Notes

Synthesis and Properties of Dioxo-osmium(VI) Compounds of Thio- and Seleno-ethers[†]

Stephen K. Harbron and William Levason*

Department of Chemistry, The University, Southampton SO9 5NH

A series of *trans*-dioxo-osmium(vi) complexes $[OsO_2X_2L_2]$ and $[OsO_2X_2(L-L)]$ $[X = Cl or Br; L = SMe_2; L-L = MeSCH_2CH_2SMe, o-C_6H_4(SMe)_2, MeSeCH_2CH_2SeMe, or o-C_6H_4(PPh_2)-(SMe)]$ have been prepared from OsO₄ and the ligands in ethanol-HX solution. The complexes have been characterised by i.r., electronic, and ¹H n.m.r. spectroscopy.

We have recently shown² that osmium tetraoxide and dithioether ligands (e.g. MeSCH₂CH₂SMe) react under reflux (2—3 h) in a mixture of concentrated hydrochloric acid and ethanol to form the dark green osmium(IV) complexes, [OsCl₄(dithioether)]. Subsequently we found that better yields of the Os^{IV} complexes were obtained from Na₂[OsCl₆] and the ligand in 2-methoxyethanol,² whilst under prolonged reflux with excess ligand, Os^{III} derivatives [OsCl₃(dithioether)_{1.5}] result.³ We have reinvestigated the OsO₄-HX (X = Cl or Br)-dithioether-ethanol reactions, and find that under mild conditions, *trans*-dioxo-osmium(VI) complexes can be isolated. A variety of related *trans*-[OSO₂]²⁺ (osmyl) complexes are known,⁴ but no examples with thio- or seleno-ethers have been reported; indeed complexes of Group 6B donor ligands with any high oxidation state metal ions are rare.^{2,5}

Results and Discussion

The addition of two mol equivalents of SMe_2 to a solution of OsO_4 in a mixture of concentrated HX (X = Cl or Br) and

ethanol at room temperature gave moderate yields (*ca.* 35%) of the orange-brown complexes $[OsO_2X_2(SMe_2)_2]$. The corresponding reactions using one equivalent of L-L [MeSCH₂-CH₂SMe, *o*-C₆H₄(SMe)₂, or *o*-C₆H₄(PPh₂)(SMe)] gave $[OsO_2X_2(L-L)]$. (Table 1). The dark green filtrates obtained after separation of the osmyl complexes contain the known² Os^{IV} dithioether complexes. Curiously the ligand *cis*-MeSCH=CHSMe rapidly reduced the OsO₄-HCl-EtOH mixture to green [OsCl₄(MeSCHCHSMe)], and the osmyl complex was not isolated. In contrast arylthioethers, SPh₂ or PhSCH₂CH₂SPh, did not react with the OsO₄-HX-EtOH mixture, even after several days at room temperature. The selenoethers, SeMe₂ and MeSeCH₂CH₂SeMe gave poor yields of the Os^{VI} complexes, but PhSeCH₂CH₂SePh and TeMe₂ were rapidly oxidised by OsO₄-HX-EtOH, and no evidence for an Os^{VI} complex was obtained.

Spectroscopic data on the isolated complexes are listed in Table 1, along with data on $[OsO_2X_4]^{2-}$ (X = Cl or Br) for comparison. All the complexes show a single very strong absorption in the i.r. spectra at 840—850 cm⁻¹, characteristic of

Table 1. Spectroscopic data for the complexes trans- $[OsO_2X_2L_2]$ and trans- $[OsO_2X_2(L-L)]$

