Some Oxygen-donor Di-*N*-thiocyanato-thorium(IV) and -uranium(IV) Bis[hydrotris(pyrazol-1-yl)borate] Complexes

Ikhtiar Ahmed, Kenneth W. Bagnall,* Li Xing-fu, and Pao Po-jung Chemistry Department, The University of Manchester, Manchester M13 9PL

Di-*N*-thiocyanato-thorium(iv) and -uranium(iv) bis[hydrotris(pyrazol-1-yl)borate] complexes, $M(NCS)_2[HB(pz)_3]_2$ 'xL [pz = C₃H₃N₂; x = 1, M = Th, L = tetrahydrofuran (thf); M = U, L = thf, MeCONMe₂, PMe₂PhO, PMePh₂O, or PPh₃O; x = 2, M = Th, L = MeCONMe₂, PMe₃O, PMe₂PhO, PMePh₂O, or PPh₃O; M = U, L = PMe₃O; x = 1.5, M = Th, L = P(NMe₂)₃O], Th(NCS)_2[HB(3,5Me_2-pz)_3]_2 and U(NCS)_2[HB(3,5Me_2-pz)_3]_2'thf (3,5Me₂-pz = 3,5-dimethylpyrazol-1-yl) have been prepared. The i.r. and u.v.-visible spectra [uranium(iv) complexes only] of these compounds are reported and the effects of steric crowding on the possible bonding arrangements of the hydrotris(pyrazol-1-yl)borate ligands are discussed in terms of a cone angle factor approach to steric crowding about the metal centres in these complexes.

Unsolvated dihalogenouranium(IV) hydrotris(pyrazol-1-yl)borates such as UCl₂[HB(pz)₃]₂ (pz = C₃H₃N₂) are easily obtained,¹ but the only recorded complexes of this type of compound with oxygen-donor ligands are UCl₂[HB(pz)₃]₂. dma,² UX₂[HB(3,5Me₂-pz)₃]₂:thf (X = Cl or Br)² and ThCl₃[HB(pz)₃]·dma·thf (dma = NN-dimethylacetamide, thf = tetrahydrofuran).³ Replacement of halogen by the smaller N-thiocyanate group should provide additional space for neutral ligands to enter the co-ordination sphere, and it was therefore of interest to attempt to prepare a series of complexes of the type M(NCS)₂[HB(pz)₃]₂:xL for M = Th and U, and to correlate the results by applying the cone angle factor approach to steric crowding which was described briefly in a recent paper.⁴

Results and Discussion

Preparation of the Complexes.—The di-N-thiocyanatocomplexes $M(NCS)_2[HB(pz)_3]_2 xL$ were obtained by evaporating the filtrate from the reaction of the anhydrous metal tetrachloride in thf with stoicheiometric quantities of $K[HB(pz)_3]$ and KNCS in the presence of an excess of the ligand where appropriate. Free ligand was removed from the oily products by washing them with a mixture of thf and npentane or with n-pentane alone.

The thorium compound formed bis-complexes except with L = thf (x = 1) and tdpo [tris(dimethylamino)phosphine oxide; x = 1.5], whereas the uranium analogue formed 1 : 1 complexes except with L = tmpo (trimethylphosphine oxide; x = 2). Repeated crystallisation of the last from thf appears to lead to disproportionation to U(NCS)₃[HB(pz)₃]·2tmpo. The hydrotris(3,5-dimethylpyrazol-1-yl)borate complexes, Th(NCS)₂[HB(3,5Me₂-pz)₃]₂ and U(NCS)₂[HB(3,5Me₂-pz)₃]₂·thf were prepared in the same way as Th(NCS)₂[HB(pz)₃]₂·thf. All of the thorium compounds are white and their uranium(iv) analogues are green.

