Reactivity of η²-CS₃Me Metal Complexes as Electrophiles

Claudio Bianchini * and Andrea Meli

Instiuto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, C.N.R., Via F. D. Guerrazzi, 27, Florence, Italy

The CS₂ carbon atom of the η^2 -CS₃Me ligand in the cobalt(II) and nickel(III) complexes [M(tppme)-(S₂CSMe)][BPh₄] [M = Co (1) or Ni (2), tppme = 1,1,1-tris(diphenylphosphinomethyl)ethane] is an electrophilic centre, susceptible to attack by nucleophiles such as PEt₃ and H⁻; as a result the new complexes [M(tppme){S₂C(PEt₃)SMe}][BPh₄] [M = Co or Ni] and [Co(tppme){S₂C(H)SMe}] are obtained. Reaction of an excess of NaBH₄ with (1) gives the complexes [Co(tppme)(S₂CS)], [Co(tppme)(η^2 -CS₂)] (8), and [Co(tppme)(S₂CO)]. The C-SMe bond in both compounds (1) and (2) is cleaved by sodium to give the η^2 -CS₂ complexes (8) and [Ni(tppme)(η^2 -CS₂)] respectively. Replacement of the SMe group in complex (2) by NEt₂, followed by reaction of the resultant dithiocarbamate complex with NaBH₄, affords the nickel(I) thiolato-complex [Ni(tppme)(SH)], which reacts with CS₂ to give the trithiocarbonate complex [Ni(tppme)(S₂CS)]. All the products have been fully characterized. Mechanisms for the formation of the reaction products are proposed and discussed.

The overall electronic structure of chelated η^2 -dithioacid ligands can be described by considering the resonance forms (I)—(IV). Which of these predominates will depend on the

nature of the X substituent as well as of the metal-ancillary ligand fragment. We have recently ascertained that the resonance form (IV) is important in describing the reactivity of a variety of η^2 -dithioacid metal complexes toward nucleophiles. $^{2-9}$

Iron-, cobalt-, nickel-, and copper-phosphine moieties give dithioformate, S-methyl trithiocarbonate, dithiocarbamate, O-ethyl dithiocarbonate, and triethylphosphoniodithiocarboxylate complexes, in which the dithio-ligand forms a four-membered ring (V) with the metal. Upon η^2 -co-ordination

$$M = X$$
 $X = H$, SMe, NEt₂, OEt, or PEt₃

(V)

to the metal, the C¹ carbon atom of the dithio-ligand becomes an electrophilic centre, susceptible to attack by nucleophiles such as H⁻ (Scheme 1),2,5-8 PR₃,3 Ph⁻,9 and NHEt₂4 (Scheme 2), and RO- (Scheme 3).2,8 The nucleophile can add to the C1 carbon atom, cause fragmentation of the dithio-ligand, displace the X substituent, or facilitate the attack by an appropriate reagent on the C1 carbon. The electrophilic character of η²-dithioacid complexes has been also confirmed by qualitative molecular-orbital arguments, which suggested that the main bonding interaction between the Co(tppme) and S_2CSMe fragments in the η^2 -trithiocarbonate complex [Co-(tppme)(S₂CSMe)][BPh₄] [tppme = 1,1,1-tris(diphenylphosphinomethyl)ethane] involves a significant charge delocalization from the CS₃Me grouping toward the metal, not counterbalanced by π-type back donation.4

The variety and importance of the results obtained have prompted us to investigate in detail the reactivity of the Smethyl trithiocarbonato-cobalt(II) and -nickel(II) complexes

$$(i) \longrightarrow M \xrightarrow{S} C - H$$

$$(ii) \longrightarrow M \xrightarrow{S} C \xrightarrow{PEt}$$

$$(iii) \longrightarrow M - CO$$

$$(iii) \longrightarrow M - CO$$

$$(iv) \longrightarrow M - SH$$

$$(v) \longrightarrow M \xrightarrow{S} C$$

Scheme 1. (i) M = Fe, $X = PEt_3$; (ii) M = Fe, Co, or Ni, $X = PEt_3$; (iii) M = Ni, X = OEt; (iv) M = Ni, $X = NEt_2$; (v) M = Ni, X = SMe

Scheme 2. (i) M = Fe or Co, X = H, Nu (nucleophile) $= PR_3$; (ii) M = Cu, $X = PPh_3$, $Nu = Ph^-$; (iii) M = Co, X = SMe, $Nu = NHEt_2$

[M(tppme)(S₂CSMe)][BPh₄] toward a series of nucleophilic agents. The reactions performed are summarized in Scheme 4; some of them represent a novel and potentially useful route to metal complexes with ligands such as S₂C(PEt₃)SMe⁻, S₂C(H)SMe²⁻, and S₂CO²⁻, which do not exist in the free

ductivity bridge in ca. 10⁻³ mol dm³ nitroethane solutions. The analytical, magnetic, and conductivity data of the complexes are reported in the Table.

