Synthetic and Mechanistic Studies of Electrophilic Attack by the Cations $[Fe(CO)_3(1-5-\eta-dienyl)]^+$ (dienyl = C_6H_7 or 2-MeOC₆H₆) on Aryltrimethyl-silanes and -stannanes Glyn R. John, Leon A. P. Kane-Maguire,* and Timothy I. Odiaka Chemistry Department, University College, P.O. Box 78, Cardiff CF1 1XL Colin Eaborn * School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ Synthetic and kinetic studies are reported for the reactions of the organometallic cations $[Fe(CO)_3(1-5-\eta-dienyl)]^+$ (I) (dienyl = C_6H_7) and (III) (dienyl = 2-MeOC₆H₆) with a wide range of aryltrimethyl-silanes and -stannanes of the type XC₆H₄MMe₃ (M = Si or Sn). Less extensive studies with related substrates (M = Pb or Ge), and with 2-trimethylsilyl-furan or -thiophen and allyltrimethylstannane, are also described. These provide novel routes to a variety of diene-substituted arenes and heterocycles, including the only current path to such derivatives of the less activated arenes XC_6H_5 (X = MeO, MeS, Me, F, Cl, Br, or H). The general rate law, rate = k[Fe][$XC_6H_4MMe_3$], is rationalised in terms of electrophilic attack by cations (I) and (III) on the substrates XC6H4MMe3. Similarly, with 2-trimethylsilylfuran the rate = κ [Fe][2-Me₃SiC₄H₃O]. Linear free energy relationships reveal close similarities with related protiodemetallations. Rate data for the reactions of [Fe(CO)₃(1—5-η-C₆H₇)]⁺ with $XC_6H_4SnMe_3$ in CH_3CN are best fitted (r = 0.98) by the Yukawa-Tsuno equation, $\log (k_x/k_H) = \rho[\sigma + 0.4(\sigma^+ - \sigma)]$, with a ρ value of -2.7. As expected, rates vary with the nature of the metal M in the order Pb \gg Sn \gg Ge > Si. In general, the substrates XC₆H₄MMe₃ are considerably more reactive towards cations (I) than are the corresponding compounds XC₆H₅. The only exceptions are the species 4-Me₂NC₆H₄MMe₃ (M = Si or Sn), which exhibit reactivities similar to Me₂NC₆H₅. Organometallic cations such as $[Fe(CO)_3(1-5-\eta-C_6H_7)]^+$ (I) have been shown ^{1,2} to act as electrophiles towards a variety of activated aromatic substrates, providing novel synthetic routes to substituted arenes and heterocyclic molecules. However, cation (I) was found to be not sufficiently electrophilic to attack anisole, alkylbenzenes, or benzene itself. In attempting to extend the synthetic applications of such processes, it occurred to us that diene-substituted derivatives of the less activated arenes might be synthesised by using the reaction between (I) and the substrates $XC_6H_4MMe_3$ (M = Si or Sn). These aryltrimethyl-silanes and -stannanes are known ³ to be much more reactive towards electrophiles than the corresponding XC_6H_5 compounds. We have found that the BF₄ salt of the cation 4 (I) does indeed react readily with a range of substrates $XC_6H_4MMe_3$ according to equation (1) (M = Si, X = 4-MeO, 4-Me₂N; M = Sn, X = H, 4-MeO, 4-Me₂N, 4-Me, 4-SMe, 4-F, 4-Br, 4-Cl, 3-F, or 3-CF₃; M = Ge, X = 4-MeO; M = Pb, X = H).† A preliminary account has appeared.⁴ Related processes also occur between cation (I) and 2-trimethylsilyl-furan, 2-trimethylsilylthiophen, and CH_2 =CHCH₂SnMe₃. Detailed kinetic studies of reactions (1) in CH₃NO₂ and CH₃CN are reported, together with more limited investigations of related processes with the cation $[Fe(CO)_3(1-5-\eta-2-MeOC_6H_6)]^+$ (III). These studies throw considerable light on the mechanisms of these novel processes, and show them to be similar to other 'demetallation' reactions involving more normal electrophiles such as acids, halogens, acetylating agents, and sulphonating species (see ref. 3). $$\begin{bmatrix} (CO)_3 \text{Fe} & OMe \end{bmatrix}^+ & \begin{bmatrix} CH_2 = CHCH_2 & (IY) \end{bmatrix}$$ # Experimental Materials.—The BF₄ salts of (I) and (III) were prepared and purified by published procedures.⁵ The substrates XC_6H_4 -MMe₃ (M = Si, Ge, Sn, or Pb) and related heterocyclic derivatives were synthesised as previously described.^{6,7} Liquid substrates were generally distilled before use and their purity was checked by ¹H n.m.r. spectroscopy. The solvents nitromethane and acetonitrile (B.D.H.) were distilled in bulk and stored over molecular sieves (size 4 Å) under dinitrogen. Immediately before preparation of the solutions, the solvents were further deoxygenated by passing a stream of dinitrogen through for 20 min. Reaction of the Cation (I) with 4-Me₂NC₆H₄SnMe₃.