In the i.r. spectra of these complexes (Table 1) the shifts observed for v(CO) (L = dma) and v(PO) [L = tmpo, dmppo (PMe₂PhO), mdppo (PMePh₂O), tppo (PPh₃O), and tdpo] are similar in magnitude to those observed for the corresponding complexes with the tetrachlorides [dmppo, mdppo (Th or U); ⁵ tppo (Th ⁶ or U ⁷); tdpo (Th ⁸ or U ⁹); dma (Th ¹⁰ or U ¹¹)] except for the tmpo compounds for which the shift is only about half of that observed ¹² for MCl₄·6tmpo (M = Th or U). The B-H stretching mode appears at 2 455— 2 480 cm ⁻¹ in the i.r. spectra of the HB(pz)₃ complexes and at 2 550 cm⁻¹ in those of the HB(3,5Me₂-pz)₃ compounds. The C-N stretching mode appears at 2 020—2 050 cm⁻¹, which is consistent with nitrogen-bonding in thiocyanates,¹³ and the intensity of this feature in each case was relatively high, which also suggests that the thiocyanate groups are nitrogen-bonded.^{14,15} The C-S feature in the i.r. spectra of N-bonded thiocyanates is usually observed at 760–880 cm⁻¹ as against 700 cm⁻¹ for S-bonded thiocyanates,^{16,17} but this feature could not be identified owing to interference from modes arising from the organic ligands.

The principal features of the u.v.-visible spectra (solid reflectance and solution in thf) are very similar to those reported for $[U(\eta-C_5H_5)X_3L_2]$ (X = Cl,¹⁸ Br,¹⁸ or NCS⁴) and are consistent with a low symmetry, high co-ordination number (≥ 8) environment for the uranium(IV) centre.

The ¹H n.m.r. spectra of the compounds $M(NCS)_2[HB-(pz)_3]_2$ thf (M = Th or U) in CD_2Cl_2 indicate that both HB(pz)_3 groups are tridentate [H(3), τ 2.2, doublet (Th) and -12.5 p.p.m. (U); H(5), τ 2.55, doublet (Th) and H(5) + B-H, 2.4 p.p.m. (U); H(4), τ 3.8, triplet (Th) and 6.9 p.p.m. (U)], which would suggest nine-co-ordination for the metal atoms if the thf molecule is bonded. The thf resonances [H(1),H(4) and H(2),H(3), τ = 6.25 and 8.1 (Th), 5.25 and 8.00 p.p.m. (U) respectively] do not resolve this point.

In an attempt to determine whether the HB(pz)₃ groups are bidentate or tridentate in the other complexes, the cone angle factor (c.a.f.) approach to steric crowding⁴ was applied to them. The calculated values of Σ (c.a.f.) for 17 uranium(IV) compounds of known structure indicated ⁴ that the average value was 0.80 ($\sigma = 0.03$) and that for values of Σ (c.a.f.) lower than 0.77, secondary crowding, such as that caused by bulky groups R in the phosphine oxides PR_3O (e.g. R = Ph or NMe₂), was necessary to achieve the formation of a stable complex. The average value of the c.a.f. calculated for 20 thorium(iv) complexes was also found to be 0.80 ($\sigma = 0.04$).¹⁹ As a first-order approximation for these complexes, the values of the c.a.f. for bidentate and tridentate HB(pz)₃ groups were calculated to be 0.19 and 0.28 respectively; the average values for the neutral amide and phosphine oxide donor ligands were 0.10 for thorium and 0.11 for uranium,⁴ and for thf the value was 0.09 for both elements. The value for the NCS group 4 was taken to be 0.11.

The calculated values of Σ (c.a.f.) for all possibilities of bonding for the HB(pz)₃ groups are summarised in Table 2. These calculations suggest that in the complexes M(NCS)₂-[HB(pz)₃]₂·L (L = dma or PR₃O) it is most likely that one HB(pz)₃ group is bidentate and the other tridentate, making the co-ordination number eight [Σ (c.a.f.) = 0.80 for the uranium(Iv) compounds]. The value of Σ (c.a.f.) for the thorium(Iv) and uranium(Iv) thf complexes would be 0.78 on

