Octahedrally Co-ordinated Zinc and Cadmium Compounds with Five-membered Heterocyclic OS₃N₂ Ligands †

Herbert W. Roesky * and Manfred Thomas

Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

Jan W. Bats and Hartmut Fuess

Institut für Kristallographie und Mineralogie der Universität Frankfurt am Main, Senckenberganlage 30, D-6000 Frankfurt am Main, Federal Republic of Germany

The compounds $[M(OS_3N_2)_6][AsF_6]_2$ (M = Zn or Cd) have been prepared in which the metal atoms are co-ordinated by six five-membered heterocyclic ligands. The molecular and crystal structures were determined by X-ray analysis. The metal is bonded to each ligand *via* the exocyclic oxygen atom, giving a slightly distorted octahedral environment. The S_3N_2 rings have an envelope conformation where the S atom connected to the oxygen is out of the plane formed by the other four atoms. The AsF_6 group is slightly disordered in the cadmium compound, considerably disordered in the zinc compound.

The stereochemistry of Zn^{2+} and Cd^{2+} ions is determined solely by size and by electrostatic and covalent bonding forces, because ligand-field stabilization effects are absent due to their completed d shells. Therefore the co-ordination number of six for Zn^{2+} is rare. We report herein a new class of co-ordination compounds with envelope-shaped heterocyclic OS_3N_2 ligands in which the oxygen is bonded in an exocyclic manner to a sulphur atom. Such a ligand may co-ordinate to the metal via sulphur, nitrogen, or oxygen. The molecular structures of $[M(OS_3N_2)_6][AsF_6]_2$ (M = Zn or Cd) were determined by X-ray diffraction analysis.

Experimental

The reaction of zinc or cadmium metal with excess of arsenic pentafluoride in liquid sulphur dioxide leads to the formation of the adduct of zinc bis[hexafluoroarsenate(v)] or the corresponding cadmium salt with sulphur dioxide [equation (i), M = Zn or Cd].² The content of SO_2 in compound (1)

$$M \pm 3 \text{ AsF}_5 \xrightarrow{SO_2} [M(SO_2)_x][AsF_6]_2 + AsF_3 \qquad (i)$$

varies from x = 2 to 4 depending on the pressure of SO₂. All solvents and apparatus were carefully dried before use. The products were handled under an inert atmosphere of either nitrogen or argon.

Adduct of Zinc Bis[hexafluoroarsenate(v)] or Cadmium Bis[hexafluoroarsenate(v)] with Two Sulphur Dioxide Molecules. —Zinc or cadmium (0.07 mol) was placed in a pressure-flask and at -78 °C AsF₅ (0.22 mol) and SO₂ (15 cm³) were added. The flask was slowly warmed to room temperature, with stirring. Within 12 h a clear, blue solution resulted. After removal of the solvent under vacuum, a nearly white product resulted {Found: F, 39.8; Zn, 11.5. Calc. for [Zn(SO₂)₂]-[AsF₆]₂: F, 39.9; Zn, 11.4. Found: Cd, 20.2; F, 40.1. Calc. for [Cd(SO₂)₂][AsF₆]₂: Cd, 20.5; F, 41.7%}.

Hexakis(1-oxo-1,2,4-trithiadiazole)-zinc and -cadmium Bis[hexafluoroarsenate(v)].—When compound (1) was treated with excess of OS_3N_2 , prepared from $S_3N_2Cl_2$ and formic acid,³ octahedrally co-ordinated zinc or cadmium salts (2) could be isolated [equation (ii)].