		I.r. <i>ª</i> /	cm ⁻¹	¹ H N	J.m.r. ^b	
Complex	Colour	$v(OsO_2)$	v(OsX)	Solvent	δ(Me)/p.p.m.	$10^{-3}E_{\rm max}/{\rm cm}^{-1}~(\epsilon/{\rm dm}^3~{\rm cm}^{-1}~{\rm mol}^{-1})$
$[OsO_{2}Cl_{2}(SMe_{2})_{2}]$	Orange-brown	850	310	CDCl ₃	2.85 (0.73)	26.90 (615), 19.4 (210)°
$\left[OsO_{2}Br_{2}(SMe_{2})_{2}\right]$	Orange-brown	850	215	CDCl ₃	3.00 (0.88)	26.60 (740), 19.5 (sh) ^c
[OsO ₂ Cl ₂ (MeSCH ₂ CH ₂ SMe)]	Light brown	850	305	$(CD_3)_2$ SO	2.75, 2.85 (0.73)	27.77 (360), 24.35 (sh), 20.8 (sh) ^d
$[OsO_2Br_2(MeSCH_2CH_2SMe)]$	Dark brown	850	195	(CD ₃) ₂ SO	2.80, 2.95 (0.80)	26.45 (1 570), 22.22 (1 095), 18.8 (sh) ^d
$[OsO_2Cl_2{o-C_6H_4(SMe)_2}]$	Dark brown	850	312	е		
$[OsO_2Br_2{o-C_6H_4(SMe)_2}]$	Dark brown	850	205	е		
$[OsO_2Cl_2{o-C_6H_4(PPh_2)(SMe)}]$	Orange-brown	842	320	$(CD_3)_2SO$	3.24 (0.84)	30.50 (2 400), 19.5 (sh) ^d
$[OsO_2Br_2\{o-C_6H_4(PPh_2)(SMe)\}]$	Orange-brown	842		$(CD_3)_2$ SO	3.32 (0.92)	28.40 (2 830), 22.3 (sh) (420), ^d 20.5 (sh)
$[OsO_2Cl_2(SeMe_2)_2]$	Orange	845	310	CDCl ₃	2.65 (0.65)	26.45 (475), 20.6 (94), ca. 20.0 (sh) ^c
$[OsO_2Br_2(SeMe_2)_2]$	Light brown	845		CDCl ₃	2.80 (0.80)	32.5 (21 300), 25.77 (1 020), 21.45 (sh) (140) ^c
[OsO ₂ Cl ₂ (MeSeCH ₂ CH ₂ SeMe)]	Light brown	845	300	(CD ₃) ₂ SO	2.50, 2.70 (0.58)	25.88 (850), 19.6 (96) ^d
$[OsO_2Br_2(MeSeCH_2CH_2SeMe)]$	Light brown	845	200br	е		27.7 (sh), 24.05 ($-$), 22.32 ($-$), ca. 18.8 (sh) ^{d.f}
$Cs_2[OsO_2Cl_4]$	Buff	845	308			28.35 (600), 24.40 (sh) ^g
$Cs_2[OsO_2Br_4]$	Orange-brown	842				33.00 (9 000), 22.70 (sh) (180) ^h

^aAs Nujol mulls, range 4000–180 cm⁻¹. ^bCo-ordination shifts are given in parentheses. Free ligand δ (Me): SMe₂, 2.12; SeMe₂, 2.0; MeSCH₂CH₂SMe, 2.07; *o*-C₆H₄(PPh₂)(SMe), 2.4; MeSeCH₂CH₂SeMe, 2.02. ^cIn CHCl₃. ⁴In (CH₃)₂SO. ^eDecomposition. ^fSolution decomposes rapidly ε not recorded. ^eIn 1 mol dm⁻³ HCl. ^hIn 1 mol dm⁻³ HBr.

† Taken as 'Co-ordination Chemistry of Higher Oxidation States.' Part 14.1

Table 2. Elemental analyses for the complexes *trans*- $[OsO_2X_2L_2]$ and *trans*- $[OsO_2X_2(L-L)]$

С	Н	Os	Yield (%)
11.8 (11.5)	3.0 (2.9)	45.8 (45.6)	34
9.4 (9.5)	2.4 (2.4)	39.8 (37.5)	35
11.6 (11.6)	2.4 (2.4)	44.2 (45.8)	56
9.6 (9.5)	2.1 (2.0)	37.9 (37.7)	55
20.6 (20.7)	2.1 (2.2)	39.9 (41.0)	22
17.5 (17.4)	1.8 (1.8)	33.3 (34.4)	21
38.0 (37.6)	2.7 (2.8)	31.2 (31.4)	36
31.5 (31.9)	2.3 (2.4)	25.7 (26.6)	36
9.3 (9.4)	2.3 (2.3)	38.6 (37.7)	17
8.1 (8.0)	2.0 (2.0)	31.9 (31.7)	17
9.6 (9.4)	2.1 (2.0)	37.3 (37.3)	25
7.8 (8.0)	1.6 (1.7)	()	5
	C 11.8 (11.5) 9.4 (9.5) 11.6 (11.6) 9.6 (9.5) 20.6 (20.7) 17.5 (17.4) 38.0 (37.6) 31.5 (31.9) 9.3 (9.4) 8.1 (8.0) 9.6 (9.4) 7.8 (8.0)	C H 11.8 (11.5) 3.0 (2.9) 9.4 (9.5) 2.4 (2.4) 11.6 (11.6) 2.4 (2.4) 9.6 (9.5) 2.1 (2.0) 20.6 (20.7) 2.1 (2.2) 17.5 (17.4) 1.8 (1.8) 38.0 (37.6) 2.7 (2.8) 31.5 (31.9) 2.3 (2.4) 9.3 (9.4) 2.3 (2.3) 8.1 (8.0) 2.0 (2.0) 9.6 (9.4) 2.1 (2.0) 7.8 (8.0) 1.6 (1.7)	C H Os 11.8 (11.5) 3.0 (2.9) 45.8 (45.6) 9.4 (9.5) 2.4 (2.4) 39.8 (37.5) 11.6 (11.6) 2.4 (2.4) 44.2 (45.8) 9.6 (9.5) 2.1 (2.0) 37.9 (37.7) 20.6 (20.7) 2.1 (2.2) 39.9 (41.0) 17.5 (17.4) 1.8 (1.8) 33.3 (34.4) 38.0 (37.6) 2.7 (2.8) 31.2 (31.4) 31.5 (31.9) 2.3 (2.4) 25.7 (26.6) 9.3 (9.4) 2.3 (2.3) 38.6 (37.7) 8.1 (8.0) 2.0 (2.0) 31.9 (31.7) 9.6 (9.4) 2.1 (2.0) 37.3 (37.3) 7.8 (8.0) 1.6 (1.7)