Complex	ν(B H)	v(CN)	v(CO)	Δv(CO) *	ν(PO)	Δv(PO) *
Th(NCS) ₂ [HB(pz) ₃] ₂ ·thf	2 480	2 030				
U(NCS) ₂ [HB(pz) ₃] ₂ ·thf	2 470	2 030				
$Th(NCS)_{2}[HB(pz)_{3}]_{2}\cdot 2dma$	2 480	2 040	1 600	50		
$U(NCS)_2[HB(pz)_3]_2$ ·dma	2 470	2 040	1 600	50		
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2tmpo	2 475	2 050			1 092	73
$U(NCS)_{2}[HB(pz)_{3}]_{2}\cdot 2tmpo$	2 460	2 030		_	1 1 2 0	45
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2dmppo	2 455	2 040			1 090	85
$U(NCS)_{2}[HB(pz)_{3}]_{2}$ ·dmppo	2 460	2 020		_	1 065	110
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2mdppo	2 460	2 040		_	1 085	85
U(NCS) ₂ [HB(pz) ₃] ₂ ·mdppo	2 460	2 030		_	1 065	105
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2tppo	2 460	2 030			1 070	120
$U(NCS)_2[HB(pz)_3]_2$ ·tppo	2 460	2 020			1 065	125
$Th(NCS)_{2}[HB(pz)_{3}]_{2}\cdot 1.5tdpo$	2 460	2 040			1 065	140
U(NCS) ₂ [HB(pz) ₃] ₂ ·tdpo	2 470	2 030	_	_	1 050	155
$Th(NCS)_{2}[HB(3,5Me_{2}-pz)_{3}]_{2}$	2 550	2 020		_		
LI(NCS), [HB(3.5Menz),], thf	2.560	2.030	_			

Table 1. Infrared spectra (cm⁻¹) of the complexes

Table 2. Calculated values of $\Sigma(c.a.f.)$ (metal ion co-ordination numbers in parentheses)

Complex	Both HB(pz)₃ groups bidentate	Both HB(pz)₃ groups tridentate	One bidentate and one tridentate HB(pz) ₃ group
$M(NCS)_{2}[HB(pz)_{3}]_{2}$ thf (M = U or Th)	0.69 (7) *	0.87 (9) *	0.78 (8) *
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2L (L = dma, tmpo, dmppo, mdppo, or tppo)	0.80	0.98 (10)	0.89 (9)
$U(NCS)_2[HB(pz)_3]_2 \cdot L$ (L = dmppo, mdppo, tppo, or tdpo)	0.71 (7)	0.89 (9)	0.80 (8)
$U(NCS)_{2}[HB(pz)_{3}]_{2}$ ·dma	0.70 (7)	0.88 (9)	0.79 (8)
$U(NCS)_2[HB(pz)_3]_2$ ·2tmpo	0.81 (8)	1.00 (10)	0.91 (9)
assuming that the thf molecule is bonded to the metal atom. If it is not	, the values are 0.	60, 0.78, and 0.69	respectively for th

* A e three cases, left to right.