—The BF₄⁻ salt of (I) (0.090 g, 0.29 mmol) and (4-dimethylaminophenyl)trimethylstannane (0.080 g, 0.28 mmol) were dissolved in acetone (25 cm³) at room temperature, and kept under dinitrogen for 2 h. The mixture was then evaporated to dryness and the product extracted with pentane from any unchanged dienyl salt. The yellow oily material was dissolved in [†] For simplicity, reactions (1)—(3) have been formulated as giving the species Me_3MBF_4 . These products have not been identified in the present work, but it is well known that, for M = Si, the tetrafluoroborate, if formed, rapidly breaks down to Me_3SiF and BF_3 . a minimal volume of acetone and passed down an alumina (type H) column. Evaporation gave a cream-coloured solid, which was recrystallised from acetone-water to give the product tricarbonyl[5-(4-dimethylaminophenyl)cyclohexa-1,3-diene]iron (II; $X=4-Me_2N$) as a cream powder (0.04 g, 40%), m.p. 116—117 °C (Found: C, 59.9; H, 5.0; N, 4.2. $C_{17}H_{17}FeNO_3$ requires C, 60.2; H, 5.0; N, 4.1%); v_{CO} (Nujol) 2 045s and 1 965s cm⁻¹; m/z (electron impact) 339 ([M]+), 311 ([M-CO]+), 283 ([M-2CO]+), 255 ([M-3CO]+), and 253 ([$M-3CO-H_2$]+); τ (CD₃COCD₃) 3.00 (2 H, d, aromatic), 3.35 (2 H, d, aromatic), 4.35 (2 H, overlapping, H² and H³), 6.30 (1 H, m, H⁵'), 6.76 (2 H, overlapping, H¹ and H⁴), 7.14 (6 H, s, CH₃), 7.45 (1 H, m, H⁶'), and 7.70 (1 H, m, H⁶). Reaction of the Cation (I) with 4-Me₂NC₆H₄SiMe₃.—The BF₄⁻ salt of (I) (0.090 g, 0.29 mmol) and (4-dimethylaminophenyl)trimethylsilane (0.055 g, 0.29 mmol) were dissolved in acetonitrile (25 cm³) at 45 °C and kept under dinitrogen for several hours until the i.r. spectrum indicated completion of the reaction. Similar work-up and recrystallisation to that already described gave the product (II; $X = Me_2N$) as a cream powder (0.04 g, 40%), m.p. 116—118 °C (Found: C, 60.4; H, 5.2; N, 3.9. Calc. for C₁₇H₁₇FeNO₃: C, 60.2; H, 5.0; N, 4.1%), identical (i.r., ¹H n.m.r., and electron impact mass spectra) with the product from the reaction with 4-Me₂NC₆H₄-SnMe₃. Reaction of the Cation (I) with 4-MeOC₆H₄SnMe₃.—The BF₄⁻ salt of (I) (0.18 g, 0.58 mmol) and (4-methoxyphenyl)-trimethylstannane (0.25 g, 1.4 mmol) were dissolved in nitromethane (25 cm³) at 45 °C and kept for several days under dinitrogen. At this stage the i.r. spectrum indicated the reaction to be complete. Evaporation gave a thick, yellow oil, which yielded a clear oil upon treatment with diethyl etherwater. Further treatment, with light petroleum (b.p. 40—60 °C) gave tricarbonyl[5-(4-methoxyphenyl)cyclohexa-1,3-diene]iron (II; X = MeO) as an off-white solid (0.10 g, 53%), m.p. 50.5 °C (Found: C, 58.7; H, 4.4. C₁₆H₁₄FeO₄ requires C, 58.9; H, 4.3%); v_{CO} (film) 2 045s and 1 965s cm⁻¹; m/z (field desorption) 326 ([M]⁺). Reaction of the Cation (I) with $CH_2=CHCH_2SnMe_3$.—The BF₄⁻ salt of (I) (0.17 g, 0.55 mmol) and allyltrimethylstannane (0.10 g, 0.50 mmol) were kept in nitromethane (25 cm³) at 45 °C under dinitrogen until the i.r. spectrum showed the reaction to be complete. Evaporation and extraction of the residue with pentane gave a solution which upon evaporation yielded (5-allylcyclohexa-1,3-diene)tricarbonyliron (IV) as a clear oil (0.08 g, 56%) (Found: C, 55.0; H, 4.3. $C_{12}H_{12}FeO_3$ requires C, 55.4; H, 4.6%); v_{CO} (film) 2 045s and 1 965s cm⁻¹; m/z (field desorption) 520; τ (CD₃COCD₃) 4.48 (2 H, overlapping H² and H³), 4.9—5.15 (3 H, overlapping, allyl $CH_2=CH$), 6.65—7.05 (3 H, overlapping, H¹, H⁴, and H⁵), 7.5—7.9 (2 H, overlapping, 2 H⁶), and 8.05 (2 H, allyl CH_2). In situ Investigation of the Reaction of the Cation (1) with other Species $XC_6H_4MMe_3$ and Related Substrates.—In each of the other processes (1) investigated, v_{CO} bands characteristic of the expected neutral tricarbonyl(substituted diene)iron products (II) were observed to grow at ca. 2 045 and 1 965 cm⁻¹. Similar i.r. spectra were noted for the products from the related reactions of (I) with 2-trimethylsilyl-furan or -thiophen. In all cases the reactions proceeded to completion as shown by the complete disappearance of the original dienyl v_{CO} bands at 2 110 and 2 065 cm⁻¹. Spectroscopic Studies.—¹H N.m.r. (90 MHz) spectra were recorded for solutions in (CD₃)₂CO with a Perkin-Elmer R32 spectrophotometer. I.r. spectra were recorded with a Perkin-Elmer 257 spectrophotometer and matched 0.5-mm NaCl solution cells. Kinetic Studies.