Interaction between Uranium Tetrafluoride Oxide and the Pentafluorides of Arsenic, Niobium, Tantalum, and Bismuth †

John H. Holloway * and David Laycock
Department of Chemistry, The University, Leicester LE1 7RH
Roland Bougon

Département de Physico-Chimie, Centre d'Études Nucléaires de Saclay, Gif-sur-Yvette, France

No reaction occurs between UF₄O and AsF₅ but UF₄O·3MF₅ (M = Nb and Ta) and UF₄O·2BiF₅ have been obtained as yellow or orange solids by warming mixtures of UF₄O with excess of the appropriate pentafluoride in anhydrous HF or by combination of the oxide tetrafluoride with excess of the pentafluoride as a melt. The solid adducts have been characterized by their reaction stoicheiometries, chemical analyses, and vibrational spectra. Like UF₄O·2SbF₅, the adducts are fluorine bridged with some ionic character. The thermal decomposition of the adducts results in the production of uranyl species.

Although the adducts $UF_4O \cdot nSbF_5$ (n=2 or 3) are rather easily obtained by dissolution of UF_4O in excess of SbF_5 and subsequent removal of SbF_5 by pumping,^{1,2} related UF_4O -Lewis acid adducts have not been previously obtained. In the present study an estimate of the extent of the donor behaviour of UF_4O has been made by examination of its reactions with a series of Lewis-acid pentafluorides in addition to SbF_5 .

Arsenic pentafluoride was found to be unreactive with UF₄O under the conditions used but the new adducts, UF₄O·3MF₅ (M = Nb and Ta) and UF₄O·2BiF₅, were readily prepared and characterized. Vibrational spectroscopic examination has shown that, like UF₄O·2SbF₅, the adducts are essentially fluorine bridged but possess some ionic character. The thermal decompositions of the new adducts do not yield lower adducts but, instead, uranyl derivatives are formed.

The preparation of $UF_4O \cdot SbF_5$, which necessitates the warming of stoicheiometric quantities of UF_4O and SbF_5 in anhydrous HF and removal of the solvent, has three problems associated with it. The first is that instability of $UF_4O - SbF_5 - HF$ solutions gives rise to UF_2O_2 compounds. This can be minimized by keeping the reaction time to a minimum. The second is the facility with which $UF_4O \cdot 2SbF_5$ is formed and the fact that the small excess of SbF_5 , used to ensure complete reaction of the UF_4O , results in contamination of the product with 1:2 adduct. The third is that, because of the low solubility of UF_4O in HF, traces of unreacted UF_4O always remain. The present study includes an improved method of preparation of $UF_4O \cdot SbF_5$.

Results

Gaseous arsenic pentafluoride does not react with solid UF₄O at temperatures up to 60 °C, nor is there evidence for formation of UF₄O-AsF₅ adducts when large excesses of AsF₅ are added to UF₄O in anhydrous HF between room temperature and 40 °C for periods of up to 12 h. On prolonged exposure, evidence for the formation of uranyl species is observed.

The UF₄O·3MF₅ (M = Nb and Ta) adducts were prepared by shaking UF₄O with a greater than five-fold excess of the appropriate pentafluoride in anhydrous hydrogen fluoride for 1 h at 50—60 °C followed by removal of solvent at room temperature and excess of pentafluoride by sublimation at 40-50 °C.

Owing to the low solubility of the UF₄O in HF, it is difficult to achieve complete reaction and some UF₄O is always present in the final solid residue. This is the case even

when UF₄O-MF₅ mixtures of up to a 1:12 molar ratio are employed. Secondly, the adducts formed, like their SbF₅ analogues, are unstable in anhydrous HF. On standing for periods longer than 1 h the orange colour in the solvent begins to fade and colourless crystals of uranium hexafluoride appear. After 2 h, in addition to UF₆, pale yellow solids containing mainly uranyl species are deposited and the solutions assume a green tinge.