Table 3. Analytical data * (%) and yields of complexes

								Yield
Complex	Metal	С	н	Ν	S	Р	В	(%)
Th(NCS) ₂ [HB(pz) ₃] ₂ ·thf	27.4 (27.4)	33.7 (34.0)	3.5 (3.3)	23.1 (23.1)	7.3 (7.6)		2.3 (2.6)	60
U(NCS) ₂ [HB(pz) ₃] ₂ ·thf	28.5 (28.0)	32.1 (33.8)	3.0 (3.3)	22.4 (23.0)	7.6 (7.5)			50
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2dma	24.0 (24.5)	35.3 (35.4)	4.1 (4.0)	23.3 (23.6)	6.8 (6.8)		2.3 (2.3)	60
$U(NCS)_2[HB(pz)_3]_2 \cdot dma$	28.2 (27.5)	31.7 (33.2)	3.3 (3.4)	22.3 (24.2)	6.7 (7.4)			30
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2tmpo	23.9 (24.2)	32.0 (32.6)	3.9 (4.0)	20.2 (20.5)	6.3 (6.7)	5.9 (6.5)	2.1 (2.3)	68
U(NCS) ₂ [HB(pz) ₃] ₂ ·2tmpo	25.4 (24.7)	32.9 (32.4)	3.7 (3.9)	20.3 (20.3)	6.8 (6.6)			50
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2dmppo	20.7 (21.5)	39.6 (40.0)	4.1 (3.9)	17.6 (18.1)	5.5 (5.9)	5.3 (5.7)	2.0 (2.0)	63
U(NCS) ₂ [HB(pz) ₃] ₂ ·dmppo	24.8 (25.5)	35.5 (36.0)	3.5 (3.3)	20.3 (21.0)	6.7 (6.9)	3.3 (3.3)		58
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2mdppo	18.6 (19.2)	45.3 (45.8)	4.0 (3.8)	15.6 (16.3)	4.8 (5.3)	4.5 (5.1)	1.8 (1.8)	60
U(NCS) ₂ [HB(pz) ₃] ₂ ·mdppo	23.5 (23.9)	39.6 (39.8)	3.6 (3.3)	18.9 (19.7)	6.1 (6.4)	3.0 (3.1)	_	55
Th(NCS) ₂ [HB(pz) ₃] ₂ ·2tppo	17.0 (17.4)	50.4 (50.5)	4.0 (3.8)	14.2 (14.7)	4.5 (4.8)	4.5 (4.7)		60
U(NCS) ₂ HB(pz) ₃] ₂ ·tppo	22.1 (22.5)	42.4 (43.1)	3.5 (3.3)	17.9 (18.5)	5.6 (6.1)	2.7 (2.9)		56
Th(NCS) ₂ [HB(pz) ₃] ₂ ·1.5tdpo	22.1 (22.3)	32.8 (33.4)	4.5 (4.5)	23.8 (24.9)	5.9 (6.1)	4.3 (4.5)	2.3 (2.1)	55
U(NCS) ₂ [HB(pz) ₃] ₂ ·tdpo	24.6 (24.8)	32.5 (32.6)	4.4 (4.0)	21.3 (24.8)	7.2 (6.7)			50
$Th(NCS)_2[HB(3,5Me-pz)_3]_2$	24.9 (24.6)	41.3 (40.8)	4.8 (4.7)	20.5 (20.8)	7.3 (6.8)		2.2 (2.3)	53
$U(NCS)_2[HB(3,5Me_2-pz)_3]_2$ thf	22.3 (23.3)	41.6 (42.4)	5.3 (5.1)	19.0 (19.2)	5.7 (6.3)			25
Calculated values are given in nat	rentheses							

* Calculated values are given in parentheses.

this basis, assuming bonded thf, but the ¹H n.m.r. spectra (see above) indicate that both HB(pz)₃ groups are tridentate $[\Sigma(c.a.f.) = 0.87$ if thf is bonded, 0.78 if not bonded], which would suggest that the thf is only held in the lattice. For the bis-complexes, the most likely bonding situation is for both of the HB(pz)₃ groups to be bidentate [Σ (c.a.f.) = 0.80 for the thorium(IV) compounds and 0.81 for the uranium(IV) one], making the probable co-ordination number eight in all cases.

Experimental

The drying of solvents and the handling of air- and moisturesensitive products was carried out as described previously.1

ThCl₄,⁹ UCl₄,²⁰ K[HB(pz)₃],²¹ K[HB(3,5Me₂-pz)₃],²¹ mdppo,²² and tmpo²³ were prepared by published methods; dmppo was prepared from PPhCl₂O in the same way as tmpo; tdpo, dma (B.D.H., Ltd), and tppo (Aldrich Chemical Co.) were used as supplied. U.v.-visible spectra were recorded using a Cary 14 (solution) or Beckmann DK2A (solid reflectance) spectrophotometer. I.r. spectra (200-4000 cm⁻¹) were obtained using a Perkin-Elmer 577 spectrometer and ¹H n.m.r. spectra were recorded using a 60-MHz Perkin-Elmer R12B or 300-MHz Varian SC300 instrument.

