(cp)(CO)_2$ or W(cp)-(CO)₃; cp = η^5 -C₅H₅] gave cationic ylide complexes.⁵ These results led us to examine, in more detail, the reactions of a series of $[ML_n(CH_2CI)]$ complexes (where L_n includes CO) with neutral donor ligands. Recently, reactions of tertiary phosphines with some $[ML_n(CH_2X)]$ complexes (where L_n does not include CO; X = Cl, Br, or I) have been reported to give ylide products.3,6,7 The reactions of PR₃ ligands with [ML_n(CH₃)] complexes (where L_n includes CO) usually give rise to CO substitution by PR₃, with or without carbonyl insertion into the M'-CH₃ bond.⁸ Other pathways are however available for the reactions of [ML_n(CH₂X)] complexes with similar ligands. There are at least three possible ways in which PR₃ ligands could react with [ML_n(CH₂X)] complexes (where L_n includes CO): (i) substitution of CO by one or more of the ligands L, with or without carbonyl insertion; (ii) nucleophilic attack by PR₃ at the carbon atom of the CH₂ group; and (iii) reactions which lead to displacement of the CH₂X group or formation of [M'-X] complexes. We now report in detail on the reactions of some chloromethyl and methoxymethyl complexes of Mo, W, Mn, Re, Fe, and Ru with some tertiary phosphine ligands, AsPh₃ and P(OMe)₃, reactions which show some of the other pathways available to $[ML_n(CH_2X)]$ complexes. ### Results and Discussion Reactions of [Fe(cp)(CO)₂(CH₂Cl)] with Tertiary Phosphines, AsPh₃, and P(OMe)₃.—We have studied the reactions of [Fe(cp)(CO)₂(CH₂Cl)] (1) with several tertiary phosphines and other ligands in both methanol and acetonitrile as solvents. Thus (1) reacts with PPh₃, PMePh₂, and PEtPh₂ in methanol under reflux to give, after work-up with NaBPh₄, cationic OC $$CO$$ CH_2X $OC CH_2L$ (1) $X = Cl$ (2) $L = PPh_3$ (3) $L = PMePh_2$ (8) $X = OMe$ (4) $L = PMe_2Ph$ (5) $L = PEtPh_2$ (6) $L = PEt_2Ph$ (7) $L = AsPh_3$ complexes of type [Fe(cp)(CO)₂(CH₂L)]BPh₄, i.e. (2), (3), and (5) (see Table 1 for reaction times, yields, and characterisation data). These complexes were isolated as yellow, air-stable BPh₄ - salts in yields of 54—74%. The BF₄ - salt analogous to (2) has been reported as the product of the reaction of $[Fe(cp)(CO)_2(thf)]BF_4$ (thf = tetrahydrofuran) with $Ph_3P=$ CH₂.9 We also find that complex (1) reacts with PPh₃ in methanol at room temperature over 3 d to give (2). In contrast, the reaction of PMe₂Ph with complex (1) gave (4) (after work-up with NaBPh4) in only 8% yield after 3 d in methanol under reflux. The reaction of PEt₂Ph with (1) in methanol under reflux for 5 d gave a low yield of product. This product could not however be completely purified but the i.r. spectrum showed two strong v(CO) bands (at 2 028 and 1 974 cm⁻¹), in similar positions to those observed for compounds (2)—(5), suggesting that (6) is the product. The reaction of (1) with AsPh₃ in methanol under reflux gave the yellow air-stable cation (7), isolated as the BPh₄ - salt. The reaction of P(OMe)₃ with (1) in methanol under reflux was attempted but after 4 d an i.r. spectrum of the reaction mixture showed only v(CO)bands corresponding to [Fe(cp)(CO)₂(CH₂OMe)] (8). Examination of the solutions of complex (1) by i.r. and ¹H n.m.r. spectroscopy after standing in methanol show that a mixture of (1) and (8) is present. On addition of the phosphine ligand to this solution, only bands of (8) are seen suggesting that an equilibrium [equation (i)] may be set up and has been shifted to the right. On heating the reaction solution under $$[Fe(cp)(CO)_2(CH_2Cl)] + MeOH$$ $$(1)$$ $$[Fe(cp)(CO)_2(CH_2OMe)] + HCl (i)$$ $$(8)$$ Table 1. Data for products of the reaction of [Fe(cp)(CO)₂(CH₂Cl)] with ligands in methanol | Compound | Reaction
time | Yield
(%) | M.p.