—All the reactions (1) were studied in the dark under dinitrogen by using an i.r. sampling technique which has been previously described. The disappearance of the highest frequency band of the initial dienyl salts {[Fe] = $(5-6.5) \times 10^{-3}$ mol dm⁻³} at 2 110 cm⁻¹ was monitored. The majority of the kinetic runs were carried out under pseudo-first-order conditions employing a large excess of $XC_6H_4MMe_3$. Pseudo-first-order rate constants were calculated from the slopes of plots of $\log A_t vs$. time. Such plots were generally linear for at least two half-lives. Duplicate k_{obs} values were determined in several cases, giving a reproducibility of $\pm 5\%$. However, because of the rapidity of the reactions of cations (I) and (III) with $4\text{-Me}_2\text{NC}_6\text{H}_4\text{SnMe}_3$, it was more convenient to study them under equimolar conditions ([Fe] = [4-Me₂NC₆-H₄SnMe₃] = 5.04 or 6.54×10^{-3} mol dm⁻³). In these cases, second-order rate constants, k, were obtained directly from the gradients of plots of x/a(a-x) vs. time (where a= initial concentration of dienyl salt, and x= concentration of product at time t). The plots were linear for 65-80% completion of reaction. Enthalpies of activation were calculated from a least-squares fit to the Arrhenius equation. Errors quoted are the standard errors of estimate derived from the least-squares analyses. Entropies of activation were estimated using the second-order rate constants, k, at 45.0 °C. # **Results and Discussion** Nature of the Reactions.—The nature of processes (1) has been confirmed by the isolation and characterization of products (II; $X = 4\text{-Me}_2\text{N}$ or 4-MeO) from the reactions of cation (I) with $XC_6H_4\text{MMe}_3$ (M = Si or Sn), and by the growth in all cases of two strong product v_{CO} bands at ca. 2 045 and 1 965 cm⁻¹. These latter peaks are characteristic of neutral tricarbonyl(diene)iron compounds. All the reactions proceed to completion, as shown by the complete disappearance of the original dienyl salt v_{CO} bands at 2 110 and 2 065 cm⁻¹. The 1H n.m.r. spectra of the products (II) are fully consistent with neutral tricarbonyl(substituted 1,3-diene)iron species. In particular, the 1H n.m.r. spectrum of (II; $X = \text{Me}_2N$) is identical with that reported 9 for this same compound produced via electrophilic attack by (I) upon NN-dimethylaniline. The aromatic regions of the spectra of the products (II) confirm that in both cases the tricarbonyl(diene)iron substituent is attached para to the group X. Thus, as found in earlier synthetic studies with substrates $XC_6H_4MMe_3$, 3 ready cleavage of the aryl-MMe $_3$ bonds leads to only one product isomer. A similar regioselectivity has been assumed for each of the other reactions (1) investigated here. At low emitter currents, the field desorption (f.d.) mass spectra of products (II) exhibited only single strong peaks corresponding to the molecular ions (at m/z 339 and 326, respectively). As in f.d. mass spectral studies 9,10 of other tricarbonyl(π -hydrocarbon)metal complexes, no stepwise loss of carbonyl ligands is observed. In contrast, the electron impact mass spectrum of (II; $X = 4\text{-Me}_2N$) shows only a weak molecular ion peak at m/z 339 and extensive fragmentation. Significantly, the fragmentation pattern is typical of exoisomers, exhibiting only weak $[M - \text{CO}]^+$, $[M - 2\text{CO}]^+$, and $[M - 3\text{CO}]^+$ peaks, but an intense base peak at m/z 253 corresponding to $[M - 3\text{CO} - \text{H}_2]^+$. By analogy, exoaddition of each of the other $XC_6H_4MMe_3$ species to cations Table 1. Kinetic results for reactions of cations $[Fe(CO)_3(1-5-\eta-dienyl)]^+$ with substrates $XC_6H_4SnMe_3$; $[Fe] = 6.54 \times 10^{-3}$ mol dm⁻³ | | | | 10[XC ₆ H ₄ SnMe ₃]/ | | $10^5 k/dm^3$ | |--|---------------------------------|-------------|--|-------------------------------|-----------------------------------| | X | Solvent | Temp. (°C) | mol dm ⁻³ | $10^5 k_{ m obs}/{ m s}^{-1}$ | mol ⁻¹ s ⁻¹ | | $Dienyl = C_6H_7$ | | | | | | | 4-Me₂N | CH ₃ NO ₂ | 25.0 | 0.0504 a | | 1 530 | | | | 35.0 | 0.0504 a | | 4 210 | | | | 40.0 | 0.0504 ^a | | 5 930 | | | | 45.0 | 0.0504 a | | 10 000 | | | | 50.0 | 0.0504 a | | 15 300 | | | CH_3CN | 45.0 | 0.0654 | | 3 400 | | 4-MeO | CH ₃ NO ₂ | 45.0 | 1.00 | 1.77 ₎ | | | | | 45.0 | 1.04 | 1.84 | | | | | 45.0 | 2.50 | 4.34 > | 17.3(0.4) ^b | | | | 45.0 | 5.00 | 8.71 | | | | | 45.0 | 7.50 | ل 13.0 | | | | CH ₃ CN | 45.0 | 1.04 | 0.680 | 6.60 | | 4-Me | CH₃CN | 45.0 | 1.00 | 0.221 | 2.21 | | 4-MeS | CH ₃ CN | 45.0 | 1.00 | 0.167 | 1.67 | | 4-F | CH ₃ CN | 45.0 | 5.00 | 0.218 | 0.435 | | Н | CH ₃ CN | 45.0 | 5.00 | 0.194 | 0.388 | | | CH ₃ NO ₂ | 45.0 | 5.00 | 0.407 | 0.814 | | 4-Br | CH ₃ CN | 45.0 | 5.00 | 0.150 | 0.300 | | 4-Cl | CH ₃ CN | 45.0 | 5.00 | 0.149 | 0.298 | | 3-F | CH ₃ CN | 45.0 | 5.00 | 0.113 | 0.226 | | 3-CF ₃ | CH ₃ CN | 45.0 | 5.00 | 0.050 | 0.100 | | Dienyl = 2 -MeOC ₆ H ₆ | J | | | | | | 4-Me ₂ N | CH ₃ NO ₂ | 45.0 | 0.0654 | | 608 | | g [T]-1 - F OA 10"31 -1 | =3 b t 3 t 1 | . 4 . 1 . 