The NbF₅ and TaF₅ adducts seem less stable in anhydrous HF than those of SbF₅. The reaction conditions outlined are optimum ones, giving a minimum of unreacted UF₄O and a minimum of uranyl derivative. Attempts to attain complete reaction by employing longer reaction times or higher temperatures resulted only in the production of higher proportions of uranyl impurity. Attempts to induce complete reaction by the addition of trace quantities of fluorine or antimony pentafluoride were also unsuccessful.

Attempts to prepare lower $UF_4O \cdot nMF_5$ (M = Nb or Ta; n=1 or 2) adducts by the reaction of the appropriate stoicheiometric ratios of UF_4O and MF_5 in anhydrous HF at temperatures up to 80 °C resulted in the production of only those adducts described previously together with unreacted UF_4O and uranyl impurity.

Reaction of UF₄O with a greater than five-fold excess of BiF_5 with shaking in anhydrous HF at 40—50 °C and removal of solvent at room temperature and excess of pentafluoride at 50—60 °C, as in the niobium and tantalum case, yielded UF₄O·2BiF₅.

In contrast to the NbF₅ and TaF₅ cases, the greater reactivity of BiF₅ and the higher solubility of the BiF₅ adduct in anhydrous HF ensured completeness of the reaction, and the greater stability of the adduct is evidenced by the absence of significant uranyl impurity.

Efforts to produce stable UF₄O·3BiF₅ were unsuccessful. Fused mixtures of UF₄O and BiF₅ in a 1:3 ratio exhibited vibrational spectra and X-ray powder diffraction patterns which could be matched with those of UF₄O·2BiF₅ but displayed additional features which were not coincident with those associated with BiF₅. On heating, however, BiF₅ was slowly lost until UF₄O·2BiF₅ remained. In view of the fact that UF₄O·3SbF₅ decomposes on gentle heating to give the more stable 1:2 adduct,² it seems likely that, in the bismuth case, only the 1:2 compound is stable. The fact that the 1:3 mixture showed no X-ray lines coincident with those of BiF₅ may be because of changes due to the BiF₅ molecules being weakly associated.

Gentle warming of UF₄O-MF₅ (M = Nb, Ta, and Bi) mixtures at 50—60 °C under a pressure of argon (ca. 200 mmHg) and subsequent removal of argon and unreacted

[†] Non-S.I. unit employed: mmHg \approx 134 Pa.

Table 1. Vibrational data (1 000-400 cm⁻¹) of the adducts of UF₄O with NbF₅ and TaF₅ compared with those of UF₄O, NbF₅, and TaF₅

UF ₄ O		TaF ₅	NbF ₅		UF ₄ O·3TaF ₅		UF4O·3NbF5	
I.r.ª	Raman b	Raman ^c	I.r.°	Raman	I.r. (982w) ^d	Raman	I.r. (980w) ⁴	Raman
890vs	895vs 889vs 882vs				910ms 903 (sh)	910m	907ms 900 (sh)	906w
	00245	757vvs		766vvs 752w	753ms 748 (sh)	756ms 742m	744 (sh) 736 (sh)	767vs 755mw 741 w
		727m	734vs	716vs	725 (sh) 705 (sh)	726w 702m	708s	719s
		699ms	688s	668w	,	686mw 677w	692s 672 (sh)	698vw 670w
660vs	665s	671w 646mw	661m	656m	663vs,br 642vs 585m 571 (sh)	661 w 633 w 581 w,br	662vs 610mw 580mw 568m	659mw
550s	550m		£1.4mm		, ,		552mw	
466m,br			514ms 479w		506m,br 470m,br	480w,br	488m,br 432w,br	

^a This work. ^b Ref. 2. ^c Ref. 17. ^d Band due to uranyl impurity.

pentafluoride under vacuum also yields the adducts $UF_4O \cdot 3MF_5$ (M = Nb and Ta) and $UF_4O \cdot 2BiF_5$.

X-Ray powder diffraction patterns of UF₄O·3NbF₅ and UF₄O·3TaF₅ resemble each other as do those of UF₄O·2BiF₅ and UF₄O·2SbF₅, however, neither pair is isostructural.