Syntheses.—[Ni(tppme)(S₂CSMe)][BPh₄] (2). The compound MeSO₃F (0.05 cm³, 0.62 mmol) was pipetted into a solution of complex (4) (0.56 g, 0.5 mmol) in CH₂Cl₂ (30 cm³). Immediately a red-violet solution was obtained. Addition of NaBPh₄ (0.30 g, 0.9 mmol) in ethanol (20 cm³) and slow evaporation of the solvent gave red-violet crystals, yield 80%.

Scheme 4.

form. The further reactivity of the products obtained has also been probed.

All complexes have been characterized and their physical properties studies by the usual methods and by ³¹P n.m.r. spectroscopy.

Experimental

The ligand tppme ¹⁰ and the complexes [Co(tppme)(S₂CSMe)]-[BPh₄] (1) ⁴ and [Ni(tppme)(S₂CS)] (4) ¹¹ were prepared according to published procedures. All other chemicals employed were of reagent-grade quality and were used without further purification. All operations were routinely performed under a nitrogen atmosphere except where stated otherwise. The solid complexes were collected on a sintered-glass frit, washed successively with ethanol and light petroleum (b.p. 40—70 °C) before being dried in a stream of nitrogen.

Infrared spectra were recorded on a Perkin-Elmer 283 spectrophotometer as Nujol mulls between KBr plates. Proton and ³¹P-{¹H} n.m.r. spectra of CDCl₃ solutions were recorded with a Varian CFT 20 spectrometer at 303 K. Peak positions are relative to tetramethylsilane and phosphoric acid respectively with downfield values reported as positive. Ultraviolet-visible spectra were recorded on a Beckman DK-2A spectrophotometer. Magnetic susceptibilities of solid samples were measured on a Faraday balance. Conductance measurements were made with a WTW model LBR/B con-

[M(tppme){ $S_2C(PEt_3)SMe$ }][BPh₄] [M = Co (5) or Ni (6)]. Into a solution of the appropriate S-methyl trithiocarbonate complex (1) or (2) (0.56 g, 0.5 mmol) in CH₂Cl₂ (30 cm³) was pipetted a molar equivalent of PEt₃ (0.08 cm³, 0.5 mmol) and the solution was stirred magnetically for ca. 1 h at room temperature. On addition of ethanol and slow concentration a yellow-brown and an orange product respectively separated, yields 50 and 55%. By exposing a dichloromethane-ethanol solution of (5) to the air, green crystals of [Co(tppme)(S₂CO)] (7) were obtained.

[Co(tppme){S₂C(H)SMe}] (10). A solution of complex (1) (0.56 g, 0.5 mmol) in acetone (40 cm³) was treated with a molar equivalent of NaBH₄ (0.04 g, 0.5 mmol) dissolved in ethanol (10 cm³). The solution immediately turned brown. Yellow-brown crystals precipitated on addition of n-butanol (30 cm³), yield 60%. Green crystals of complex (7) were formed by exposing a dichloromethane-ethanol solution of (10) to the air.

[Ni(tppme)(S₂CNEt₂)][BPh₄] (11). A solution of complex (2) (0.56 g, 0.5 mmol) in CH₂Cl₂ (20 cm³) was treated with an excess of NHEt₂ (5 mmol) in CH₂Cl₂ (10 cm³). Within a few minutes an orange solution was obtained. Addition of ethanol and slow evaporation of the solvent produced orange crystals, yield 70%.