(θ _e /°C) | ỹ(CO) ⁴/cm⁻¹ | ¹ H N.m.r. ^b (δ/p.p.m.) | Analysis ^c | |---|------------------|--------------|------------------------------|----------------|---|---| | (2) [Fe(cp)(CO) ₂ (CH ₂ PPh ₃)]BPh ₄ | 4 h | 74 | 198—200
(decomp.) | 2 032s, 1 981s | 1.50 [d, 2 H, ² J(PH) 12.5],
4.62 (s, 5 H), 6.93, 7.33,
7.63 (m, 35 H) | C 77.5
(77.75)
H 5.45
(5.50)
O 4.20
(4.15) | | (3) [Fe(cp)(CO) ₂ (CH ₂ PMePh ₂)]BPh ₄ | 20 h | 70 | 162—164 | 2 031s, 1 978s | 1.15 [d, 2 H, ² J(PH) 12.6],
1.97 [d, 3 H, ² J(PH) 12.5],
4.72 (s, 5 H), 6.98, 7.35,
7.59 (m, 30 H) | C 75.7
(76.05)
H 5.70
(5.70) | | (4) [Fe(cp)(CO) ₂ (CH ₂ PMe ₂ Ph)]BPh ₄ | 2 d | 8 | 150—153 | 2 029s, 1 975s | 1.26 [d, 2 H, ² J(PH) 14.0],
1.58 [d, 6 H, ² J(PH) 12.5],
4.70 (s, 5 H), 6.95, 7.50
(m, 25 H) | C 74.25
(74.2)
H 5.90
(5.90)
O 4.60
(4.95) | | (5) [Fe(cp)(CO) ₂ (CH ₂ PEtPh ₂)]BPh ₄ | 5 h | 54 | 178180 | 2 030s, 1 977s | 0.99 [dt, 3 H, ³ J(PH) 18.5, ³ J(HH) 7.7], 1.09 [d, 2 H, ² J(PH) 12.6], 2.38 [dq, 2 H, ² J(PH) 11.9, ³ J(HH) 7.7], 4.63 (s, 5 H), 6.93, 7.33, 7.60 (m, 30 H) | C 76.05
(76.25)
H 5.85
(5.80) | | (6) [Fe(cp)(CO) ₂ (CH ₂ PEt ₂ Ph)]BPh ₄ | 5 d | Low | 123—126 | 2 028s, 1 974s | (111, 50 11) | Impure | | (7) [Fe(cp)(CO) ₂ (CH ₂ AsPh ₃)]BPh ₄ | 3.5 h | 66 | 194—196
(decomp.) | 2 031s, 1 980s | ⁴ 2.50 (s, 2 H), 5.09 (s, 5 H), 6.88, 7.35, 7.80 (m, 35 H) | C 73.35
(73.55)
H 5.15
(5.20) | | (2a) [Fe(cp)(CO) ₂ (CH ₂ PPh ₃)]I | 7 d | 17 | 194—200 | 2 025s, 1 972s | 2.21 [d, 2 H, ² J(PH) 12.5],
5.17 (s, 5 H), 7.70 (m, 15 H) | C 53.7
(53.8)
H 3.75
(3.80) | ^a Measured in CH_2Cl_2 . ^b Measured in CD_2Cl_2 unless otherwise stated; s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet; J values in Hz. ^c Calculated values in parentheses. ^d Measured in CD_3COCD_3 . reflux, the v(CO) bands of (8) are replaced by bands consistent with formation of the respective cationic ylide products (2)— (7). Interestingly, (8) did not react with PPh₃ in methanol at room temperature over 6 d; however, when excess of aqueous HCl was added to the reaction solution, i.r. monitoring showed that (1) was rapidly formed followed by the cation (2). These results suggest that the iron complex that reacts with the phosphine is (1) rather than (8). Under different conditions (C₆H₆, u.v.; or reflux in CH₃CN for 4 d) the reaction of (8) with PPh₃ has been reported to give [Fe(cp)(CO)(PPh₃)-(CH₂OMe)] ¹⁰ or [Fe(cp)(CO)(PPh₃)(COCH₂OMe)] ¹¹ respectively. The difficulty with which (8) undergoes carbonyl insertion relative to [Fe(cp)(CO)₂Me] is shown by the observation that [Fe(cp)(CO)₂Me] reacts with PPh₃ in refluxing acetonitrile for less than 1 d to give an 80% yield of [Fe(cp)-(CO)(PPh₃)(COMe)].¹¹ Thus for complexes [Fe(cp)(CO)₂-(CH₂X)], the carbonyl-insertion reaction occurs less readily where X = the electron-withdrawing OMe group than where Although (8) reluctantly reacts with PPh₃, we find that it does react with [PPh₃H]I in methanol at room temperature, or under reflux, to give [Fe(cp)(CO)₂(CH₂PPh₃)]I (2a) and i.r. monitoring suggests that this reaction proceeds *via* an intermediate which is probably [Fe(cp)(CO)₂(CH₂I)]. We have also investigated the reactions of [Fe(cp)(CO)₂-(CH₂Cl)] (1) with tertiary phosphines in acetonitrile as solvent, at room temperature in the dark. Thus complex (1) with PPh₃ gave (2) after work-up with NaBPh₄; the analogous PF₆⁻ salt (2b) was also prepared. The reaction of (1) with PMePh₂ resulted in the isolation of complex (3). The same cationic products were thus obtained with these ligands in methanol (9) $L = PMe_2Ph$ (10) $L = PMe_3$ (11) $L = PEt_2Ph$ (12) $L = PEt_2Ph_2$ and acetonitrile although the reactions in acetonitrile, which were carried out at a lower temperature, took longer. A mixture of two products, viz. (4) and (9), was isolated from the reaction of (1) with PMe₂Ph (1:1 molar ratio of reactants) in acetonitrile for 17.5 h. If the reaction was carried out for a longer period (5 d) with an excess of PMe₂Ph, then (9) was the only product isolated (81% crude yield); these results suggest that (4) is converted into (9). From the reactions of (1) with PMe₃ or PEt₂Ph were isolated (10) and (11) respectively as air-stable, yellow crystalline BPh₄- salts. The phosphonium salt [PMeEt₂Ph]BPh₄ was also isolated from the reaction of (1) with PEt2Ph in acetonitrile. For details of reaction times, yields, and characterisation of the products of the reactions of (1) with ligands L in acetonitrile see Table 2. The PF₆⁻ salt analogous to (10) has recently been reported as the product of heating [Fe(cp)(CO)(PMe₃)Br] with PMe₃ in toluene under reflux and the I - salt analogous to (10) from the reaction of [Fe(cp)(CO)₂(PMe₃)]I with PMe₃ under reflux in acetonitrile for 2 h.12 The reaction of (1) with PEtPh2 in acetonitrile gave a yellow solid on work-up with NaBPh4. This product was not Table 2. Data for some products of the reactions of [Fe(cp)(CO)₂(CH₂Cl)] with tertiary phosphines in acetonitrile | Compound | Reaction time (t/d) | Yield
(%) | M.p.