Infrared and Raman spectral data of powdered UF₄O· 3NbF₅ and UF₄O·3TaF₅ are recorded in Table 1. The similarity of the vibrational spectra of the new adducts to those of UF₄O·3SbF₅² is not surprising. Since the pentafluorides themselves are all tetramers in the solid state 4 their adducts with UF4O might reasonably be expected to have related structures. In all three cases the U-O vibrational stretching frequency indicates that the oxygen is non-bridging and the shift to higher frequency, relative to that of UF4O itself, is indicative of some ionic contribution to the bonding (cf. UF₄O·2SbF₅²). It is clear, however, that the adducts are not salts since the spectra do not contain bands which match those of $[MF_6]^-$ in $Cs[MF_6]^{5,6}$ or $[M_2F_{11}]^-$ in $Cs[M_2F_{11}]^7$ (M = Nb and Ta). In fact, the spectra are too complex to be definitively assigned but bands in the 760—600 cm⁻¹ region can be attributed to terminal M-F stretching, in the 600-500 cm⁻¹ region to terminal M-F and U-F stretching, and in the 500-400 cm⁻¹ region to M...F...U and M...F...M bridge stretching. It seems likely, therefore, that the structures of these adducts will be related to that of UF₂O₂·3SbF₅ which contains SbF₆ units and Sb₂F₁₁ sidechains fluorine bridged to the uranium atoms.8 The ionic contribution to the bonding from [UF₂O][MF₆][M₂F₁₁] will be only small.

The vibrational data for UF₄O·2BiF₅ are compared with those of UF₄O and BiF₅ in Table 2. In common with UF₄O· $n\text{SbF}_5$ (n=1-3) and UF₄O·3MF₅ (M = Nb and Ta), v(U=O) in UF₄O·2BiF₅ is shifted to a higher frequency than that of UF₄O. Comparison of the spectra with those of Cs[BiF₆] and other [BiF₆] salts involving the cations O₂+,^{10,11} NO+,¹² NF₄+,¹³ H₃O+,¹⁴ and [ClOF₂]+ ¹⁵ shows that frequencies characteristic of the hexafluorobismuthate ion are not observed. The possible occurrence of [Bi₂F₁₁]- in the adduct cannot be so readily discounted. Previous reports of Raman spectra of the [Bi₂F₁₁]- ion have been published,^{11,16}

but the spectra in one 11 are so dominated by the presence of bands due to [BiF₆] that they are not useful for comparison. Those of $[XeF_3][Bi_2F_{11}]$, $[XeF][Bi_2F_{11}]$, and $Cs[Bi_2F_{11}]$ ¹⁶ are more complex than that of UF₄O·2BiF₅ and exhibit additional bands in the 560—530 cm⁻¹ region which may be the frequency range of the $Bi \cdots F \cdots Bi$ bridge in the $[Bi_2F_{11}]^-$ ion. However, the complex NF₄·BiF₆·nBiF₅ $(n = 0.6-1.5)^{13}$ exhibits a Raman band at 452 cm⁻¹ and the i.r. spectrum of pure solid BiF₅ contains a weak broad band at 450 cm⁻¹, ¹⁷ both of which have been correlated with fluorine bridging or the presence of polyanionic species. 13,17 Since UF₄O·2BiF₅ exhibits broad bands at 477 and 430 cm⁻¹, which might therefore be reasonably attributed to bridging fluorine, and a number of bands in the terminal Bi-F stretching region, the adduct probably contains pentafluoride-like polymeric units. Because of the close chemical similarity between SbF₅ and BiF₅ it seems likely that the structure will be closely related to that of the fluorine-bridged adduct UF₄O·2SbF₅.²

Although complete reaction of UF₄O-BiF₅ mixtures of stoicheiometries between 1:1 and 1:2 in anhydrous HF could not be achieved, the i.r. spectra of the products exhibited bands which might be attributed to UF₄O·BiF₅. A typical spectrum showed peaks at 904m, (896mw), (892mw), 673mw (661m), 616s, 585 (sh), 568s, (552 sh), 510vw,br, and 485w,br cm⁻¹ (peaks in parentheses are close to those associated with UF₄O). The position of v(U=O) at 904 cm⁻¹ is different from that observed for UF₄O·2BiF₅ but is at approximately the frequency expected for UF₄O·BiF₅ and correlates well with the value of 907 cm⁻¹ found for UF₄O·SbF₅² (SbF₅ being more acidic than BiF₅).