Reaction of Complex (1) with an Excess of NaBH₄.—A large excess of NaBH₄ (0.37 g, 10 mmol) in ethanol (20 cm³)

Table. Analytical and physical data for the complexes

Complex	Analysis " (%)			$\Lambda^{p}/\Omega^{-1} \text{ cm}^2$	$\mu_{\rm eff.}/{\rm B.M.}^c$
	C	Н	M	mol ⁻¹	(298 K)
(2) $[Ni(tppme)(S_2CSMe)][BPh_4]^d$	71.15 (71.45)	5.55 (5.55)	5.20 (5.20)	44	
(5) $[Co(tppme){S_2C(PEt_3)SMe}][BPh_4]^e$	70.2 (70.45)	6.20 (6.25)	4.75 (4.75)	45	2.01
(6) $[Ni(tppme){S_2C(PEt_3)SMe}][BPh_4]^f$	70.15 (70.5)	6.15 (6.25)	4.65 (4.70)	48	
(10) [Co(tppme) $\{S_2C(H)SMe\}\}$	63.8 (63.95)	5.30 (5.35)	7.20 (7.30)		2.04
(11) [Ni(tppme)(S ₂ CNEt ₂)][BPh ₄] h	72.9 (73.05)	5.95 (6.05)	5.05 (5.10)	44	

^a Calculated values are given in parentheses. ^b Molar conductance values for ca. 10^{-3} mol dm⁻³ nitroethane solutions at 20 °C. ^c 1 B.M. ≈ 9.27×10^{-24} A m². ^d S, 8.5 (8.55)%, ^e S, 7.70 (7.75)%, ^f P, 9.85 (9.95)%, ^g S, 11.8 (11.9)%, ^h N, 1.20 (1.20)%.

was added to a magnetically stirred solution of complex (1) (0.56 g, 0.5 mmol) in acetone (30 cm³). The solution immediately turned red-brown. Addition of n-butanol (20 cm³) produced a red-brown crystalline product which was identified as a mixture of the three isomorphous complexes [Co(tppme)-(S₂CS)] (3), (7), and [Co(tppme)(η²-CS₂)] (8).

Reaction of Complexes (1) and (2) with Sodium.—To a suspension of complex (1) or (2) (0.56 g, 0.5 mmol) in tetrahydrofuran (thf) (40 cm³) was added a large excess of sodium and the reaction mixture stirred at room temperature for 4 h. The resulting red-brown and orange-brown solutions were then filtered to eliminate the unreacted sodium and NaSCH₃ and treated with n-butanol (30 cm³). Garnet-red and brown crystals of complex (8) and [Ni(tppme)(η^2 -CS₂)] (9) respectively precipitated on standing, yield 50%.

Reaction of [Ni(tppme)(SH)] (12) with CS₂.—Carbon disulphide (5 cm³) was added to a yellow-orange solution of complex (12) obtained by treating (11) (0.34 g, 0.3 mmol) in acetone (30 cm³) with NaBH₄ (0.04 g, 1 mmol) in ethanol (10 cm³).⁵ After 30 min the resultant red-brown solution was treated with n-butanol (20 cm³) giving a crystalline precipitate which was identified as complex (9). The mother-liquor on standing gave red-orange crystals of (4) as the main product, yield 70%.

Results and Discussion

The complex [Co(tppme)(S₂CSMe)][BPh₄] (1) has recently been synthesized by reaction of [Co(tppme)(S₂CS)] (3) with MeI in the presence of NaBPh₄.⁴ Similarly, the complex [Ni(tppme)(S₂CSMe)][BPh₄] (2) is obtained as red-violet crystals by reaction of [Ni(tppme)(S₂CS)] (4) with MeSO₃F in the presence of NaBPh₄.

Compound (2) is diamagnetic, and air-stable both in the solid state and in solution. It is soluble in common organic solvents, in which it behaves as a 1:1 electrolyte. The electronic spectrum is practically identical in the solid state and in solution, showing absorption maxima at 13 200 (ϵ = 432) and 19 600 cm⁻¹ (ϵ = 7 225 dm³ mol⁻¹ cm⁻¹), and is fully comparable with those of five-co-ordinate nickel(II) complexes with P₃S₂ donor sets.^{5,11} The i.r. spectrum has a strong band at 990 cm⁻¹ attributable to the C-S stretching mode of the η -trithiocarbonate ligand.^{4,12,13} The ¹H n.m.r. spectrum exhibits a singlet at 2.67 p.p.m. characteristic of S-CH₃ protons, while the ³¹P-{¹H} n.m.r. consists of a singlet at 0.77 p.p.m. This pattern, unchanged even at -60 °C, is consistent with rapid intramolecular exchange of the three phosphorus atoms of tppme around the nickel atom, as observed also for the precursor (4).¹¹

On the basis of all of these data it is reasonable to assign the structure (VI) to complex (2).

