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Electron Spin Resonance Studies of some Bis(cyclopentadienyl)
Complexes of Vanadium(iv) and Niobium(iv)

Allan T. Casey and J. Barrie Raynor

Department of Chemistry, The University, Leicester LET 7RH

40 Complexes of the type [M(n8-CgHs),Lo1"" (M = V or Nb; L, = one bidentate or two unidentate
ligands; n = 1 or 0) have been studied by e.s.r. spectroscopy at room temperature and at 77 K. From the

g and metal hyperfine tensors, the hyperfine parameter P, the spin-polarisation parameter, «, and the

orbital coefficients @ and b were calculated. The unpaired electron is in an orbital of a, symmetry comprising
ad. + bd,._,.. Trends in these parameters are related to the interbond angle L-V-L and to the

relative n-acceptor and n-donor character of L.

A large number of cyclopentadienyl complexes of d* ions have
been synthesised and their e.s.r. spectra recorded and
analysed.!”?? Recently the preparation was reported of a
number of dithiolate complexes of the bis(n3-cyclopent-
adienyl)vanadium(iv) moiety, including a number of dithio-
carbamates, xanthates, and dithiophosphates. Some e.s.r.
spectra were reported along with spin-Hamiltonian par-
ameters based on the assumption of axial symmetry. Subse-
quent crystal structure determinations and e.s.r. spectra
recorded on a more sensitive spectrometer have shown that
such an assumption is not correct.® We here present a re-
examination of the e.s.r. spectra of these compounds together
with results for a number of analogous niobium(1v) complexes.

Experimental
E.s.r. spectra were recorded at X-band on a Bruker ER200D
spectrometer at ambient temperature and at liquid-nitrogen
temperature using a quartz-insertion Dewar. In all cases, the
solvent used was a CH,Cl,~toluene mixture. Some of the
niobium complexes had not been prepared before. They were
prepared by the same method as related dithiophosphates,
dithiocarbamates, and xanthates.’®?® Spectra were simulated
using a computer program based on that described by Evans
et al®

The complex [V(n3-CsHs),Cl,] was obtained from Org-
Met Inc., and used as received; [Nb(n*-CsH;),Cl,] was pre-
pared from [Sn(n-C,H,)y(CsHs)] and NbCl; as described by
Bunker et al?** The vanadium dithiolate complexes were
prepared in an analogous fashion, using a suspension of
[Nb(n%-CsH;),Cl,] in water (for dithiocarbamates and
xanthates) or in the appropriate alcohol for the dithiophos-
phates. The anions PF¢~ or BF,~ were used to precipitate the
complexes.

Results and Discussion

The isotropic spectra of the vanadium complexes exhibited the
expected eight lines (°'V; 7 = }) and of the niobium complexes
the expected 10 lines (**Nb; 7 = 2). In the case of the dithio-
phosphates each of the eight vanadium lines was split by inter-
action of the unpaired electron with the 3'P (I = %) nucleus;
because of greater linewidth the splitting in the niobium case
was only observed for the five low-field lines. Likewise in the
dithioarsenate complex further splitting to *As (I = 3) was
clearly resolved. The anisotropic spectra obtained from frozen
solutions at liquid-nitrogen temperature showed two well
resolved sets of hyperfine features; and a less well resolved
third set whose g value and hyperfine coupling were calculated
from &giso = }(gx + &y + &) and Ao = %‘(Ax + Ay + A,).
For both the niobium and vanadium compounds the g- and
A-tensors are strongly anisotropic. On the other hand, for
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Figure 1. E.s.r. spectra of frozen solutions of [V(n’-CsHj),L,1*
at 77 K (dpph = diphenylpicrylhydrazyl). (a) L, = isobutyl
xanthate, (b) L, = diethyl dithiophosphate, and (¢) L, = dimethyl
dithioarsenate

each complex the hyperfine coupling to phosphorus and
arsenic is isotropic. All g values and metal hyperfine couplings
were corrected for second-order effects. The corrected sets of
parameters obtained are listed in Table 1, along with results
from other workers for related complexes. Typical spectra are
shown in Figure 1.