1 | 64 44: | (4), seeles in home | dente de the standard | $^{^{}a}$ [Fe] = 5.04 \times 10⁻³ mol dm⁻³. b b Value calculated by a least-squares fit to equation (4); value in brackets is the standard error of estimate. Table 2. Kinetic results for reactions of cations [Fe(CO)₃(1-5- η -dienyl)]⁺ with substrates XC₀H₄SiMe₃; [Fe] = 6.54 × 10⁻³ mol dm⁻³ | | | | [XC ₆ H ₄ SiMe ₃]/ | | 10 ⁵ k/dm ³ | |------------------------|---------------------------------|------------|--|---------------------------------|-----------------------------------| | X | Solvent | Temp. (°C) | mol dm ⁻³ | $10^5 k_{\rm obs}/{\rm s}^{-1}$ | $mol^{-1} s^{-1}$ | | $Dienyl = C_6H_7$ | | | | | | | 4-Me ₂ N | CH ₃ NO ₂ | 25.0 | 0.050 | 24.5 | 490 | | _ | | 30.0 | 0.050 | 44.3 | 886 | | | | 35.0 | 0.10 | 146 | 1 460 | | | | 40.0 | 0.050 | 103 | 2 060 | | | | 45.0 | 0.050 | 171 | 3 420 | | | CH₃CN | 20.0 | 0.104 | 7.80 | 75 | | | | 25.0 | 0.104 | 11.3 | 109 | | | | 30.0 | 0.104 | 20.0 | 192 | | | | 35.0 | 0.104 | 28.6 | 275 | | | | 40.0 | 0.104 | 40.4 | 383 | | | | 45.0 | 0.104 | 60.5 | 584 | | 4-MeO | CH₃NO₂ | 45.0 | 1.50 | 0.634 | 0.422 | | | CH₃CN | 45.0 | 1.00 | 0.107 | 0.107 | | $Dienyl = 2-MeOC_6H_6$ | | | | | | | 4-Me₂N | CH ₃ NO ₂ | 45.0 | 0.11 | 19.4) | | | - | - 3 - | 45.0 | 0.25 | 50.6 | 108(6) * | | | | 45.0 | 0.50 | 91.6 | 185(6) * | | | | 45.0 | 0.80 | 149 | | ^{*} k Value calculated by a least squares fit to equation (4); value in brackets is the standard error of estimate. (I) and (III) is assumed in reactions (I). The absence of spectroscopic or kinetic evidence for intermediates (see later) further supports direct addition of $XC_6H_4MMe_3$ to the dienyl rings of cations (I) and (III). Processes analogous to (1) were also found when the cation (I) was treated with 2-trimethylsilyl-furan or -thiophen [equation (2); Z = O or S] or allyltrimethylstannane [equation (3)]. Product (IV) from reaction (3) was isolated in 56% yield and characterised by elemental analysis and its i.r. and ¹H n.m.r. spectra. Formation of the substituted furan and thiophen derivatives (V) in reaction (2) was indicated by the appearance of two intense product v_{CO} bands at ca. 2 050 and 2 070 cm⁻¹ (solvent CH₃CN). Reactions (1)—(3) reveal the wide synthetic potential of employing π -hydrocarbon cations such as (I) as electrophiles towards aryl–MMe₃ and related substrates. Except for 4-Me₂NC₆H₄MMe₃(M = Si or Sn), these substrates are generally much more reactive than analogous aryl–H species towards (I) (see later). They thus provide more convenient routes to a variety of diene-substituted arenes and heterocycles, including the only current path to such derivatives of the less activated arenes XC₆H₅ (X = MeO, MeS, Me, F, Cl, Br, or H). Analogous reactions may be expected to occur with other R¬MMe₃ species readily cleaved by electrophiles, such as those where R is allyl [e.g. equation (3)] or alkynyl. Other cationic π -hydrocarbon metal complexes such as Table 3. Relative rates of attack by $[Fe(CO)_3(1--5-\eta-C_6H_7)]^+$ on $XC_6H_4MMe_3$ (M = Si, Ge, Sn, or Pb) in CH₃CN at 45.0 °C | Substrate | 10 ⁵ k/
dm ³
mol ⁻¹ s ⁻¹ | $k_{ m Sn}/k_{ m Si}$ | $k_{\rm Sn}/k_{\rm S1}$ for ${\rm XC_6H_4MMe_3}$ + ${\rm HClO_4}$ (ref. 20) | |--|--|-----------------------|---| | 4-Me ₂ NC ₆ H ₄ SnMe ₃
4-Me ₂ NC ₆ H ₄ SiMe ₃
4-MeOC ₆ H ₄ SnMe ₃ | 3 400
584
6.60 | 6 (3) a | ca. 20 ^b | | 4-MeOC ₆ H ₄ GeMe ₃
4-MeOC ₆ H ₄ SiMe ₃
C ₆ H ₅ PbMe ₃ | 0.123 °
0.107
358 ^d | 62 (41) ^a | 1.4 × 10 ⁴ | | C ₆ H ₅ SnMe ₃
C ₆ H ₅ SiMe ₃ | 0.388
≪0.01 ° | ≽40 | 3.5×10^5 | ^a Values in brackets are for CH₃NO₂ as solvent. ^b Estimated; see text for details. ^c [Fe] = 6.5×10^{-3} mol dm⁻³, [4-MeOC₆H₄-GeMe₃] = 0.50 mol dm⁻³, $k_{\rm obs} = 6.4 \times 10^{-7}$ s⁻¹. ^d [Fe] = 6.5×10^{-3} mol dm⁻³, [C₆H₃PbMe₃] = 0.20 mol dm⁻³, $k_{\rm obs} = 7.15 \times 10^{-4}$ s⁻¹. ^e No reaction observed with [C₆H₅SiMe₃] = 1.0 mol dm⁻³ after 11 days in either CH₃CN or CH₃NO₂. [Ru(CO)₃(1—5- η -C₆H₇)]⁺, [Cr(CO)₃(η -C₇H₇)]⁺, and the acyclic dienyl [Fe(CO)₃(1—5- η -1-Me-5-PhC₅H₅)]⁺ have also recently been shown ^{12,13} to function as electrophiles in a manner analogous to reactions (1); this emphasises the broad scope of such processes for the synthesis of otherwise inaccessible compounds. These studies will be the subject of subsequent publications. Kinetics and Mechanism.