(θ _c /°C) | ṽ(CO) ⁴/
cm ⁻¹ | ¹H N.m.r.♭ (δ/p.p.m.) | Analysis ^c
(%) | |---|---------------------|--------------|------------------------------|------------------------------|---|---| | (2b) [Fe(cp)(CO) ₂ (CH ₂ PPh ₃)]PF ₆ | 1.8 | 42 | 202—205
(decomp.) | 2 028s,
1 976s | 1.82 [d, 2 H, ² J(PH) 12.5],
4.93 (s, 5 H), 7.66 (m,
35 H) | C 52.5
(52.2)
H 3.75
(3.7)
F 18.35
(19.05) | | (9) [Fe(cp)(CO)(PMe ₂ Ph) ₂]BPh ₄ | 5 | 81 | 193—196
(decomp.) | 1 967 | ⁴ 1.65 [pseudo-triplet, 6 H,
 J(PH) + J(P'H) 10.0],
1.83 (pseudo-triplet, 6 H,
 J(PH) + J(P'H) 10.0],
4.96 [t, 5 H, ${}^{3}J(PH)$ 1.4],
6.87, 7.36, 7.53 (m, 30 H) | C 73.8
(74.2)
H 6.35
(6.35) | | (10) [Fe(cp)(CO)(PMe ₃) ₂]BPh ₄ | 2 | 32 | >250
(decomp.) | 1 971 | 1.39 [pseudo-triplet, 18 H,
 J(PH) + J(P'H) 10.0],
4.56 [t, 5 H, ³ J(PH) 1.9],
6.96, 7.30 (m, 20 H) | C 69.7
(69.7)
H 7.10
(7.0) | | (11) [Fe(cp)(CO)(PEt ₂ Ph) ₂]BPh ₄ | 3 | 15 | 140—142 | 1 962 | 0.93, 1.65 (br m), 4.52
[t, 5 H, ³ J(PH) 2.0], 6.97,
7.35 (m, 30 H) | C 75.8
(75.0)
H 7.05
(6.9) | | (12) [Fe(cp)(CO)(PEtPh ₂) ₂]BPh ₄
[PMeEt ₂ Ph]BPh ₄ | 5 3 | 17 | 200—201 | 1 962 | ^c 1.29 [dt, 6 H, ³ J(HH) 7.5,
³ J(PH) 19.5], 2.05 (d, 3 H,
² J(PH) 13.0], 2.42 [dq, 4
H, ² J(PH) 13, ³ J(HH) 7.5],
6.92, 7.37, 7.78 (m, 25 H) | Impure
C 84.2
(84.0)
H 7.6
(7.6) | ^a Measured in CH_2Cl_2 . ^b Measured in CD_2Cl_2 except when otherwise stated; s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet; J values in Hz. ^c Calculated values in parentheses. ^d Measured in CD_3COCD_3 . ^e Measured in CD_3NO_2 . obtained in a pure state, however its i.r. spectrum shows one v(CO) band (1 962 cm⁻¹) suggesting that it is (12). Trimethyl phosphite did not react with (1) over 6 d in acetonitrile. Since the same products are isolated, at least in some cases, in methanol and acetonitrile then similar reaction pathways may be followed in both solvents (although the reactions of chloromethyl complexes in methanol can be more complicated due to the formation of methoxymethyl complexes). In acetonitrile, less nucleophilic ligands tend to give cationic ylide complexes whereas more nucleophilic ligands give $[Fe(cp)-(CO)L_2]^+$ species. Initial reaction of a ligand, L, with complex (1) may involve nucleophilic attack at the carbon atom of the M'-CH₂Cl group to give $[Fe(cp)(CH_2L)]^+$ by a S_N2 reaction analogous to the quaternisation of tertiary phosphines by alkyl halides.¹³ Alternatively, this reaction could involve the intermediacy of the carbene cation [Fe(cp)(CO)₂(CH₂)]⁺, a methylene species which has previously been proposed as a reaction intermediate and recently characterised in the case of the substituted derivative [Fe(cp)(Ph₂PCH₂CH₂PPh₂)(CH₂)]+.14 Others have found that reactions of some [M'=CHR]+ complexes (where R = H or Me) with PR'₃ ligands give complexes of the type [M'-CHRPR'3]+.15-17 Since it appears that [Fe(cp)(CO)2-(CH₂L)]⁺ may be converted into [Fe(cp)(CO)L₂]⁺ (at least where $L = PMe_2Ph$) and no evidence in any of the reactions was obtained for a species of type [Fe(cp)(CO)L(CH2L)]+, then a possible sequence of reactions leading to the disubstituted product may involve migration of L from carbon to iron by a 1,2 shift, followed by substitution of CH₂ by L, *i.e.* [(OC)M'-CH₂L]+ $\frac{-CO}{}$ [LM'=CH₂]+ $\frac{L}{}$ [M'L₂]+ (where M' = metal and other ligands). The migration of a tertiary phosphine ligand from carbon to a metal in an [M'-CR₂-PR'₃] type of complex has been observed previously. 16,18,19 Alternatively, the ligand L may displace the ylide followed by CO substitution, i.e. $[(OC)M'-CH_2L]^+ \xrightarrow{L} [(OC)M'-L]^+$ $\xrightarrow{L} [M'L_2]^+$. No products of the type $[Fe(cp)(CO)_2L]^+$ were observed in any of the reactions, however the phosphonium cation $[PMeE_1Ph]^+$, isolated in the reaction of (1) with PEt_2 -Ph, may result from protonation of the displaced ylide CH_2 = PEt_2Ph . Reactions of Some Chloromethyl Complexes of Ru, Mo, and W with PPh₃.—In contrast to the reaction of (1) with PPh₃. $[Ru(cp)(CO)_2(CH_2CI)]$ gave only $[Ru(cp)(CO)_2(CH_2OMe)]^{-1}$ after heating in methanol under reflux with PPh3 for 5 d. The reaction of [W(cp)(CO)₃(CH₂Cl)] with PPh₃ on heating in methanol under reflux for 4 h gave the cationic ylide complex [W(cp)(CO)₃(CH₂PPh₃)]⁺ isolated as the Cl⁻ salt in a crude yield of 80%; this complex was obtained as a yellow, air-stable crystalline solid. This cationic complex, isolated as the BPh₄salt (13), was also obtained (20% yield) from the reaction of [W(cp)(CO)₃(CH₂Cl)] with PPh₃ in acetonitrile at room temperature in the dark for 34 d; see Table 3 for characterisation data for complexes of W and Mo. Different types of products were identified from the reaction of [Mo(cp)(CO)₃-(CH₂Cl)] with PPh₃. Thus, the reaction of [Mo(cp)(CO)₃-(CH₂Cl)] with PPh₃ in acetonitrile for 28 d at room tempera- Table 3. Data for some products of the reactions of chloromethyl and methoxymethyl complexes of Mo, W, and Mn with PPh₃ | Compound | M.p. | S(CO) 411 | 111 31 6/6/ | | |---|------------------------|--|---|--| | • | $(\theta_c/^{\circ}C)$ | $\tilde{v}(CO)^{a}/cm^{-1}$ | 1 H N.m.r. b ($\delta/p.p.m.$) | Analysis ^c | | (13) [W(cp)(CO) ₃ (CH ₂ PPh ₃)]BPh ₄ | 192—198 | 2 036s, 1 952 (sh),