The niobium and tantalum adducts are almost insoluble in HF, SO₂ClF, CF₂ClCCl₂F, CF₂Cl₂, and WF₆, and react with CH₃CN. As a result, ¹⁹F n.m.r. spectra were not obtained. However, at 90 °C in molten TaF₅ the UF₄O·3TaF₅ adduct exhibited a broad band at *ca.* 90 p.p.m. upfield of CFCl₃ due to exchange.

The heating of UF₄O·3MF₅ (M = Nb and Ta) to 100 °C, under dynamic vacuum in glass sublimation tubes, results in their complete decomposition. The UF₄O·2BiF₅ adduct, like UF₄O·2SbF₅, is thermally much more stable. Decomposition

Table 2. Vibrational data (1 000-200 cm⁻¹) of the adduct UF₄O·2BiF₅ compared with those of pure UF₄O and BiF₅

UF₄O		BiF ₅		UF ₄ O·2BiF ₅		
I.r.ª	Raman b	I.r.c	Raman c	I.r.	Raman	
				(998vvw) ⁴ 911s 906s	911m	
	895vs					
890vs	889vs					
	882vs					
				678ms	678m	
660vs	665s			672 (sh)		
				632 (sh)		
		627s		620vs		
				610 (sh)	611s	
			595	587s	590vs	
550s	550m		570	568s	664 (sh)	
				ca. 500vw (sh)		
466m,br				477m,br	489w,br	
		450m,br		430m,br		
	345vw			370w,br		
	276m		255	272w,br	247mw (sh)	
		220m		235w (sh)	230mw	
	201 m			214mw,br	216mw (sh)	
	148s		167		175w,br	
	117m		101		153w,br	

⁴ This work. ^b Ref. 2. ^c Ref. 17. ^d Band arising from uranyl impurity.

at 100 °C is slow and no loss of BiF₅ is observed. In all cases vibrational spectroscopic and X-ray diffraction studies show that lower adducts, such as UF₄O·MF₅, are not produced. However, i.r. spectra of the solid residues after heating show bands characteristic of uranyl species and fewer terminal metal-fluorine stretching bands are observed. It seems likely, therefore, that adducts related to UF₂O₂·nSbF₅ (n=2-4) ^{3,8} are produced.

The adduct UF₄O·2SbF₅ was obtained by gentle warming of stoicheiometric quantities of SbF₅ with UF₄O in anhydrous HF for less than 1 h and removal of the hydrogen fluoride solvent by decantation. Repeated washing with and decantation of anhydrous HF from the product resulted in the removal of UF₄O and UF₄O·2SbF₅ impurities, and pure UF₄O·SbF₅ was obtained.

Discussion

X-Ray single-crystal structures of UF₄O·2SbF₅² and UO₂F₂·3SbF₅⁸ have shown that both are fluorine-bridged Lewis acid-base complexes. The adducts UF₄O·3MF₅ (M = Nb and Ta) and UF₄O·2BiF₅ have vibrational spectra which are related to the antimony pentafluoride compounds and imply related structures. In all of the compounds some small degree of ionicity occurs with the extent of the ionic character implicit in the values of the frequencies of the U=O stretching vibrations. The shifts to higher frequency than those of UF₄O itself are a result of a withdrawal of electron density from the UF₄O towards the more acidic pentafluorides. The magnitude of these shifts is generally small, and in some cases less than likely experimental error, but agrees with the expected relative Lewis acidities of the pentafluorides, SbF₅ > BiF₅ > TaF₅ > NbF₅ (Table 3).