—Kinetic results for the reactions of various substrates $XC_6H_4SnMe_3$ with cations (I) and (III) in CH_3NO_2 and CH_3CN are summarised in Table 1. Analogous results for species $XC_6H_4SiMe_3$ are collected in Table 2, while less extensive data for species $XC_6H_4MMe_3$ (M = Ge or Pb) species are given in Table 3. The second-order rate law (4) Rate = $$k_{obs}$$ [complex] = k [complex][XC₆H₄MMe₃] (4) is confirmed for the reactions of $4\text{-Me}_2NC_6H_4MMe_3$ (M = Si or Sn) with cations (I) and (III) and of $4\text{-MeOC}_6H_4SnMe_3$ Scheme. Figure 1. Plot of log (k_X/k_H) for the reaction of $XC_6H_4SnMe_3$ with $[Fe(CO)_3(1-5-\eta-C_6H_7)]^+$ in CH_3CN (at 45 °C) vs. $log (k_X/k_H)'$ for the protiodemetallation of $XC_6H_4Sn(C_6H_{11})_3$ by $HClO_4$ in aqueous ethanol (at 50 °C): 1, X = 4-Br; 2, X = 4-Cl; 3, X = 4-F; 4, X = H; 5, X = 4-Me; 6, X = 4-MeO; 7, X = 4-Me₂N with (I) in nitromethane as solvent. Not surprisingly, the same rate expression is maintained in acetonitrile [e.g. reaction of $4-Me_2NC_6H_4SnMe_3$ with (I), Table 1]. The second-order rate law (4) is most readily interpreted in terms of electrophilic attack by cations (I) and (III) on the arene ring of the substrates $XC_6H_4MMe_3$ (M = Si or Sn), as depicted in the Scheme. If we assume a steady-state concentration for the Wheland-type σ -complex intermediate (VI), this mechanism leads to the general expression (5), which is Rate = $$\frac{k_1 k_2 [\text{complex}] [\text{XC}_6 \text{H}_4 \text{MMe}_3]}{k_{-1} + k_2}$$ (5) Figure 2. (a) Hammett plot of $\log (k_X/k_H) vs. \sigma$ for the reaction of $XC_6H_4SnMe_3$ with $[Fe(CO)_3(1-5-\eta-C_6H_7)]^+$ in CH_3CN at 45 °C; (b) Yukawa-Tsuno plot of $\log (k_X/k_H) vs. \sigma + 0.4(\sigma^+ - \sigma)$ for the reaction of $XC_6H_4SnMe_3$ with $[Fe(CO)_3(1-5-\eta-C_6H_7)]^+$ in CH_3CN at 45 °C consistent with the observed rate law (4). The rate-determining step is most probably formation of the intermediate (VI), as is believed to be the case in a variety of related demetallation reactions with more conventional electrophiles such as H^+ , e.g. equation (6) (M = Si, Ge, Sn, or Pb).^{3.14} Also sup- $$H^+ + XC_6H_4MR_3 \longrightarrow XC_6H_4H_1 + MR_3^+ \qquad (6)$$ porting a close similarity in mechanism between reactions (1) (M = Sn) and (6) $(M = Sn, R = C_6H_{11})$ is the good linear free energy relationship (correlation coefficient = 0.98) obtained upon plotting $\log (k_{\rm X}/k_{\rm H})$ for reactions (1) (M = Sn) in ${\rm CH_3CN}\ vs.\ \log (k_{\rm X}/k_{\rm H})'$ for the protiodemetallation of ${\rm XC_6H_4-Sn}(C_6H_{11})_3$ by ${\rm HClO_4}$ in aqueous ethanol (Figure 1).¹⁵ One significant difference, however, is that while a 4-F substituent is mildly deactivating in the protiodemetallation process it is slightly activating in reaction (1) (M = Sn). If we assume rate-determining formation of (VI) (i.e. $k_2 \gg k_{-1}, k_1$), the second-order rate constants, k, in Tables 1—3 refer to direct addition (k_1) of the substrates XC_6H_4 -MMe₃ to the dienyl rings of cations (I) and (III). [An alternative one-step mechanism in which (VI) is simply the activated state would also equate the k values with k_1 .] Consistent with such additions are the large negative ΔS^{\ddagger} values estimated for the reactions of 4-Me₂NC₆H₄MMe₃ (M = Si or Sn) with (I) (Table 5). Further support for direct addition is the assignment (see before) of an exo-configuration to the aryl substituent in the product (II; X = 4-Me₂N) obtained from reactions (1) ($X = Me_2N$; M = Si or Sn). Rate constants, k_1 , for the reactions of $XC_6H_4SnMe_3$ with the cation (I) in CH_3CN (Table 1) vary with X in the order: $4-Me_2N \gg 4-MeO > 4-Me > 4-MeS > 4-F \gg H > 4-Cl \sim 4-Br > 3-F > 3-CF_3$. This reactivity order generally follows the predicted substituent effects. The slight activation of the aromatic ring by the 4-F substituent (in contrast to 4-Cl and 4-Br) has precedent in molecular halogenation and detritiation processes. ^{16,17} The somewhat lower activating effect of the 4-MeS substituent as compared with a 4-Me group parallels the behaviour observed in protiodestannylation, but contrasts with protiodesilylation where 4-SMe activates some three times as much as the 4-Me group. ¹⁸ The substrate selectivity of reactions (1) (M = Sn), expressed by the $k(4-Me_2N)/k(4-Br)$ value of 1.1×10^4 , is somewhat lower than that previously found ¹⁵ for the acid cleavage of the related compounds $XC_6H_4Sn(C_6H_{11})_3$ (1.4×10^5). Only limited data are available ¹⁵ on the directly comparable protiodemetallations of substrates $XC_6H_4SnMe_3$, but similar selectivities are evident for reactions (1) (M = Sn) and (6) (M = Sn, R = Me) in view of the very similar k(4-Me)/k(4-Cl) values of 7.4 and 8.9, respectively. However, the implications of such comparisons in terms of intimate mechanism are difficult to assess in view of the different solvents involved. Further insight into the nature of the transition state in processes (1) (M = Sn) comes from a consideration of the Hammett-type plots in Figure 2(a) and (b). While there is a seemingly fair overall correlation between $\log (k_x/k_H)$ and the ordinary Hammett σ-constants as reflected in the correlation coefficient (0.96), the point for X = NMe₂ is badly off the best least-squares line, which, moreover, misses the origin by a substantial amount [Figure 2(a)]. The corresponding plot against σ^+ (not shown) gives a similar overall correlation (r = 0.96), but the points for the 4-Me₂N and 4-MeS substituents lie well off the line, and that for the 4-MeO substituent also deviates substantially. The most satisfactory correlation is obtained by use of a Yukawa-Tsuno plot of log (k_X/k_H) against $[\sigma + r(\sigma^+ - \sigma)]$ with r = 0.4 [correction coefficient 0.98, Figure 2(b)] (though it should be appreciated that the point for 4-Me₂N receives a heavy weighting, and if this point is omitted the correlation coefficient is 0.95). **Table 4.