Before the experimental hyperfine- and g-tensors can be
analysed, the question of whether the principal axes of the
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hyperfine- and g-tensors are coincident must be answered.
This can only be resolved unambiguously from e.s.r. single-
crystal studies on systems where the structure of the iso-
morphous host has been determined. Full studies have only
been carried out on [V(n’-CsH;),Ss]1 and [V(n3-CsH,CH,)Cl;].*
In [V(n’-CsH;),S;5),% the g- and A-tensors were not coincident
but in [V(n’-CsHs),Cl,] they were coincident. Furthermore,
the directions of the A tensors of each were identical, being
directed along (x) the line bisecting the CI-V—Cl or S-V-§
atoms, (») perpendicular to the CI-V—Cl or S-V-S plane, and
(2) perpendicular to the plane bisecting the C1-V—Cl or S-V-S
atoms.’ The non-coincident nature of the g- and A-tensors in
[V(n3-CsHs),Ss] arises because of the lower symmetry com-
pared with [V(n®-CsH;),Cl;] (the CsHs rings are not equiv-
alent and the VS; ring is chair-shaped). The coincidence of the
A tensors for both molecules supports the notion that the
directions of the metal hyperfine tensors are dependent only
upon the unpaired electron distribution and independent of the
type of ligand. In contrast, the g tensor reflects a changing
electron magnetic moment due to changing orbital angular
momentum which in turn is determined by the surrounding
overall electrical charge distribution. Thus the inequivalence
of the two CsH; rings and different bonding between V and Cl
and between V and Ss causes the g tensors to be differently
directed in [V(n°-CsH5),Ss] and [V(n3-CsH;),CL].

Whether coincidence of the g- and A-tensor axes occurs or
not can be determined from powder spectra by simulation of
the spectra.”® Qur spectra could be accurately simulated
assuming coincident g- and 4-axes whereas the relative inten-
sities of some components of the spectra changed consider-
ably when the x and y axes for the g-tensor were rotated
relative to the A-tensor.

The spectral parameters were analysed using the equations
derived from second-order perturbation theory by McGarvey %
and presented in the following format [equations (1)—(6)] by
Evans et al®

Ay = —kP + Plx, — (g0 — £)] (N
Ay = —xP + Ploy, — (go — gy)] (2)
Ay = —xP + Pla, — (g0 — &2)] (3)

— =2 2 2 4 x 3ab (go - &)
%x = T (@* — b9 — 7 = 8bh? N

@+ bx3g—g) @
4 @x3¥—b

) ~ 3% . o
S R "”[' (€0 gz)] :

7 8h?

Ba—bx3Neo -~ g (5)
14 (ax3¥+b

_‘_" 2 2
GRS R

@ x 3 —b) (@< 3% + b) 6

11
3@+ bx3*)go— &)  (@--bx 3F)g — &)
14

Equations (1)—(6) assume that the unpaired electron is in
the same type of orbital as found by Petersen and Dahl ®
for [V(n®-CsH;),Cl,], viz. an orbital of 4, symmetry in which
the metal contribution has the form (7), where a® + b* = 1.
Thus from these seven equations, the best values of a, b, P,

1W0> = a‘dz’> + b|dx’-y‘> @
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Figure 2. Axis notation tor [V(n'-CsHs),L,)"*. The notation in
brackets refers to the transformed axes discussed in the text

Table 2. Relationship between S-chelate ring size and spin on
vanadium, P

Ring size 10*P/cm™!
Planar 6 80
Planar 5 83
Planar 4 83-86
Non-chelate 88-100

and k can be deduced. The hyperfine parameter P = g,g,-
Ye¥a{r>)> which gives direct information about electron de-
localisation and covalency, and the spin-polarisation par-
ameter k relates A, = —KP + (g0 — go)P. The deduced
values of a?, b2, P, and x are given in Table 1.

From the deduced values of a?, b%, and P, we can conclude
that the unpaired electron is largely in a d,: orbital in the axis
scheme shown in Figure 2 as defined for the A-tensor by
Petersen and Dahl.® However, since the C, symmetry axis
bisects the Cl-V—Cl bond, then it may be more logical to
define this as the z-axis. It is thus necessary to compute new
values for ¢ and b appropriate for an axis system transformed
by simple permutation of the axis labels. If x becomes z’, y
becomes x’, and z becomes y’, then the coefficients a” and b’
for the new d,: and d,:_,: orbitals respectively are a’ =
—0.5a + 0.866b and b' = —0.866a — 0.5b.

For all the vanadium complexes, a’? ranges from 0.31 to
0.51 and b"? from 0.69 to 0.49, i.e. an almost equal amount of
d,2and d,:_ . but with d,:_ . predominating. The values of P
are in the range (80—100) x 107 ¢cm™! and may be compared
with the P value, calculated from Clementi wavefunctions
for a V** ion,?” of 172 x 107* cm™. These show that the un-
paired electron is ca. 46—58% localised on the metal. Closer
inspection both of our results and those of others 2:6:8:16 shows
that there is a good correlation between P and both the size
of the chelating organic ring and the nature of the co-ordinat-
ing atom. Thus for sulphur co-ordinating atoms, the larger
the ring size, the smaller is the value of P. This is summarised
in Table 2. The decrease in P is associated with an increase in
S—-V~S bond angle (larger ring size) and is as expected since
greater overlap between the V 4, orbital and the p, orbital of
the S, accompanied by greater delocalisation of the unpaired
electron, is achieved when the S—V—S bond angle is larger.
This is satisfying confirmation of the theoretical prediction by
Lauher and Hoffmann.?® The S-V-S bond angle in [V-
(n3-CsHs),S5] is 89.3°, and cannot be compared with planar
six-membered rings having larger angles because the VS; ring
is puckered.?® The larger value of P for [V(n®-CsHs)(acac)}-
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Figure 3. n-Bonding between a V d.: orbital and Cl r orbitals, The
CI-V~-C! angle, 20, is 87.1° in [V(n>-CsH Me),Cl,]
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Nb** 10n). The two reported tantalum complexes, [Ta-
(n®-CsHs),CL1'" and [Ta(m?®-CsHs)(o-CsHs)] ' are quite
different. They both have a?> = 0.75 and an estimated spin
density on the metal of ca. 73%,. The large increase may
reflect a larger size and less efficient overlap with the Cl atoms.