The ready derivation of uranyl species and UF₆ from UF₄O-SbF₅ adducts 3 and from the adducts described in this paper is interesting in view of recent work 18 which suggests that from a thermochemical point of view UF₄O behaves as a very loosely bound 1:1 complex of UF₂O₂ and UF₆.

Experimental

Starting Materials.—Uranium tetrafluoride oxide was prepared as described by Wilson.¹⁹ Bismuth pentafluoride (Ozark-Mahoning Co.) was purified by vacuum sublimation at 120 °C. Tantalum, niobium, and arsenic pentafluorides were prepared from the elements as described previously.²⁰ The purification of anhydrous HF has also been described elsewhere.⁸

Syntheses.—All manipulations were carried out under anhydrous conditions using procedures outlined previously.²

The uranium tetrafluoride oxide adducts were prepared by two methods. In the first, weighed amounts of UF4O and MF_5 (M = Nb, Ta, or Bi) in molar ratios of 1: ≥ 5 were introduced into weighed prefluorinated 4-in FEP or 3-in Kel-F reactors in a dry-box. Typically, 0.5—1.0 mmol quantities of UF₄O were employed. The reactors were pumped to high vacuum before the introduction of anhydrous HF solvent. After allowing the mixtures to warm to room temperature they were agitated gently for 1 h with further warming [50-60 °C (Nb and Ta), 40-50 °C (Bi)] to give orangeyellow solutions over orange-yellow solids. In no case was complete solution achieved. The adducts formed were all less soluble than their SbF₅ counterparts, a qualitative order of solubilities suggested Bi > Ta > Nb. After 1 h the solvent was removed, initially under static vacuum and finally by pumping on the solid adduct and excess of pentafluoride. In the second method of preparation weighed amounts of UF₄O and excess of MF₅ (M = Nb, Ta, or Bi) were warmed gently to 50-60 °C until the pentafluoride became molten and the UF4O dissolved to give an orange solution. In order to prevent sublimation of the pentafluoride from the reaction zone, a pressure of argon (ca. 200 mmHg) was introduced into the reaction tube. In both reaction methods, after completion of reaction and, in the reactions using HF, the removal of solvent, the excess of pentafluoride was moved to the upper part of the reaction tube by vacuum sublimation at 40-50 °C (Nb, Ta) and 50-60 °C (Bi). When 4-in FEP reaction tubes were used the weight of the reaction product, and hence the

Table 3. A comparison of the trend observed for v(U=O) in the vibrational spectra (cm⁻¹) of the UF₄O-MF₅ adducts (M = Bi, Nb, Sb, or Ta) with the relative Lewis acidities of the pentafluorides

UF ₄ O·3SbF ₅ "		UF₄O·3TaF₅		UF ₄ C	UF₄O·3NbF₅		UF₄O	
î.r.	Raman	I.r.	Raman	ĺ.r.	Raman	I.r.b	Raman '	
920 914	921	910 903	910	907 900	906	890	895 889 882	
			increasir	ng v(U=O)				
			increasing e- with	drawal from UF ₄ O				
S	bF ₅	TaF ₅		NbF ₅				
4		increasing	Lewis-acid strength					
UF₄O·2SbF₃ "		UF4O·2BiF5		;	UF ₄ O			
Ĩ.r.	Raman	Ĩ.r.	Raman	I.r.ª	Raman b			
912	912	911 906	911	890	895 889 882			
_		increas	ing v(U=O)					
-		increasing e- wit	hdrawal from UF ₄ O					
SbF ₅		BiF ₅						
		slight increase in	Lewis-acid strength					

stoicheiometry, was determined by removing the section of the tube containing the sublimed excess of pentafluoride with a knife in the dry-box, refitting the valve to the remainder of the tube containing the adduct, washing out and drying the detached piece of tube, closing one end by moulding, and weighing when evacuated. After evacuating and weighing the, now shortened, reaction tube the weight of solid product was calculated. When $\frac{3}{4}$ -in Kel-F reaction vessels were employed the excess of pentafluoride was removed from the upper part of the reactor in the dry-box using a micro-spatula. In all cases the weight of product was in close agreement with the formulations UF₄O·3MF₅ (M = Nb and Ta) or UF₄O·2BiF₅. However in both reaction methods i.r. spectra indicate that the niobium and tantalum compounds were contaminated by a trace amount of uranyl impurity.