Compounds (1) and (2) react with equimolecular amounts of PEt₃ producing solutions from which the complexes [M- $(tppme){S_2C(PEt_3)SMe}][BPh_4] [M = Co (5) or Ni (6)] can$ be obtained. These complexes, yellow-brown and orange in colour respectively, are air-stable in the solid state but decompose in solution unless air is excluded. They are soluble in common organic solvents where they behave as 1:1 electrolytes. Compound (5) is paramagnetic with a magnetic moment corresponding to a doublet ground state, whereas (6) is diamagnetic. The electronic spectrum of (5) has bands at 10 550 ($\epsilon = 430$), 16 500 ($\epsilon = 290$), and 20 900 cm⁻¹ ($\epsilon =$ 1 315 dm³ mol⁻¹ cm⁻¹), and is fully comparable with those of distorted five-co-ordinate cobalt(II) complexes with P₃S₂ donor sets, 2,4,7,8 whereas that of (6), with no band at <15000 cm⁻¹, is typical of square-planar nickel(II) complexes.⁵ The i.r. spectra of both compounds do not show any bands attributable to C:S stretching modes, but instead exhibit a band at 1 040 cm⁻¹ indicative of the presence of the PEt₃ group.¹⁴

The structure of complex (6) has been unambiguously ascertained by means of variable-temperature ³¹P-{¹H} n.m.r. spectroscopy. The ³¹P n.m.r. spectra for the temperature range +30 to -55 °C are presented in the Figure. At -55 °C the spectrum indicates a 'frozen' structure, in which the tppme ligand is functioning as a bidentate ligand with one of the terminal Ph₂P groups unbonded. The most likely structure of the complex cation is illustrated in (VII). The ³¹P n.m.r. assignments are as follows: $\delta(P_c)$ 44.02, $\delta(P_B)$ 17.29, and $\delta(P_A)$ -30.01. As the temperature is raised, the bonded and free Ph₂P groups begin to exchange positions as evidenced by the simultaneous broadening of the above resonances. At +30 °C they give rise essentially to a broad absorption at ca. 1 p.p.m. Increase in temperature induces only a very small high-field shift of the resonance due to the phosphorus atom of the PEt₃ group (from 44.02 p.p.m. at -55 °C to 43.76 p.p.m. at +30 °C). Assignments have been made by reference to existing 31P n.m.r. data for the two complexes [Ni(tppme)- ${S_2C(H)PEt_3}$ [BPh₄] ⁵ (13) and [(tppme)Ni(μ -CS₃)Ni(tppme)]-

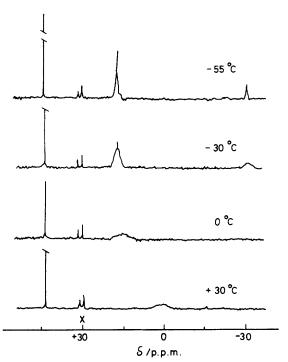


Figure. Variable-temperature ${}^{31}P-({}^{1}H)$ n.m.r. spectra of [Ni-(tppme){S₂C(PEt₃)SMe}][BPh₄] in CDCl₃; X = an impurity

[BPh₄]₂ ¹¹ (14). Both (13) and (14) exhibit dynamic behaviour as evidenced by their variable-temperature ³¹P-{¹H} n.m.r. spectra. The spectrum of complex (13) at -65 °C indicates a structure where the co-ordination of the nickel atom is square-planar with the tppme acting in a bidentate manner ($\delta = +16.72$ p.p.m.) with one Ph₂P group unco-ordinated ($\delta = -31.77$ p.p.m.). Analogously, one nickel atom of the binuclear complex (14) has square-planar co-ordination with a bidentate tppme ligand ($\delta = 13.22$ p.p.m. at -60 °C) and two sulphur atoms of the bridging CS₃ ligand. The free Ph₂P group gives a singlet at -31.31 p.p.m.

On the basis of its spectroscopic properties, and of those of (6), compound (5) is assigned the structure (VIII), in which the cobalt atom is five-co-ordinated by the three phosphorus atoms of the tppme ligand and by two sulphur atoms of the new $S_2C(PEt_3)SMe$ ligand.