Table 1. Crystal data and structure analysis "

	(2a)	(2b)
	$[Zn(OS_3N_2)_6]$ -	$[Cd(OS_3N_2)_6]$ -
	$[AsF_6]_2$	$[AsF_6]_2$
M	1 284.43	1 331.45
a/Å	8.927(14)	9.046(4)
b/Å	10.058(5)	10.237(14)
c/Å	10.925(9)	11.053(5)
α/°	67.06(5)	65.68(5)
β/°	82.88(9)	80.86(4)
γ/°	88.69(7)	87.38(6)
$U/\text{Å}^3$	896(2)	920.7(1.6)
$D_{\rm c}/{\rm g~cm^{-3}}$	2.38	2.40
$\mu(\text{Mo-}K_{\alpha})/\text{cm}^{-1}$	37.6	35.6
Crystal dimensions (mm)	$0.10 \times 0.16 \times 0.22$	$0.20 \times 0.25 \times 0.35$
Total reflections	2 835	3 178
Independent reflections	1 608	2 447
Observed reflections	1 438	2 312
	$[I > 0.3\sigma(I)]$	$[I \geq 0.2\sigma(I)]$
2θ _{max} /°	40	46
R	0.095	0.057
R'	0.078	0.057
S b	2.07	2.22
		-

^a The following are common to both compounds: space group P^{T} ; Z = 1. ^b $[\Sigma w(|F_0| - |F_c|)^2/(NO - NV)]^{-1}$ where NO = number of observations and NV = number of variables.

(1)
$$\pm$$
 6 OS₃N₂ \longrightarrow [M(OS₃N₂)₆][AsF₆]₂ \pm x SO₂ (ii)
(2a; M = Zn)
(2b; M = Cd)

The zinc or cadmium salt (1) (0.003 mol) was cooled to -78 °C in a pressure-flask, then OS_3N_2 (0.02 mol) and SO_2 (15 cm³) were added. The flask was allowed to warm to room temperature and stirred for 16 h. After removal of SO_2 , the dark orange residue was washed with methylene chloride and recrystallized from SO_2 {Found: F, 18.7; N, 13.0; S, 43.6. Calc. for $[Zn(OS_3N_2)_6][AsF_6]_2$: F, 17.8; N, 13.1; S, 44.9. Found: F, 16.0; N, 11.6; S, 39.5. Calc. for $[Cd(OS_3N_2)_6][AsF_6]_2$: F, 17.1; N, 12.6; S, 43.3%}.

Compounds (2a) and (2b) form yellow crystals, which were purified by recrystallization from SO₂ in quantitative yield: (2a), m.p. 110—115 °C; (2b), decomposes at 55 °C.

Crystallography.—Crystals of (2a) and (2b) were sealed in glass capillaries as both compounds were found to decompose

[†] Supplementary data available (No. SUP 23655, 20 pp.): thermal parameters, structure factors. See Notices to Authors No. 7, J. Chem. Soc., Dalton Trans., 1981, Index issue.

Table 2. Positional parameters for compounds (2a) and (2b)