1 933s | ⁴ 1.81 [d, 2 H, ² J(PH) 15.5],
5.25 (s, 5 H), 6.93, 7.53 (m, 35 H) | C 65.3
(65.95)
H 4.85
(4.55) | | (13a) [W(cp)(CO) ₃ (CH ₂ PPh ₃)]Cl | 173—180 | 2 030s, 1 940 (sh),
1 926s | 2.80 [d, 2 H, ² J(PH) 16.0], 5.98 (s, 5 H), 7.62, 7.90 (m, 15 H) | C 48.6
(50.3)
H 3.4
(3.45)
Cl 5.7
(5.5) | | (14) [Mo(cp)(CO) ₂ (PPh ₃)(COCH ₂ OMe)] | 118—119 | 1 938m, 1 857vs,
1 627m | 3.34 (s, 3 H), 4.24 (s, 2 H), 5.02 (s, 5 H), 7.46 (m, 15 H) | C 60.55
(60.9)
H 4.8
(4.55) | | (16) [Mn(CO) ₃ (PPh ₃) ₂ Cl] | 136—180 (decomp.) | 2 038w, 1 950vs,
1 917m | | | | (17) cis-[Mn(CO)₄(PPh₃)(COCH₂OMe)] | 104—106 | 2 070m, 2 040w,
1 965s, 1 933m,
1 640m | 3.26 (s, 3 H), 3.70 (s, 2 H), 7.46 (m, 15 H) | C 60.15
(59.8)
H 4.05
(4.0) | | (18) cis-[Mn(CO) ₄ (PPh ₃)(CH ₂ OMe)] | 90—92 | 2 062m, 1 982 (sh),
1 967vs, 1 936s | ^d 3.07 (s, 3 H), 3.63 [d, 2 H, ³ J(PH) 6.8], 7.45 (m, 15 H) | C 60.8
(60.75)
H 4.3
(4.25) | | (19) trans-[Mn(CO) ₃ (PPh ₃) ₂ (CH ₂ OMe)] | 160—163 | 2 010w, 1 921s,
1 885m | 2.52 (s, 3 H), 3.13 [t, 2 H, ³ J(PH) 7.5], 7.39, 7.65 (m, 30 H) | C 70.8
(70.7)
H 5.25
(5.0) | ^a Measured in CH_2Cl_2 . ^b Measured in $CDCl_3$ except where otherwise stated; s = singlet, d = doublet, t = triplet, and m = multiplet; J values in Hz. ^c Calculated values in parentheses. ^d Measured in CD_2Cl_2 . ture in the dark gave [Mo(cp)(CO)₂(PPh₃)Cl] (15) in 71% yield. If the same reactants were heated under reflux in methanol, then three products were identified depending on the reaction time. Thus after 30 min the main product isolated was [Mo(cp)(CO)₂(PPh₃)(COCH₂OMe)] (14). This product is presumably formed by the reaction of [Mo(cp)(CO)₃(CH₂-OMe)] with PPh₃; in a separate experiment, we have shown (by i.r. monitoring) that methanol reacts with [Mo(cp)(CO)₃-(CH₂Cl)] to give [Mo(cp)(CO)₃(CH₂OMe)]. With longer reaction times, [Mo(cp)(CO)₃(CH₂Cl)] and PPh₃ in methanol gave mainly [Mo(cp)(CO)₂(PPh₃)Cl] with some [Mo(cp)(CO)-(PPh₃)₂Cl]. The reluctance of [Mo(cp)(CO)₃(CH₂Cl)] to undergo carbonyl insertion has previously been noted, thus no reaction was found to occur between this chloromethyl complex and cyclohexyl isocyanide.20 It is interesting to note that the reaction of [Mo(cp)(CO)₃Me] with triphenylphosphine gives both [Mo(cp)(CO)₂(PPh₃)Me] and [Mo(cp)(CO)₂-(PPh₃)(COMe)] in tetrahydrofuran or hexane solvents.² From the intensities of the v(CO) bands in the i.r. spectra, complex (14) can be assigned the *trans* isomer and (15) the *cis* isomer.²² Reactions of Some Chloromethyl and Methoxymethyl Complexes of Mn and Re with PPh₃.—The product of the reaction of [Mn(CO)₅(CH₂Cl)] with PPh₃ in methanol or acetonitrile at room temperature in the dark was [Mn(CO)₃-(PPh₃)₂Cl] (16),²³ which we also obtained from the reaction of [Mn(CO)₅Cl] with PPh₃ in acetonitrile at room temperature. The reaction of [Mn(CO)₅(CH₂Cl)] with PPh₃ probably goes via initial formation of [Mn(CO)₄(PPh₃)Cl] which then under the reaction conditions gives the disubstituted product. In contrast, [Re(CO)₅(CH₂Cl)] did not react with PPh₃ in acetonitrile under similar conditions. $$Ph_{3}P \xrightarrow{CO} PPh_{3} OC \xrightarrow{Mn} PPh_{3} OC \xrightarrow{Mn} PPh_{3} CO OCH_{2}OMe$$ $$OC OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OCH_{2}OC$$ The reaction of [Mn(CO)₅(CH₂OMe)] with PPh₃ in acetonitrile at room temperature for 5 d in the dark gave *cis*-[Mn(CO)₄(PPh₃)(COCH₂OMe)] (17). The *cis* configuration was assigned on the basis of four ν(CO) bands in the i.r. spectrum; see Table 3 for characterisation data for manganese complexes. It is interesting to note that the reaction of [Mn-(CO)₅Me] with PPh₃ in thf gives *cis*-[Mn(CO)₄(PPh₃)(COMe)] in 72% yield after stirring for several hours.