Useful comparisons can be made with the complexes [Co-(tppme){ $S_2C(H)PEt_3$ }][BPh₄]_x [x = 1 (15), or 2 (16)] ^{2,7} and [Co(tepme){ $S_2C(H)PEt_3$ }][BPh₄]_x [x = 1 (17) or 2 (18)] ⁷ [tepme = 1,1,1-tris(diethylphosphinomethyl)ethane], the last of which has been characterized by X-ray analysis. These have been found to contain the dithio-ligand $S_2C(H)PEt_3^-$ which differs from that contained in complexes (5) and (6) only in having H in the place of SMe. The mechanism of their formation has been suggested to involve nucleophilic attack by hydride ion on the CS_2 carbon atom (see introduction), a reaction pattern which can be positively proposed for the formation of (5) and (6) just by replacing H with PEt₃.

Further support for the proposed structure (VIII) is provided by the fact that (5), when exposed to air, gives the dithiocarbonate complex [Co(tppme)(S₂CO)] (7), which has previously been synthesized by oxygen attack both on the product obtained by treatment of [Co(tppme)(S₂CPEt₃)]-[BPh₄]₂ (19) with sodium ethanolate ⁸ and on compound (15).^{2,8}

The reaction of complex (2) with NaBH₄ has been reported to cause the extrusion of MeSH, followed by rearrangement of

the CS₂ fragment to give the η²-CS₂ complex, [Ni(tppme)-(η²-CS₂)] (9).⁵ In contrast, complex (1) reacts with an equimolecular amount of NaBH₄ producing yellow-brown crystals of formula [Co(tppme){S₂C(H)SMe}] (10). Compound (10) is air-stable in the solid state, but decomposes in solution even under an inert atmosphere. It is paramagnetic with a magnetic moment corresponding to an unpaired spin. The electronic spectrum exhibits absorption maxima at 10 500, 16 300, and 22 000 cm⁻¹, and is fully comparable with that of complex (5), and, in general, with those of five-co-ordinate cobalt(II) complexes with P₃S₂ and P₃O₂ donor sets.^{2,4,7,8,15} The i.r. spectrum does not show any band attributable to C:-S stretching modes, or to the tetraphenylborate group.

All the information gathered from the spectroscopic and magnetic measurements is suggestive of the structure (IX), where the cobalt atom is five-co-ordinated by the three phosphorus atoms of the tppme ligand, and by two sulphur atoms of the new S₂C(H)SMe²⁻ ligand.

Exposure to air of a solution of (10) yields the dithiocarbonate complex (7). The detailed mechanisms for the formation of complex (13) ^{2,8} are not yet understood, however a mandatory condition seems to be the presence of 1,1-dithiolate ligands of the type S₂C(X)PEt₃ (X = H or OEt) η²-coordinated to the Co(tppme) fragment.⁸ The present results provide further evidence for this suggestion, complex (7) being formed also by exposure to the air of solutions of the complexes (5), (10), and [Co(tppme){S₂C(H)OEt}] (20).¹⁶ Surely, it is not a coincidence that all of these complexes contain 1,1-dithiolate ligands of the above type, namely S₂C(H)-PEt₃-, S₂C(H)SMe²-, S₂C(PEt₃)SMe⁻, and S₂C(H)OEt²-. It is noteworthy that the precursor dithioacid complexes (1), (19), and [Co(tppme)(S₂COEt)][BPh₄] (21), when exposed to the air, do not afford (7).

The reaction of complex (1) with an excess of NaBH₄ yielded red-brown crystals identified by means of i.r. spectroscopy as a mixture of the three isomorphous complexes (3),^{2,8} [Co(tppme)(η^2 -CS₂)] (8),¹⁷ and (7).^{2,8} The i.r. spectrum shows bands at 1 690 and 1 600 cm⁻¹ attributable to η²-S₂CO, at 1 045 and 865 cm⁻¹ attributable to η^2 -S₂CS, and at 1 120 and 630 cm⁻¹ attributable to η^2 -CS₂. The formation of the η^2 -CS₂ complex (8) is not completely unexpected since the analogous complex (9) is obtained from the nickel trithiocarbonate complex (2) through an identical procedure.⁵ The reaction mechanism proposed for complex (9) can probably be extended to (8). Both compounds (8) and (9) can also be synthesized by reaction of sodium with solutions of the S-methyl trithiocarbonate complexes (1) and (2), respectively. The trithiocarbonate reactions represent a facile and potentially useful route to n²-CS₂ complexes, which usually require starting compounds containing the metals in low oxidation states.