[Zn(OS3N2)6][AsF6]2		$[\operatorname{Cd}(\operatorname{OS}_3\operatorname{N}_2)_6][\operatorname{AsF}_6]_2$				
Atom	x	у	z	x	<i>y</i>	z
Zn, Cd	0.0	0.0	0.0	0.0	0.0	0.0
As	0.287 2(3)	0.293 9(2)	0.355 5(2)	0.282 3(1)	0.303 41(9)	0.354 66(8)
S(1)	0.094 9(6)	0.316 6(5)	0.019 3(4)	0.101 2(2)	$0.314 \ 8(2)$	0.029 6(2)
S(2)	0.255 6(6)	-0.0839(5)	0.187 4(5)	$0.270 \ 6(2)$	-0.0962(2)	$0.183\ 0(2)$
S(3)	0.313 6(6)	0.025 9(5)	-0.2216(4)	0.324 8(2)	$0.026\ 0(2)$	-0.2373(2)
S(4)	0.230 7(6)	-0.1199(5)	-0.3076(5)	0.235 4(3)	-0.1124(2)	-0.3162(2)
S(5)	0.322 8(6)	0.351 3(5)	-0.0897(5)	0.325 8(3)	0.359 9(3)	-0.0879(2)
S(6)	0.107 1(7)	0.430 0(6)	-0.2532(5)	0.108 9(3)	0.430 8(2)	-0.2455(2)
S(7)	0.151 0(9)	-0.1157(6)	0.388 7(5)	0.169 6(4)	-0.1120(3)	0.380 0(2)
S(8)	0.341 0(7)	-0.3274(6)	0.387 3(5)	0.352 0(3)	-0.3322(3)	0.394 0(2)
S(9)	0.337 8(6)	-0.2667(5)	-0.0722(5)	0.337 7(3)	-0.2658(2)	-0.0818(2)
O(1)	0.054(1)	0.159 4(9)	0.062 0(9)	0.071 5(6)	0.160 1(5)	0.074 3(4)
O(2)	0.133(1)	-0.1345(10)	0.131 3(9)	0.149 9(6)	-0.1538(5)	0.140 5(5)
O(3)	0.178(1)	0.071 0(10)	-0.1563(10)	0.194 0(6)	0.075 9(5)	-0.1710(5)
N(1)	0.276(2)	0.401(1)	-0.240(1)	0.279 0(8)	0.405 8(7)	-0.2372(7)
N(2)	0.018(2)	0.405(1)	-0.112(1)	0.022 4(7)	0.402 8(7)	$-0.103\ 3(6)$
N(3)	0.216(2)	-0.272(2)	0.467(2)	0.229 0(11)	-0.2696(9)	0.467 5(7)
N(4)	0.371(2)	-0.205(1)	0.242(1)	0.386 7(8)	-0.2238(8)	0.243 0(7)
N(5)	0.247(2)	-0.270(2)	-0.186(1)	0.247 2(8)	-0.2650(7)	-0.1908(7)
N(6)	0.391(2)	-0.104(1)	-0.1 09 (1)	0.397 4(7)	-0.1088(7)	-0.1245(6)
F(1)	0.453(1)	0.348(2)	0.367(2)	0.443 8(8)	0.369 5(9)	0.356 4(8)
F(2)	0.119(2)	0.245(2)	0.331(2)	0.117 4(9)	0.242 9(10)	0.341 5(8)
F(3) 4	0.354	0.250	0.219	0.337 2(9)	0.299 6(11)	0.209 2(6)
F(4) "	0.228	0.457	0.287	0.211 9(10)	0.459 9(8)	0.292 5(10)
F(5) "	0.207	0.350	0.473	0.353 4(15)	0.144 0(9)	0.420 5(12)
F(6) "	0.332	0.133	0.422	0.227 2(12)	0.296 5(14)	0.501 8(7)
F(3') "	0.398	0.166	0.332			
F(4') b	0.342	0.389	0.193			
F(5') b	0.170	0.416	0.359			
F(6') b	0.229	0.139	0.500			

^a Population 0.66 in (2a). ^b Population 0.34 in (2a).

in the air. Precession photographs showed a triclinic lattice. The cell constants were refined from 25 reflections [23 for (2b)] centred on an Enraf-Nonius CAD4F diffractometer. Data were collected in two hemispheres of reciprocal space for compound (2a) and in one hemisphere for (2b) with monochromatized $Mo-K_x$ radiation. The reflections were found to have exceptionally broad profiles due to the very poor crystal quality. Consequently the reflections were measured with an ω scan with $\Delta \omega = 4^{\circ}$. Three standard reflections were repeatedly measured and showed a gradual intensity decrease of 8% for (2a) and 28% for (2b) due to decay of the crystals. The data were renormalized with respect to the control reflections. No absorption corrections were made. The equivalent reflections were averaged, those with $I > 0.3\sigma(I)$ [(2a)] and $I > 0.2\sigma(I)$ [(2b)] being used in the structure analysis.

The structure of compound (2a) was solved by a combination of Patterson and Fourier techniques. The parameters of Zn, As, and S of (2a) were used as starting values for (2b). Both structures were refined by least-square techniques. They were found to be centrosymmetric with the metal atom at the inversion centre, therefore the space group is $P\bar{1}$.