²⁴ In contrast, [Re(CO)₅(CH₂OMe)] did not react with PPh₃ under similar conditions. Reaction of [Mn(CO)₅(CH₂OMe)] with PPh₃ (1:1 molar ratio of reactants) in methanol under reflux gave *cis*-[Mn-(CO)₄(PPh₃)(CH₂OMe)] (18) in 74% yield. When an excess of PPh₃ was used, then (18) was formed initially but longer reaction times resulted in formation of trans-[Mn(CO)₃-(PPh₃)₂(CH₂OMe)] (19) in ca. 25% yield with (18) still the major product of the reaction. The trans configuration for (19) is assigned on the basis of three v(CO) bands in the i.r. spectrum and a 1:2:1 triplet seen in the ¹H n.m.r. spectrum for the CH₂ protons of the methoxymethyl group. # **Conclusions** From this study we can make certain observations and generalisations. (i) Reactions of PR₃ ligands with the [M'-CH₂OMe] complexes are similar to those of the analogous $[M'-CH_3]$ complexes in that $[M'(PR_3)(CH_2OMe)]$ or [M'(PR₃)(COCH₂OMe)] complexes are formed although the reactions of the methoxymethyl complexes are slower. (ii) Complexes of the type $[M'-CH_2X]$ (X = Cl or OMe) where M is a first-row transition-series metal appear to be more reactive towards PPh₃ than where M is a second- or third-row transition metal. (iii) Complexes [M'-CH₂Cl] show different reaction pathways to [M'-CH₃] on reaction with PR₃ ligands and in no case did we observe simple CO substitution by PR₃, or carbonyl-insertion products. (iv) Two types of products seem to be formed initially in reactions of [M'-CH₂Cl] complexes with ligands L, viz. [M'(L)Cl] or [M'-CH₂L]⁺. These products may be rationalised on the basis of initial chlorine migration from the carbon of the CH₂Cl group. There are two possible cases to be considered. (a) Where a CO ligand can readily dissociate to generate a co-ordinatively unsaturated species then a 1,2 shift of chlorine (an α-chlorine transfer) can occur from carbon to the metal; substitution of the CH₂ group could then lead to the product as in Scheme 1. Other Scheme 1. examples of 1,2 shifts of halogen from carbon to metal have been reported.^{7,25-27} (b) Where a CO ligand is not readily lost, then migration of chloride outside the co-ordination sphere of the metal could occur followed by nucleophilic attack at the carbon of the cationic carbene complex (Scheme 2). In the $$M'-CH_2CI \longrightarrow M'=CH_2$$ $\downarrow CO$ $\downarrow CO$ $\downarrow CO$ $\downarrow CO$ Scheme 2. absence of a ligand L, nucleophilic attack of chloride at the metal could occur with displacement of a CH₂ group as has been found in some reactions of [Fe(cp)(CO)₂(CH₂Cl)] ²⁸ and [Fe(cp)(CO)(PPh₃)(CH₂Cl)]. The 1,2 chlorine shift may go via a three-centre transition state (see below) as has been proposed for other 1,2 shifts from carbon to metals (and the reverse reaction, a 1,2 shift from metal to carbon), e.g. decomposition of halogenoalkyl compounds of mercury, 29 the 1,2 hydrogen shift in cyclopentadienyltungsten methyl complexes, 16 and the carbonyl-insertion reaction. The generation of a co-ordinatively unsaturated species has been suggested as an important step in providing a low energy pathway for the β -hydride transfer reaction for transition-metal alkyl complexes. 30,31 On the basis of the pathways suggested above, the formation of *cis*-[Pt(PPh₃)₂(CH₂PPh₃)Cl]I from the reaction of *cis*-[Pt(PPh₃)₂(CH₂Cl)I] with PPh₃⁷ may be suggested to go *via* the carbene intermediate [Pt(PPh₃)₂(CH₂)Cl]⁺I⁻. A possible scheme for the reaction of [M'(L)(CH₂X)] complexes with ligands L' may be written showing the two pathways (Scheme 3). $$M'-CH_2X \longrightarrow M'=CH_2 \xrightarrow{L'} M'-L'$$ $$M'-CH_2X \downarrow \qquad \qquad X$$ $$M'=CH_2 \downarrow^+ X^- \xrightarrow{L'} M'-CH_2L' \downarrow^+ X^-$$ Scheme 3. We are at present investigating other examples of these types of reactions and attempting to obtain more information on their mechanisms. ## **Experimental** All reactions were performed under nitrogen using standard Schlenk-tube techniques. The following methoxymethyl and chloromethyl complexes were prepared by reported methods: $[Fe(cp)(CO)_2(CH_2X)]$ (X = Cl or OMe),³² $[M(cp)(CO)_3$ - (CH_2X)] (M = Mo or W; X = Cl or OMe), ^{32,33} and [Mn-(CO)₅(CH₂OMe)].³⁴ Tertiary phosphines (Strem Chemicals Inc. and BDH Chemicals Ltd.) and AsPh₃ (Merck) were used without further purification; PMe3 was synthesised by the method of Mann and Wells.35 Microanalyses were performed by the microanalytical laboratories at the University of Cape Town or by F. and E. Pascher, Bonn, Germany. Infrared spectra were recorded on a Perkin-Elmer 180 spectrophotometer and ¹H n.m.r. spectra on a Varian XL100 or a Bruker WH 90 spectrometer using tetramethylsilane as internal reference. Melting points were obtained on a Kofler hot-stage microscope and are uncorrected. Reactions of [Fe(cp)(CO)₂(CH₂Cl)] (1) with PPh₃, PMePh₂, PMe₂Ph, PEtPh₂, PEt₂Ph, and AsPh₃ in Methanol; Synthesis of Compounds (2)-(7).