The species [Ti(n%-CsHs),Cl;]~ has been postulated ' in
irradiated [Ti{(n>-CsH;),Cl,] and has a spin density on Ti of
ca. 55%, compared with 57.5% for the spin density on V in
[V(n®-CsH;s),Cl,]. The smaller value for Ti arises because of
the orbital expansion due to the negative charge and conse-
quent greater delocalisation of the electron. Extended Hiickel
calculations by Lauher and Hoffmann ?® on [M(n’-CsH;),L,]

Tt (acceptor)

Tt (donor)

Figure 4. Orbitals involved in the VL, fragment of [V(n*-CsHs),L,]"*

BF, (acac = acetylacetonale) compared with the thio-
derivative, 96 x 10 and 80 x 10 cm™ respectively,
implies less delocalisation of the unpaired electron onto
smaller p, orbitals on oxygen. The complexes with non-
chelating ligands and those chelates bonding via O or N all
have larger P values, ranging from 88 x 107 to 100 x 107*
cm™!, Since they mostly involve smaller and more ionic atoms,
then less delocalisation is expected.

The absence of ligand hyperfine coupling in [V(n®-CsHs),-
Cl,], at least, is at first surprising since about 40%, of the un-
paired electron is delocalised onto the ligands. Since most of
this unpaired electron is capable of interacting with a pg
orbital on each chlorine, then we have calculated what the
expected hyperfine coupling to Cl might be. Taking the case
of [V(n’-Cs;H,Me),Cl,] in particular, the CI-V-Cl bond
angle, 20, is 87.1°. When the applied magnetic field is along
the z axis, the component of the dipolar coupling in the =
direction to the Cl atom may be calculated by reference to
Figure 3. If 20% of the electron is in the p, orbital on each
35Cl, then the expected anisotropic hyperfine coupling will be
0.2 x 102 X (3cos®® < 1) =11.7G (1 G = 10"* T), where
a value 102 G is the expected anisotropic hyperfine coupling
for an electron entirely in a 3Cl p orbital. Since the line-
widths of the narrowest parallel and narrowest isotropic
features are only 10 and 6 G respectively, it suggests that
delocalisation onto chlorine is less and that there is more de-
localisation onto the CsH;s rings. We are currently investigat-
ing the ENDOR spectra of [V(n*-CsHjs),Cl,] in frozen solution
and find that there are sufficiently large proton couplings
which, if they arise from spin-polarisation mechanisms,
would imply significant spin density on the ring carbon atoms.
The niobium complexes in general behave in a very similar
manner: b’ is slightly larger (from ca. 4 to 6%,) which shows
more dramatically in values of 4> and 5’2 which are more
equal and with a’? sometimes the larger. Spin densities on the
metal are almost the same for the vanadium and the niobium
complexes (using P = ca. 200 x 107* cm™ estimated for the

systems have shown that for c-donor ligands the composition
and energy of the non-bonding a, orbital is quite sensitive to
the ligand interbond angle L-V—L (26) and that the angle 20
decreases as d electrons are added to the metal. In our com-
plexes, there is a  contribution to be considered from L. Two
possibilities exist. If L is a m-acceptor, the ligand n* orbital
is empty and there will be more delocalisation of the electron
from the metal a, orbital as the angle 20 increases (Figure 4).
On the other hand, if L is a n-donor, the ligand = orbital is
full and there is no delocalisation from the metal to ligand
orbital, indeed they will be out of phase. It follows then that
the metal a' electrons will be more localised on a, as 20
increases.

The relative contributions a and b to the V a, (d,: and
d.._,:) orbital vary as the type of ligand varies; a is found to be
larger with those ligands L which are m-acceptors. This is
consistent with the increased overlap of the ligand n-acceptor
orbital with the d.. orbital, thus stabilising it (Figure 4). This
is more dramatically seen in the complexes with the (a) and
(b) groupings shown below, where there is considerable back

- ~
v ﬁ v~ Tl
C Y
(a) (b)

bonding from the r-donor orbitals to the vanadium and
corresponding low values of P.*?
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