** Kinetic results for reactions of $[Fe(CO)_3(1-5-\eta-C_6H_7)]^+$ with other substrates at 45 °C; $[Fe] = 6.54 \times 10^{-3}$ mol dm⁻³ | | [RSiMe ₃]/ | | $10^{5}k/dm^{3}$ | |---------------------------------|---|---|--| | Solvent | mol dm ⁻³ | $10^5 k_{\rm obs}/{\rm s}^{-1}$ | $mol^{-1} s^{-1}$ | | CH ₃ NO ₂ | 0.10 | 1.10) | | | | 0.25 | 2.49 | | | | 0.50 | 4.64 } | 10.1 (0.4) * | | | 0.80 | 8.39 | ` , | | | 1.00 | 10.0 | | | CH₃CN | 0.52 | 7.23 | 13.9 | | CH ₃ NO ₂ | 1.00 | 0.200 | 0.200 | | CH ₃ CN | 0.52 | 0.100 | 0.193 | | CH ₃ CN | 6.54×10^{-3} | | 17 100 | | | CH ₃ NO ₂ CH ₃ CN CH ₃ NO ₂ CH ₃ CN | Solvent mol dm ⁻³ CH₃NO₂ 0.10 0.25 0.50 0.80 1.00 CH₃CN 0.52 CH₃NO₂ 1.00 CH₃CN 0.52 CH₃CN 0.52 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ^{*} k Value calculated by a least-squares fit to equation (8); value in brackets is the standard error of estimate. Table 5. Relative rate constants for reactions of $[Fe(CO)_3(1-5-\eta-C_6H_7)]^+$ with various substrates in CH₃NO₂ at 45.0 °C | Substrate | $10^5 k/dm^3$ mol ⁻¹ s ⁻¹ | Relative rate a | $\Delta H^{\ddagger}/\mathrm{kJ}\;\mathrm{mol}^{-1}$ | $\Delta S^{\ddagger}/J \text{ K}^{-1} \text{ mol}^{-1}$ | Ref. | |--|---|-----------------|--|---|----------------| | Me ₂ NC ₆ H ₅ | 6 760 | 1 | 53.3(1.3) | -102(4) | 26 | | 4-Me ₂ NC ₆ H ₄ SnMe ₃ | 10 000 | 1.7 | 70.7(1.5) | -43(5) | This
work | | 4-Me ₂ NC ₆ H ₄ SiMe ₃ | 3 420 | 0.56 | 72.3(2.3) ^b | $-46(8)^{b}$ | This | | Furan | 0.64 | 1 | | | work
25 | | 2-Trimethylsilylfuran | 10.2 | 16 | | | This | | Thiophen | 0.028 | 1 | | | work
25 | | 2-Trimethylsilylthiophen | 0.200 | 7 | | | This
work • | ^a k_{Si}/k_H or k_{Sn}/k_H . ^b Corresponding parameters in CH₃CN are: $k = 5.84 \times 10^{-3}$ dm³ mol⁻¹ s⁻¹; $\Delta H^{\ddagger} = 61.4(1.9)$ kJ mol⁻¹; $\Delta S^{\ddagger} = -95(7)$ J K⁻¹ mol⁻¹. The correlation in Figure 2(b) is not surprising in the light of the plot shown in Figure 1, since the rate data for the protiodestannylation also fit the Yukawa-Tsuno equation (7) with r = 0.4.¹⁵ The slope, ρ , of -2.7 calculated for reactions (1) (M = Sn) in CH₃CN is considerably lower than that $$\log (k_{\rm X}/k_{\rm H}) = \rho[\sigma + r(\sigma^+ - \sigma)] \tag{7}$$ reported ¹⁵ for the protiodemetallation of $XC_6H_4Sn(C_6H_{11})_3$ by $HClO_4$ in aqueous ethanol ($\rho=-3.8$). However, it is similar to the ρ value of -2.2 (r=0.4) calculated, albeit from limited data, for the more strictly comparable reactions (6) ($M=Sn,\ R=Me$). This similarity in ρ values between reactions (1) (M=Sn) and (6) ($M=Sn,\ R=Me$) is probably even closer when consideration is taken of the more polar solvent involved in the protiodemetallations. In view of earlier conclusions ^{15,19} regarding reactions (6) (M=Sn), these observations indicate a relatively early transition state for the reactions of cation (I) with $XC_6H_4SnMe_3$, with only moderate carbon–carbon bond formation and positive charge build-up in the transition state. The more limited results in Table 2 show that arylsilicon substrates are generally attacked less readily by cations (I) and (III) than are their tin analogues. Similar behaviour has been reported 20 for the protiodemetallations (6). Also, as noted previously for acid cleavage, the $k_{\rm Sn}/k_{\rm Sl}$ values for reactions (1) are markedly dependent on the substituent X. Table 3 summarises some of these $k_{\rm Sn}/k_{\rm Sl}$ values. They are seen to increase markedly with decreasing reactivity of the substrates $\rm XC_6H_4$ -MMe₃, in accord with the reactivity–selectivity principle. Unfortunately, no direct literature comparisons are available for the protiodemetallations of substrates 4-Me₂NC₆H₄MMe₃ (M = Si or Sn). However, extrapolation of a Yukawa–Tsuno plot for the M = Sn reactions provides a very approximate $k_{\rm Sn}/k_{\rm Sl}$ value of ca. 20 (Table 3). This value thus appears somewhat larger than that of 6 found here for reactions (1) $(X = 4-\text{Me}_2\text{N})$ in CH₃CN. The lower sensitivity of processes (1) to the nature