-General procedure. Compound (1) was heated under reflux in methanol (10 cm³) with the ligand (slight excess of 1 mol). For reaction times, see Table 1. Monitoring the reaction by i.r. spectroscopy in the v(CO)region showed that, irrespective of the ligand, (1) was in equilibrium with [Fe(cp)(CO)₂(CH₂OMe)] (8). This was followed by the appearance of bands due to the respective products. When the reaction had gone to completion, as judged by the i.r. spectra, the yellow reaction solution was cooled and the product precipitated by addition of a solution of an excess of NaBPh4 in methanol. These precipitates were recrystallised from acetone-diethyl ether or dichloromethane-diethyl ether to give the products (2)—(7) as yellow, air-stable crystalline solids. For yields and characterisation data for the complexes see Table 1. Reaction of [Fe(cp)(CO)₂(CH₂OMe)] (8) with [PPh₃H]I.— The salt [PPh₃H]I (0.67 mmol) (synthesised from PPh₃ and HI in hexane) was added to a solution of (8) (0.056 mmol) in methanol (8 cm³). The reaction mixture was allowed to stand for 7 d. Periodic monitoring by i.r. spectroscopy showed that the v(CO) bands of (8) diminished fairly rapidly to give new bands at 2 025 and 1 972 cm⁻¹ (CH₂Cl₂ solution). This new species was in turn partially converted into a new product (shoulders appeared on the bands at 2 025 and 1 972 cm⁻¹). Orange crystals formed, which were separated from the mother-liquor and identified as [Fe(cp)(CO)₂(CH₂PPh₃)]I (17%). Treatment of the mother-liquor with NaBPh₄ gave [Fe(cp)(CO)₂(CH₂PPh₃)]BPh₄ (2) (16%). In another experiment, complex (8) was heated under reflux with an excess of [PPh₃H]I in methanol for 1 h. Addition of NaBPh₄ to the reaction mixture gave (2) (75%). Reaction of [Fe(cp)(CO)₂(CH₂Cl)] (1) with PPh₃, PMePh₂, PMe₂Ph, PMe₃, and PEtPh₂ in Acetonitrile; Synthesis of Compounds (2)-(4) and (9)-(12).-General procedure. A solution of compound (1) in acetonitrile (10 cm³) was reacted with the tertiary phosphine ligand (≥2 mol) at room temperature in the dark. The course of the reaction was monitored by i.r. spectroscopy in the v(CO) region. In all cases except the reaction with PPh3, the reaction mixture became deep red and v(CO) bands of $[{Fe(cp)(CO)_2}_2]$ were observed in the i.r. spectra as well as bands due to products. The solvent was removed under reduced pressure, the residue dissolved in methanol, and a methanol solution of an excess of NaBPh₄ was immediately added. The resulting air-stable, yellow precipitate was filtered off and recrystallised. Data for compounds not listed in Table 1 appear in Table 2. The following compounds were also obtained from the reaction of (1) with the appropriate ligand in acetonitrile (reaction time, yields, and other departures from general procedure noted in parentheses): [Fe(cp)(CO)₂(CH₂PPh₃)]BPh₄ (2) (2 d, crude yield 52%, 1 mol equivalent PPh₃); [Fe(cp)(CO)₂(CH₂PMePh₂)]BPh₄ (3) (5 d, 33%); a mixture of [Fe(cp)(CO)₂(CH₂PMe₂Ph)]BPh₄ (4) and [Fe(cp)(CO)(PMe₂Ph)₂]BPh₄ (9) separated by fractional recrystallisations [17.5 h, 1 mol equivalent PMe₂Ph, products identified by i.r. spectroscopy in v(CO) region and ¹H n.m.r. spectra]. Preparation of [Fe(cp)(CO)₂(CH₂PPh₃)]PF₆ (2b). A solution of complex (1) (0.67 g, 2.96 mmol) and PPh₃ (0.77 g, 2.94 mmol) in acetonitrile (10 cm³) was allowed to stand at room temperature in the dark for 42 h. The solvent was removed under reduced pressure and the resulting yellow oil dissolved in methanol (5 cm³). Addition of a solution of [NBuⁿ₄]PF₆ (1.11 g, 2.94 mmol) in methanol (15 cm³) caused precipitation of a yellow crystalline solid. Recrystallisation from dichloromethane–hexane gave the product as yellow platelets. For yield and characterisation data see Table 2; the equivalent conductance for a ca. 10^{-3} mol dm⁻³ solution (C₆H₅NO₂) was $31.7 \Omega^{-1}$ cm² mol⁻¹. Reaction of (1) with PEt₂Ph in acetonitrile. A solution of complex (1) (0.341 g, 1.51 mmol) in acetonitrile (8 cm³) was treated with PEt₂Ph (0.583 g, 3.51 mmol) and the mixture allowed to stand for 3 d in the dark. The red solution was evaporated to dryness and the residue dissolved in methanol. Addition of an excess of NaBPh₄ in methanol gave a mixture of yellow platelets and white needles. This mixture was dissolved in acetone and light petroleum (b.p. 60—80 °C) added slowly. On cooling, white needles (0.30 g, 40%) were deposited and identified as [PMeEt₂Ph]BPh₄ (see Table 2). Further addition of light petroleum gave yellow platelets (0.17 g). This product could not be completely separated from the white needles but was identified as [Fe(cp)(CO)(PEt₂Ph)₂]BPh₄ (11) on the basis of data given in Table 2. Reactions of [W(cp)(CO)₃(CH₂Cl)] with PPh₃.