Preparations.—(Dimethylphenylphosphine oxide)bis[hydrotris(pyrazol-1-yl)borato]di-isothiocyanatouranium(1v),

U(NCS)₂[HB(pz)₃]₂·dmppo. Solid K[HB(pz)₃] (0.672 g, 2.667 mmol) was added to a solution of UCl₄ (0.507 g, 1.334 mmol) in thf. After stirring for 72 h, dmppo (0.256 g, 1.662 mmol) and KNCS (0.259 g, 2.67 mmol) were added, and the mixture was stirred for a further 96 h. The supernatant was evaporated to dryness under vacuum and the oily residue was washed with a mixture of thf and n-pentane (1 : 1 v/v, 5 cm³), then with n-pentane (5 cm³), and finally with the thf–n-pentane mixture (3×5 cm³). The solid product was then vacuum dried for 8 h. The other complexes reported here were prepared in the same way. Analyses were obtained as reported previously ¹ (Table 3, which includes yields).

Acknowledgements

We thank Dr. F. Heatley for helpful discussions of the ¹H n.m.r. spectra, Mr. M. A. Hart for the microanalyses (C, H, N, B, P, S, Th, and U), the Commonwealth Scholarship Commission for the award of a scholarship (to I. A.) and the Government of the People's Republic of China for support to L. X.-f. and P. P.-j).

References

- 1 K. W. Bagnall, J. Edwards, J. G. H. du Preez, and R. F. Warren, J. Chem. Soc., Dalton Trans., 1975, 140.
- 2 K. W. Bagnall and J. Edwards, J. Less-Common Met., 1976, 48, 159.
- 3 K. W. Bagnall, A. Beheshti, and F. Heatley, J. Less-Common Met., 1978, 61, 171.
- 4 K. W. Bagnall and Li Xing-fu, J. Chem. Soc., Dalton Trans., 1982, 1365.

- 5 I. Ahmed and K. W. Bagnall, J. Less-Common Met., submitted for publication.
- 6 D. Brown, J. Hill, and C. E. F. Rickard, J. Chem. Soc. A, 1970, 497.
- 7 P. Gans and B. C. Smith, J. Chem. Soc., 1964, 4172.
- 8 J. G. H. du Preez and F. G. Sadie, J. S. Afr. Chem. Inst., 1966, 19, 73.
- 9 K. W. Bagnall, D. Brown, P. J. Jones, and J. G. H. du Preez, J. Chem. Soc. A, 1966, 737.
- 10 K. W. Bagnall, D. Brown, P. J. Jones, and P. S. Robinson, J. Chem. Soc., 1964, 2531.
- 11 K. W. Bagnall, D. Brown, F. Lux, and G. Wirth, Z. Naturforsch., Teil B, 1969, 24, 214.
- 12 Z. M. S. Al-Kazzaz, K. W. Bagnall, and D. Brown, J. Inorg. Nucl. Chem., 1973, 35, 1493.
- 13 A. Sabatini and I. Bertini, *Inorg. Chem.*, 1965, 4, 1665; 1966, 5, 1025.
- 14 S. Fronaeus and R. Larsson, Acta Chem. Scand., 1962, 16, 1447.
- 15 C. Pecile, Inorg. Chem., 1966, 5, 210.
- 16 J. Lewis, R. S. Nyholm, and P. W. Smith, J. Chem. Soc., 1961, 4590.
- 17 A. Turco and C. Pecile, Nature (London), 1961, 191, 66.
- 18 K. W. Bagnall, J. Edwards, and A. C. Tempest, J. Chem. Soc., Dalton Trans., 1978, 295.
- 19 Li Xing-fu, Ph.D. thesis, Manchester University, 1982.
- 20 J. A. Herman and J. F. Suttle, Inorg. Synth., 1957, 5, 143.
- 21 S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3170.
- 22 D. D. Coffman and C. S. Marvel, J. Am. Chem. Soc., 1929, 51, 3496.
- 23 A. B. Burge and W. E. McKee, J. Am. Chem. Soc., 1951, 73, 4590.

Received 8th June 1983; Paper 3/955