A difference synthesis showed the AsF_6^- group to be rotationally disordered in (2a). Only two fluorine atoms [the axial atoms F(1) and F(2)] were well resolved, while a smeared ring of density was observed in the equatorial plane in which, only with great difficulty, four local maxima could be observed. Consequently, the AsF_6^- octahedron was believed to be rotationally disordered about the F(1)-As-F(2) axis and was described by a split-atom model. In order to avoid correlation problems, the positions of the split F atoms were not refined. Six localized positions for the F atoms were found in the cadmium compound. The final difference Fourier showed,

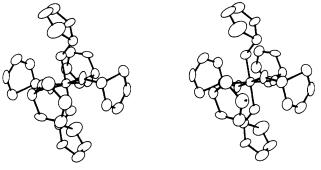


Figure 1. Stereoscopic plot of the structure of compound (2a)

however, two peaks of $1.2 \, e \, Å^{-3}$, due to some disorder, but was otherwise featureless. A difference Fourier for (2a) did not show any peaks exceeding $1.2 \, e \, Å^{-3}$. Details of the crystal data and the structure refinement are given in Table 1. The relatively high R values are a result of the poor crystal quality and of the problem in describing the AsF₆ disorder. The better localization in (2b) is reflected by the lower values of the R factors. Positional parameters are given in Table 2, interatomic angles in Table 3. A stereoscopic view of structure (2a) is shown in Figure 1; Figure 2 gives the numbering scheme and the interatomic distances for both compounds.

Discussion

The metal atoms are octahedrally co-ordinated by six OS_3N_2 groups, which is an exceptional situation for such large ligands. The Zn^-O bonds range from 2.036(8) to 2.093(8) Å.

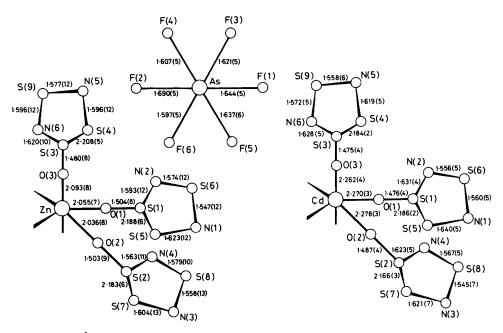


Figure 2. Interatomic distances (Å) in compounds (2a) (left) and (2b) (right). Distances in the AsF₆⁻ group refer to (2b)

Table 3. Bond angles (°) for compounds (2a) and (2b)

O(1)¬M¬O(1) 180.00 180.00 180.00 O(1)¬M¬O(2) 88.2(3), 91.8(3) 84.7(1), 95.3(1) O(1)¬M¬O(3) 90.4(3), 89.6(3) 89.6(1), 90.4(1) O(2)¬M¬O(2) 180.00 180.00 O(2)¬M¬O(3) 93.0(3), 87.0(3) 91.2(1), 88.8(1) O(3)¬M¬O(3) 180.00 180.00 180.00 M¬O(1)¬S(1) 145.8(5) 141.4(2)
O(1)-M-O(2) 88.2(3), 91.8(3) 84.7(1), 95.3(1) O(1)-M-O(3) 90.4(3), 89.6(3) 89.6(1), 90.4(1) O(2)-M-O(2) 180.00 180.00 O(2)-M-O(3) 93.0(3), 87.0(3) 91.2(1), 88.8(1) O(3)-M-O(3) 180.00 180.00 M-O(1)-S(1) 145.8(5) 141.4(2)
O(1)-M-O(3) 90.4(3), 89.6(3) 89.6(1), 90.4(1) O(2)-M-O(2) 180.00 180.00 O(2)-M-O(3) 93.0(3), 87.0(3) 91.2(1), 88.8(1) O(3)-M-O(3) 180.00 180.00 M-O(1)-S(1) 145.8(5) 141.4(2)
O(2)-M-O(2) 180.00 180.00 O(2)-M-O(3) 93.0(3), 87.0(3) 91.2(1), 88.8(1) O(3)-M-O(3) 180.00 180.00 M-O(1)-S(1) 145.8(5) 141.4(2)
O(2)-M-O(3) 93.0(3), 87.0(3) 91.2(1), 88.8(1) O(3)-M-O(3) 180.00 180.00 M-O(1)-S(1) 145.8(5) 141.4(2)
O(3)-M-O(3) 180.00 180.00 M-O(1)-S(1) 145.8(5) 141.4(2)
M-O(1)-S(1) 145.8(5) 141.4(2)
O(1)-S(1)-S(5) 107.0(4) 106.5(2)
O(1)-S(1)-N(2) 108.0(6) 108.7(2)
S(5)-S(1)-N(2) 93.4(5) 92.3(2)
S(1)-S(5)-N(1) 98.1(5) 98.4(2)
S(5)-N(1)-S(6) 115.6(7) 115.5(3)
N(1)-S(6)-N(2) 109.6(7) 109.3(3)
S(6)-N(2)-S(1) 119.1(7) 120.1(3)
M-O(2)-S(2) 124.1(5) 119.8(2)
O(2)- $S(2)$ - $S(7)$ 102.9(4) 102.6(2)
O(2)-S(2)-N(4) 110.9(6) 108.2(3)
S(7)-S(2)-N(4) 92.6(5) 93.4(2)
S(2)-S(7)-N(3) 97.9(5) 97.8(2)
S(7)-N(3)-S(8) 116.9(8) 116.9(4)
N(3)-S(8)-N(4) 106.8(6) 108.7(3)
S(8)-N(4)-S(2) 121.4(8) 119.1(3)
M-O(3)-S(3) 144.7(5) 143.1(2)
O(3)-S(3)-S(4) 106.1(4) 106.0(2)
O(3)-S(3)-N(6) 109.0(5) 109.3(2)
S(4)-S(3)-N(6) 92.9(4) 92.2(2)
S(3)-S(4)-N(5) 98.7(5) 98.6(2)
S(4)-N(5)-S(9) 116.7(7) 116.7(3)
N(5)-S(9)-N(6) 108.6(6) 108.1(3)
S(9)-N(6)-S(3) 119.1(6) 120.2(3)