In the absence of any kinetic measurements as well as of the detection of intermediates, a number of pathways to the formation of the η^2 -CS₃ complex (3) are conceivable. These include: (a) extrusion of CH₄ from the intermediate complex (10); (b) formation of a CS₂ intermediate which could undergo

reaction with sulphur or sulphides released in some manner in the reaction mixture; (c) formation of a thiolate complex which in turn could react with CS₂ released from the S₂CSMe grouping. While there is no experimental evidence in support of the hypothesis (a), it has been reported that complex (8) (see Scheme 4) reacts with elemental sulphur to give the η²-CS₃ complex (3),¹⁸ and that an intermediate of the type [Mn(CO)₅S]⁻ has been suggested to undergo CS₂ insertion into the Mn-S bond to yield [Mn(CO)₄(η²-CS₃)].¹² Moreover, the thiolato-complex [Ni(tppme)(SH)] (12) has been isolated from the reaction of NaBH₄ with an acetone solution of the dithiocarbamate complex [Ni(tppme)(S₂CNEt₂)][BPh₄] (11).⁵

The suggested transformation of M-SH into M- η^2 -CS₃ invited an investigation of the effect of adding CS₂ to a solution of the thiolato-complex (12). A solution of the latter, obtained by the procedure summarized in Scheme 4, reacts with CS₂ producing a red-brown solution from which the η^2 -CS₃ complex (4) can be isolated together with a minor amount of the η^2 -CS₂ complex (9). This result may be viewed as providing support for the proposed mechanisms (b) and (c).

Finally, the formation of the dithiocarbonate complex (7) from the reaction of (1) with an excess of $NaBH_4$ is somewhat surprising. We are inclined to ascribe it to the fortuitous presence of oxygen in the mixture during the course of the reaction.

In a previous paper ¹¹ we reported that the η^2 -CS₂ and η^2 -CS₃ metal complexes possess a similar reactivity toward a variety of nucleophilic and electrophilic reagents; the present report emphasizes a particular aspect of the chemistry of η^2 -CS₂ and η^2 -CS₃ complexes, that is their facile interconversion.

Acknowledgements

We thank Mr. F. Cecconi and Mr. G. Scapacci for technical assistance and Mr. P. Innocenti for recording n.m.r. spectra.

References

- 1 D. Coucouvanis, Prog. Inorg. Chem., 1979, 26, 443.
- 2 C. Bianchini, A. Meli, and A. Orlandini, Angew. Chem., Suppl., 1982, 471.
- 3 C. Bianchini, A. Meli, F. Nuzzi, and P. Dapporto, J. Organomet. Chem., 1982, 236, 245.
- 4 C. Bianchini, C. Mealli, A. Meli, and G. Scapacci, J. Chem. Soc., Dalton Trans., 1982, 799.
- 5 C. Bianchini, C. Mealli, A. Meli, and G. Scapacci, Organometallics, 1983, 2, 141.
- 6 C. Bianchini, P. Innocenti, A. Meli, A. Orlandini, and G. Scapacci, J. Organomet. Chem., 1982, 233, 233.
- C. Bianchini, A. Meli, and A. Orlandini, *Inorg. Chem.*, 1982, 21, 4161.
- 8 C. Bianchini, A. Meli, and A. Orlandini, *Inorg. Chem.*, 1982,
- 21, 4166. 9 C. Bianchini, C. A. Ghilardi, A. Meli, and A. Orlandini, *Inorg.*
- Chem., in the press. 10 W. Hewertson and H. R. Watson, J. Chem. Soc., 1962, 1490.
- 11 C. Bianchini, P. Innocenti, and A. Meli, J. Chem. Soc., Dalton Trans., 1983, 1777.
- 12 I. B. Benson, J. Hunt, S. A. R. Knox, and V. Oliphant, J. Chem. Soc., Dalton Trans., 1978, 1240.
- 13 J. Hyde, K. Venkatasubramanian, and J. A. Zubieta, *Inorg. Chem.*, 1978, 17, 414; J. A. Zubieta and G. B. Maniloff, *Inorg. Nucl. Chem. Lett.*, 1976, 12, 1216.
- 14 K. A. Jensen and P. H. Nielsen, Acta Chem. Scand., 1963, 17, 1875.
- 15 C. Mealli, S. Midollini, and L. Sacconi, *Inorg. Chem.*, 1975, 14, 2513.
- 16 C. Bianchini and A. Meli, unpublished work.
- 17 C. Bianchini, C. Mealli, A. Meli, A. Orlandini, and L. Sacconi, Inorg. Chem., 1980, 19, 2968.
- 18 C. Bianchini and A. Meli, J. Chem. Soc., Chem. Commun., 1983, 156.

Received 7th February 1983; Paper 3/186