—In acetonitrile: synthesis of compound (13). A solution containing [W(cp)(CO)₃(CH₂Cl)] (0.346 g, 0.90 mmol) and PPh₃ (0.276 g, 1.05 mmol) in acetonitrile (10 cm³) was allowed to stand in the dark at room temperature for 34 d. The solvent was removed from the orange-red solution under reduced pressure. The residue was dissolved in methanol, filtered, and an excess of a solution of NaBPh₄ in methanol was added, when yellow needles of [W(cp)(CO)₃(CH₂PPh₃)]BPh₄ (13) (0.170 g, 20%) precipitated (see Table 3 for characterisation data). In methanol. A solution containing [W(cp)(CO)₃(CH₂Cl)] (0.197 g, 0.515 mmol) and PPh₃ (0.162 g, 0.618 mmol) dissolved in methanol was refluxed for 3.25 h. The solvent was removed under reduced pressure and the resulting residue solidified on addition of hexane. This solid (0.274 g) was filtered off and washed with hexane then recrystallised from dichloromethane-hexane to give yellow needles of [W(cp)-(CO)₃(CH₂PPh₃)]Cl (13a) (0.117 g, 35%) (see Table 3 for characterisation data). This formulation of this product was confirmed by its reaction with NaBPh₄ which gave a product with identical colour, m.p., and i.r. and ¹H n.m.r. spectra to (13). Reactions of $[Mo(cp)(CO)_3(CH_2Cl)]$ with PPh₃.—In acetonitrile. A solution containing $[Mo(cp)(CO)_3(CH_2Cl)]$ (0.400 g, 1.36 mmol) and PPh₃ (0.373 g, 1.42 mmol) dissolved in acetonitrile (5 cm³) was allowed to stand in the dark at room temperature for 28 d. The orange crystalline solid (0.496 g, 71%) which precipitated was filtered off and washed with acetonitrile (2 × 2 cm³) and hexane (10 cm³). Recrystallisation of this solid from dichloromethane-hexane gave orangered prisms, m.p. 178—192 °C; v(CO) (CH₂Cl₂) 1 971vs and 1 883m cm⁻¹. The i.r. and ¹H n.m.r. spectra of this product were identical to those of a sample of $[Mo(cp)(CO)_2(PPh_3)Cl]$ (15) prepared from $[Mo(cp)(CO)_3(Cl]$ and PPh_3 .^{36,37} In methanol. A solution containing [Mo(cp)(CO)₃(CH₂Cl)] (0.165 g, 0.56 mmol) and PPh₃ (0.176 g, 0.67 mmol) dissolved in methanol (15 cm³) was heated under reflux for 30 min. The solvent was removed under reduced pressure to give an orange solid which was washed with hexane then recrystallised from benzene-hexane to give orange microcrystals of [Mo(cp)(CO)₂(PPh₃)(COCH₂OMe)] (14) (0.16 g, 52%) (for characterisation data see Table 3). In a separate experiment [Mo(cp)(CO)₃(CH₂Cl)] was allowed to stand in methanol solution for 2 h. After this time the solvent was removed under reduced pressure and an i.r. spectrum of the residue showed v(CO) at 2 026s, 1 950s, and 1 933s cm⁻¹ (cyclohexane) identical to the v(CO) i.r. spectrum of [Mo(cp)(CO)₃(CH₂OMe)]. In another experiment [Mo(cp)(CO)₃(CH₂Cl)] (0.184 g, 0.63 mmol) and PPh₃ (0.197 g, 0.75 mmol) as a solution in methanol (15 cm³) were heated under reflux for 4 h. The solution was cooled to -10 °C when orange-red crystals (0.138 g) precipitated. These were shown to be mainly [Mo(cp)(CO)₂-(PPh₃)Cl] but with some [Mo(cp)(CO)(PPh₃)₂Cl] and [Mo-(cp)(CO)₂(PPh₃)(COCH₂OMe)] by comparison of i.r. and ¹H n.m.r. spectra with those of authentic samples.^{36,37} Reaction of [Mn(CO)₅(CH₂Cl)] with PPh₃.— A solution of [Mn(CO)₅(CH₂Cl)]¹ (0.106 g, 0.44 mmol) and PPh₃ (0.291 g, 1.10 mmol) dissolved in acetonitrile (4 cm³) was allowed to stand at room temperature in the dark for 7 d. The yellow needles which formed were filtered off and washed with acetonitrile and hexane to give the product (0.144 g, 47%), m.p. 136—180 °C (decomp.). This had an i.r. spectrum, m.p., and colour identical to those of a sample of [Mn(CO)₃(PPh₃)₂-Cl] ²³ (16) prepared from the reaction of [Mn(CO)₅Cl] and PPh₃ in acetonitrile at room temperature in the dark for 5 d. In a separate experiment, a solution of [Mn(CO)₅(CH₂Cl)] (0.186 g, 0.76 mmol) and PPh₃ (0.207 g, 0.79 mmol) in methanol (10 cm³) was allowed to stand in the dark at room temperature for 6 d. The yellow precipitate (0.090 g, 33% based on PPh₃) which formed had an identical i.r. spectrum to that shown by $[Mn(CO)_3(PPh_3)_2Cl]$ (16). Reaction of [Mn(CO)₅(CH₂OMe)] with PPh₃.