of M is even more striking when X = 4-MeO, in which case $k_{\text{Sn}}/k_{\text{S1}}$ values of 62 and 1.4×10^4 are observed for reactions (1) and (6) (R = Me), respectively. Exact comparisons, however, are complicated by the observed sensitivity of $k_{\text{Sn}}/k_{\text{S1}}$ to changes in solvent. For example, in reactions (1) $(X = 4-\text{Me}_2\text{N})$, $k_{\text{Sn}}/k_{\text{S1}}$ decreases from 6 to 3 upon changing the solvent from CH₃CN to CH₃NO₂ (Table 3). The small $k_{\text{Sn}}/k_{\text{S1}}$ value in CH₃NO₂ is seen from Table 5 to arise from very similar ΔH_1^{\ddagger} and ΔS_1^{\ddagger} values for the silicon and tin reactions. As expected on the basis of the reactivity-selectivity principle, 21 the less reactive arylsilicon substrates in reactions (1) show a greater rate variation with X than do analogous aryltin compounds. For example, the $k(4\text{-Me}_2\text{N})/k(4\text{-Me}O)$ value of 8 100 for the species $XC_6H_4\text{SiMe}_3$ in $CH_3\text{NO}_2$ is to be compared with a value of only 520 for the tin analogues (see Tables 1 and 2). Similar behaviour has been previously observed in the protiodemetallations (6) (M = Si or Sn). 16,22 These differences probably reflect the involvement of a 'later' transition state in reactions (1) (M = Si) than in the related aryltin processes. Limited data for substrates $XC_6H_4MMe_3$ (M=Ge or Pb) are also summarised in Table 3. With X=MeO, the reactivity order $Sn \gg Ge \gg Si$ (62:1.2:1) is observed towards cation (I) in CH_3CN . The k_{Ge}/k_{Si} value of 1.2 is considerably smaller than the corresponding value (15) found 20 for related protiodemetallations. On the other hand the k_{Pb}/k_{Sn} value of 920 observed here for reactions (1) (X=H) (Table 3) is similar to that (ca.600) noted previously 20 for reactions (6) (R=Et, X=H). Overall the results in Table 3 reveal the expected rate trend Pb $\gg Sn \gg Ge > Si$ for processes (1). Changing the solvent from CH₃CN to CH₃NO₂ has only a small effect on the rates of reactions (1). Rate constants in CH₃NO₂ are 2—6 times greater than those in CH₃CN (Tables 1 and 2). In the case of 4-Me₂NC₆H₄SiMe₃, the activation parameters in Table 4 show that this small rate difference (factor of 6) arises from a play-off between enthalpy and entropy effects. Thus, the greater rate in CH₃NO₂, despite a significantly higher ΔH^{\ddagger} value, is due to the much less negative ΔS^{\ddagger} value of -46 J K⁻¹ mol⁻¹. The cation (I) is seen from Tables 1 and 2 to be 16—18 times more electrophilic than (III) towards 4-Me₂NC₆H₄- MMe_3 (M = Sn or Si). This is expected on the basis of the mesomeric influence of the 2-methoxy substituent in [Fe(CO)₃- $(1-5-\eta-2-MeOC_6H_6)$]⁺, which will delocalise electron density on to the dienyl ring of (III).23 A similar lower reactivity of (III) than (I) has been previously observed in other reactions with nucleophiles such as acetylacetone, tertiary phosphines, and pyridines.²⁴ The electrophilicity of the cation (I) may also be compared with that of oxonium ions. Towards the common substrate $C_6H_5SnMe_3$, $HClO_4$ and $[Fe(CO)_3(1-5-\eta-C_6H_7)]$ -BF₄ exhibit second-order rate constants, k, of 5.2×10^{-4} dm³ mol⁻¹ s⁻¹ (50 °C; aqueous ethanol) ¹⁶ and 3.88×10^{-6} dm³ mol⁻¹ s⁻¹ (45 °C; CH₃CN; Table 1), respectively. Allowing for the difference in temperature, (I) is seen to be ca. 100 times less electrophilic than the oxonium ion in ethanolic perchloric acid. On the other hand, examination of data with 4-Me₂NC₆H₄SiMe₃ as a common substrate indicates similar electrophilicities for the oxonium ion and (I). Table 4 summarises kinetic results for the related demetallation processes (2) and (3). The second-order rate law (8) is confirmed for the reaction of 2-trimethylsilylfuran with (I). These reactions may also be interpreted as $S_{\rm E}2$ processes. Rate = $$k_{obs}$$ [complex] = k [complex][2-Me₃SiC₄H₃O] (8) As has been found previously with other electrophiles, the demetallation processes examined here with cation (I) are generally more rapid than analogous deprotonations. This is strikingly illustrated by the failure to observe any reaction between (I) and the substrates XC_6H_5 (X = 4-MeO, 4-Me, or H). Table 5 makes quantitative comparisons where these are possible. Thus, desilylations of 2-trimethylsilyl-furan and -thiophen by (I) are 16 and 7 times more rapid than deprotonations 25 of furan and thiophen, respectively. (Since furan is more reactive than thiophen, one might have expected, contrary to observations, a larger $k_{\rm Si}/k_{\rm H}$ ratio for thiophen than for furan.) The greater reactivity of aryl-MMe₃ (M = Si or Sn) as compared with aryl-H towards electrophiles has