the Cd-O from 2.262(4) to 2.278(3) Å, and the O-M-O angles range from 87.0(3) to 93.0(3) [(2a)] and 84.7(1) to 95.3(1)° [(2b)]. The deviation from an ideal octahedron is not very large. Distances and angles in the OS_3N_2 groups are rather similar for the six (three for each compound) crystallographically independent groups. The S_3N_2 rings have envelope

conformations. The S atom which is connected to O lies about 0.40 Å out of the plane of the remaining ring atoms. The S-N bond distances have intermediate values between single and double bonds. The S-O distance is considerably longer than in compounds with non-complexed SO groups where values between 1.40 and 1.45 Å were observed previously.^{4,5} This elongation of the S-O bond corresponds to a lowering of the S-O stretching frequency in compound (2a) by 75 cm⁻¹ in comparison to the free ligand (1 125 cm⁻¹), while for (2b) two absorptions at 1 060 and 1 020 cm⁻¹ are observed. The overall geometry of the ligands is similar to that found for the adduct of SnCl₄ and OS₃N₂.⁶

The M(OS₃N₂)₆ unit shows a short intramolecular contact distance of 2.984(9) [(2a)] and 3.038(5) Å [(2b)] between S(2) and O(1). Consequently the M-O(2)-S(2) bond angle is much smaller than the other two M-O-S angles. The F-As-F angles in compound (2b) range from 84.0(3) to 94.9(4)°, indicating an octahedral geometry for AsF₆⁻ which is believed to exist as well in (2a) although the corresponding angles cannot be derived due to the disorder. The average As-F distances are 1.66 [(2a)] and 1.633 Å [(2b)].

Acknowledgements

Support of this work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

- 1 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' Wiley, New York, 1980.
- 2 L. Dannude and P. A. Dean, J. Organomet. Chem., 1979, 168(1), 123.
- 3 H. W. Roesky, W. Schaper, O. Petersen, and T. Müller, *Chem. Ber.*, 1977, 110, 2695.
- 4 J. W. Bats, H. Fuess, M. Diehl, and H. W. Roesky, *Inorg. Chem.*, 1980, 11, 3031.
- 5 J. W. Bats and H. Fuess, Acta Crystallogr., Sect. B, 1979, 35, 692.
- 6 H. W. Roesky, M. Kuhn, and J. W. Bats, *Chem. Ber.*, 1982, 115, 3025