—The complex [Mn(CO)₅(CH₂OMe)] (0.140 g, 0.58 mmol) was allowed to stand in acetonitrile (4 cm³) with PPh₃ (0.150 g, 0.56 mmol) for 5 d at room temperature in the dark. The solvent was removed under reduced pressure and the resulting yellow oil washed with hexane to give cis-[Mn(CO)4(PPh3)(COCH2-OMe)] (17) as yellow microcrystals (0.090 g, 30%) (see Table 3 for characterisation data). In a separate experiment, a solution containing [Mn(CO)₅-(CH₂OMe)] (0.320 g, 1.33 mmol) and PPh₃ (0.356 g, 1.36 mmol) dissolved in methanol (10 cm³) was heated under reflux for 50 min. The solvent was removed under reduced pressure to give a yellow oil which was then dissolved in hexane, filtered, and cooled to -10 °C when cis-[Mn(CO)₄-(PPh₃)(CH₂OMe)] (18) precipitated as clusters of yellow needles (0.470 g, 74%). In another experiment, [Mn(CO)₅(CH₂OMe)] (0.550 g, 2.28 mmol) and PPh₃ (1.38 g, 5.27 mmol) as a solution in methanol were heated under reflux for 5 h. The reaction mixture was cooled and the precipitate was filtered off to give $trans-[Mn(CO)_3(PPh_3)_2(CH_2OMe)]$ (19) (0.420 g, 26%). The product was then purified by two recrystallisations from benzene-hexane. After filtering off the precipitate of (19), the solvent was removed under reduced pressure from the filtrate. This residue was dissolved in hexane and cooled to -10 °C to give pale yellow crystals (0.825 g) which contained (18) as the only metal carbonyl compound, but contaminated with triphenylphosphine. ### Acknowledgements We thank the Council for Scientific and Industrial Research, the University of Cape Town Research Committee, and the African Explosives and Chemical Industries Ltd. for support. # References - 1 Part 2, J. R. Moss and S. Pelling, J. Organomet. Chem., 1982, - 2 See, for example, D. Seyferth and S. B. Andrews, J. Organomet. Chem., 1971, 30, 151 and other papers in this series. - 3 H. Werner, R. Feser, W. Paul, and L. Hofmann, J. Organomet. Chem., 1981, 219, C29 and refs. therein. - 4 N. J. Kermode, M. F. Lappert, B. W. Skelton, A. H. White, and J. Holton, J. Chem. Soc., Chem. Commun., 1981, 698. - 5 C. Botha, J. R. Moss, and S. Pelling, J. Organomet. Chem., 1981, 220, C21. - 6 N. J. Kermode, M. F. Lappert, B. W. Skelton, A. H. White, - and J. Holton, J. Organomet, Chem., 1982, 228, C71 and refs. therein. - 7 C. Engelter, J. R. Moss, M. L. Niven, L. R. Nassimbeni, and G. Reid, J. Organomet. Chem., 1982, 232, C78. - 8 F. Calderazzo, Angew. Chem., Int. Ed. Engl., 1977, 16, 299; E. J. Kuhlmann and J. J. Alexander, Coord. Chem. Rev., 1980, **33**, 195. - 9 D. L. Reger and E. C. Culbertson, J. Organomet. Chem., 1977, 131, 297. - 10 T. C. Flood, F. J. Di Santi, and D. L. Miles, Inorg. Chem., 1976, 15, 1910. - 11 T. Bodnar, G. Coman, S. La Croce, C. Lambert, K. Menard, and A. Cutler, J. Am. Chem. Soc., 1981, 103, 2471. - 12 P. M. Treichel and D. A. Komar, J. Organomet. Chem., 1981, 206, 77, - 13 J. Emsley and D. Hall, 'The Chemistry of Phosphorus,' Harper and Row, London, 1976, p. 113. - 14 M. Brookhart, J. R. Tucker, T. C. Flood, and J. Jensen, J. Am. Chem. Soc., 1980, 102, 1203 and refs. therein. - 15 W. Tam, G-Y. Lin, W-K. Wong, W. A. Kiel, V. K. Wong, and J. A. Gladysz, J. Am. Chem. Soc., 1982, 104, 141. - 16 N. J. Cooper and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1979, 1121. - 17 T. Bodnar and A. R. Cutler, J. Organomet. Chem., 1981, 213, - 18 H. Fischer, E. O. Fischer, and F. R. Kreissl, J. Organomet. Chem., 1974, 64, C41. - 19 M. Canestrari and M. L. H. Green, J. Chem. Soc., Chem. Commun., 1979, 913. - 20 Y. Yamamoto and H. Yamazaki, J. Organomet. Chem., 1970, 24, 717. - 21 K. W. Barnett and P. M. Treichel, *Inorg. Chem.*, 1967, 6, 294. 22 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 4th edn., Wiley, New York, 1980, p. 1074. - 23 E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1501. - 24 R. J. Mawby, F. Basolo, and R. G. Pearson, J. Am. Chem. Soc., 1964, 86, 3994. - 25 G. R. Clark, K. Marsden, W. R. Roper, and L. J. Wright, J. Am. Chem. Soc., 1980, 102, 1206. - 26 E. O. Fischer, W. Kleine, and F. R. Kreissl, J. Organomet. Chem., 1976, 107, C23. - 27 R. Feser and H. Werner, Angew. Chem., Int. Ed. Engl., 1980, 19, 940, - 28 P. W. Jolly and R. Pettit, J. Am. Chem. Soc., 1966, 88, 5044. - 29 D. Seyferth, Acc. Chem. Res., 1972, 5, 65. - 30 Ref. 22, p. 1119. - 31 D. L. Reger and E. C. Culbertson, J. Am. Chem. Soc., 1976, **98**, 2789. - 32 M. L. H. Green, M. Ishaq, and R. N. Whiteley, J. Chem. Soc. A, 1967, 1508. - 33 R. B. King and D. M. Braitsch, J. Organomet. Chem., 1973. - 34 J. N. Cawse, R. A. Fiato, and R. L. Pruett, J. Organomet. Chem., 1979, 172, 405. - 35 F. G. Mann and A. F. Wells, J. Chem. Soc., 1938, 702. - 36 C. White and R. J. Mawby, *Inorg. Chim. Acta*, 1970, 4, 261. - 37 R. J. Haines, R. S. Nyholm, and M. H. B. Stiddard, J. Chem. Soc. A, 1967, 94. Received 14th September 1982; Paper 2/1578