been rationalised in terms of stabilization of the incipient Wheland intermediate via electron donation from the MMe. groups.3 The only exceptions to the above generalisation are the reactions of $4\text{-Me}_2\text{NC}_6\text{H}_4\text{MMe}_3$ (M = Si or Sn) with (I). In nitromethane as solvent, the M = Sn substrate is seen (Table 5) to be only 1.7 times as reactive as $\text{Me}_2\text{NC}_6\text{H}_5$, 26 while the M = Si compound is slightly less reactive ($k_{\text{SI}}/k_{\text{H}} = 0.56$). These unusually small differences arise from a play-off between enthalpy and entropy effects. Thus, while the substrates $4\text{-Me}_2\text{NC}_6\text{H}_4\text{MMe}_3$ have unfavourably high enthalpies of activation ($\Delta H^{\ddagger} = 70.7 - 72.3 \text{ kJ mol}^{-1}$) as compared with $\text{Me}_2\text{NC}_6\text{H}_5$ ($\Delta H^{\ddagger} = 53.3 \text{ kJ mol}^{-1}$), this is counterbalanced by their much less negative ΔS^{\ddagger} values (Table 5). This behaviour with the species 4-Me₂NC₆H₄MMe₃ is even more apparent in acetonitrile as solvent, where $k_{\rm Sn}/k_{\rm H}$ and $k_{\rm Sl}/k_{\rm H}$ values of 1.2 and 0.2 are noted for reactions with cation (I). These marked differences as compared with other substrates XC₆H₄MMe₃ may reflect changes in mechanism. It is possible that formation of the Wheland-type intermediate (VI) with the more basic substrates 4-Me₂NC₆H₄MMe₃ is preceded by a pre-equilibrium involving either a π -complex or an intermediate in which the nitrogen atom of the 4-Me₂NC₆-H₄MMe₃ is directly associated with (I) (*via* the dienyl ring, the iron centre, or a CO ligand). However, the above observations are not inconsistent with a common mechanism of the type shown in the Scheme for all substrates $XC_6H_4MMe_3$. Benzene is undoubtedly much less reactive than $C_6H_5MMe_3$ towards electrophiles such as (I) or the oxonium ion. Thus, on the basis of the reactivity-selectivity principle, 21 one would expect a much higher ρ (or ρ^+) value for the XC_6H_5 series than for $XC_6H_4MMe_3$. Consequently, for some value of σ (or σ^+) the Hammett plots must, in principle, cross. This could conceivably account for the unusually low k_{Sn}/k_H and k_{S1}/k_H values for $X = 4-Me_2N$. ## Acknowledgements We thank the S.E.R.C. for a studentship (to G. R. J.) and for financial support (L. A. P. K-M. and C. E.). ### References - 1 C. A. Mansfield and L. A. P. Kane-Maguire, J. Chem. Soc., Dalton Trans., 1977, 574 and refs. therein. - 2 T. I. Odiaka and L. A. P. Kane-Maguire, *Inorg. Chim. Acta*, 1979, 37, 85 and refs. therein. - 3 C. Eaborn, J. Organomet. Chem., 1975, 100, 43 and refs. therein. - 4 G. R. John, L. A. P. Kane-Maguire, and C. Eaborn, J. Chem. Soc., Chem. Commun., 1975, 481. - 5 A. J. Birch, P. E. Cross, J. Lewis, D. A. White, and S. B. Wild, J. Chem. Soc. A, 1968, 332. - 6 C. Eaborn, J. Chem. Soc., 1956, 4858; C. Eaborn and J. A. Sperry, ibid., 1961, 4921. - 7 C. Eaborn and K. C. Pande, J. Chem. Soc., 1960, 3200; 1961, 3715 and refs. therein. - 8 L. A. P. Kane-Maguire, J. Chem. Soc. A, 1971, 1602. - 9 G. R. John and L. A. P. Kane-Maguire, J. Chem. Soc., Dalton Trans., 1979, 1196. - 10 D. E. Games, A. H. Jackson, L. A. P. Kane-Maguire, and K. Taylor, J. Organomet. Chem., 1975, 88, 345; D. E. Games, J. L. Gower, M. Gower, and L. A. P. Kane-Maguire, ibid., 1980, 193, 229 and refs. therein. - 11 E. G. Bryan, A. L. Burrows, B. F. G. Johnson, J. Lewis, and G. M. Schiavon, J. Organomet. Chem., 1977, 129 C19 and refs. therein; A. Burrows, Ph.D. Thesis, Cambridge University, 1978. - 12 C. Eaborn, G. R. John, L. A. P. Kane-Maguire, and T. I. Odiaka, unpublished work. - 13 C. Eaborn, L. A. P. Kane-Maguire, and P. Powell, unpublished - 14 C. Eaborn and R. W. Bott, in 'Organometallic Compounds of the Group IV Elements,' ed. A. G. MacDiarmid, Dekker, New York, 1968, vol. 1, part 1, p. 407. - 15 C. Eaborn and J. A. Waters, J. Chem. Soc., 1961, 542. - 16 R. O. C. Norman and R. Taylor, 'Electrophilic Substitution in Benzenoid Compounds,' Elsevier, Amsterdam, 1965, ch. 5. - 17 C. Eaborn and R. Taylor, J. Chem. Soc., 1961, 2388. - 18 C. Eaborn and P. M. Jackson, J. Chem. Soc. B, 1969, 21. - 19 Ref. 16, ch. 9. - 20 C. Eaborn and K. C. Pande, J. Chem. Soc., 1960, 1566. - 21 H. C. Brown and K. L. Nelson, J. Am. Chem. Soc., 1953, 75, 6292. - 22 C. Eaborn, J. Chem. Soc., 1956, 4858. - 23 D. W. Clack and L. A. P. Kane-Maguire, unpublished work. - 24 T. I. Odiaka and L. A. P. Kane-Maguire, J. Chem. Soc., Dalton Trans., 1981, 1162 and refs. therein. - 25 G. R. John, C. A. Mansfield, and L. A. P. Kane-Maguire, J. Chem. Soc., Dalton Trans., 1977, 574. - 26 T. I. Odiaka and L. A. P. Kane-Maguire, *Inorg. Chim. Acta*, 1979, 37, 85.