The washing of UF₄O·SbF₅ free of UF₄O·2SbF₅ and UF₄O in the improved preparation of UF₄O·SbF₅ was achieved by carrying out the reaction in a ½-in h-shaped FEP reactor. After the reaction was complete and the solid had settled, the HF solvent was decanted into the side arm. Repeated distillation of the HF onto the product followed by decantation into the side arm gradually removed UF₄O·2SbF₅ contaminant.

Characterizations.—Reaction stoicheiometries were monitored and X-ray diffraction, vibrational spectroscopic, and n.m.r. data were obtained as outlined previously.^{2,8} Thermal-decomposition studies were carried out under dynamic vacuum in Pyrex tubes. Chemical analyses were not attempted for UF₄O·3MF₅ (M = Nb and Ta). Analytical results for the bismuth compound confirmed the formulae determined from the weight of product obtained [Found: Bi, 43.75; F, 28.2; O, 1.90; U, 25.15 (by difference). Calc. for UF₄O·2BiF₅: Bi, 44.55; F, 28.35; O, 1.70; U, 25.4%].

References

- R. Bougon, J. Fawcett, J. H. Holloway, and D. R. Russell, C.R. Acad. Sci., Ser. C, 1978, 287, 423.
- 2 R. Bougon, J. Fawcett, J. H. Holloway, and D. R. Russell, J. Chem. Soc., Dalton Trans., 1979, 1881.
- 3 J. H. Holloway, D. Laycock, and R. Bougon, J. Chem. Soc., Dalton Trans., 1982, 1635.
- 4 R. D. Peacock, Adv. Fluorine Chem., 1973, 7, 113.
- 5 O. L. Keller, jun., Inorg. Chem., 1963, 2, 783.
- 6 O. L. Keller, jun., and A. Chetham-Strode, *Inorg. Chem.*, 1966, 5, 367.
- 7 R. J. Gillespie and B. Landa, Inorg. Chem., 1973, 12, 1383.
- 8 J. Fawcett, J. H. Holloway, D. Laycock, and D. R. Russell, J. Chem. Soc., Dalton Trans., 1982, 1355.
- 9 T. Surles, L. A. Quarterman, and H. H. Hyman, J. Inorg. Nucl. Chem., 1973, 35, 670.
- 10 A. J. Edwards, W. E. Falconer, J. E. Griffiths, W. A. Sunder, and M. J. Vasile, J. Chem. Soc., Dalton Trans., 1974, 1129.
- 11 J. E. Griffiths, W. A. Sunder, and W. E. Falconer, Spectrochim. Acta, Part A, 1975, 31, 1207.
- 12 W. A. Sunder, A. L. Wayda, D. Distefano, W. E. Falconer, and J. E. Griffiths, J. Fluorine Chem., 1979, 14, 299.
- 13 K. O. Christe, Inorg. Chem., 1977, 16, 937.
- 14 K. O. Christe, J. Fluorine Chem., 1978, 11, 71.
- 15 R. Bougon, T. Bui Huy, A. Cadet, P. Charpin, and R. Rousson, Inorg. Chem., 1974, 13, 690.
- 16 R. J. Gillespie, D. Martin, and G. J. Schrobilgen, J. Chem. Soc., Dalton Trans., 1980, 1898.
- 17 I. R. Beattie, K. M. S. Livingston, G. A. Ozin, and D. J. Reynolds, J. Chem. Soc. A, 1969, 958.
- 18 P. A. G. O'Hare and J. G. Malm, J. Chem. Thermodyn., 1982, 14, 331.
- 19 P. W. Wilson, J. Inorg. Nucl. Chem., 1974, 36, 303.
- 20 B. Friec and J. H. Holloway, J. Chem. Soc., Dalton Trans., 1975, 535.

Acknowledgements

We thank the S.E.R.C. for support.