Calculated values in parentheses.

$$Me_{2}E \xrightarrow{0} EMe_{2}$$

a trans- $[OsO_2]^{2+}$ group.^{4,6,7} Medium intensity bands at *ca*. 300 cm⁻¹ (Cl) and *ca*. 200 cm⁻¹ (Br) are tentatively assigned to osmium-halogen stretches, although v[Os-S(Se)] and deformations of the osmyl group are expected in this region. The electronic spectra of the complexes are similar in profile to those of $[OsO_2X_4]^{2-}$, and the recently reported $[OsO_2X_2(PR_3)_2]$,^{6,7} and the main bands are clearly due to L→Os charge-transfer transitions. Very weak absorptions are just evident in the low-energy tails of the charge-transfer bands, and these are probably the *d*-*d* transitions expected ⁸ for the Os^{VI} ion. Like all the known ⁴ osmyl complexes, the present examples are diamagnetic, with the ground-state configuration of $(d_{xy})^2$.

The ¹H n.m.r. spectra of $[OsO_2X_2(EMe_2)_2]$ (E = S or Se) in CDCl₃ show single $\delta(Me)$ resonances, indicating only one isomer is present, probably the all-*trans* form (I). The complexes of the bidentate ligands L-L are not sufficiently soluble in CDCl₃, but spectra were obtained in $(CD_3)_2SO$, except for those of the o-C₆H₄(SMe)₂ compounds which decomposed immediately. The spectra of $[OsO_2X_2(MeECH_2CH_2EMe)]$ show the two $\delta(Me)$ resonances expected due to the presence of *meso*- and DL-forms of the co-ordinated ligand. The slightly smaller co-ordination shifts observed in the latter complexes are expected since here the MeE groups are *trans* to halide, which have lower *trans* influence than the EMe₂ in (I).

The reaction of RuO₄ in aqueous HCl and a variety of thioethers (including SMe₂, SPh₂, and PhSCH₂CH₂SPh) even at 0 °C, instantly produced a black precipitate, RuO₂•nH₂O, and mixtures of the corresponding sulphoxides and sulphones. The same results were obtained using preformed [RuO₂Cl₄]²⁻ as starting material.

The complexes described above are unusual as they contain ligands which are only moderate σ -donors bound to a metal in a high formal oxidation state (M^{VI}). The only other examples of M^{VI} thioethers reported appear to be of W^{VI} viz. 2WSCl₄· MeSCH₂CH₂SMe,⁹ [WCl₆(SMe₂)], and [WCl₆(MeSCH₂CH₂-SMe)],¹⁰ and we know of no selenoethers bound to a metal in oxidation state greater than +4.⁵

Experimental

Physical measurements were made as described elsewhere. Osmium was determined spectrophotometrically as the thiourea complex, after decomposition and oxidation of the complexes as described by Roth and Hinckley.¹¹ Considerable difficulty was experienced in obtaining reproducible Os analyses, which appear to stem largely from the problems of quantitatively oxidising the Os to OsO₄ without loss (*cf.* ref. 11). The osmyl complexes were stored below 0 °C in the dark. Cs₂[OsO₂X₄] (X = Cl or Br) were prepared by the method of Lott and Symons.⁸

 $[OsO_2Cl_2(MeSCH_2CH_2SMe)]$.—A solution of OsO_4 (0.143 g, 0.56 mmol) in a mixture of ethanol (4 cm³) and conc. hydrochloric acid (0.5 cm³) was treated with MeSCH₂CH₂SMe (0.062 g, 0.56 mmol) and the mixture stirred for 10 min, after which a light brown powder had deposited. This was collected, washed with H₂O (2 × 10 cm³), ethanol (2 × 10 cm³), and diethyl ether (3 × 10 cm³), and dried *in vacuo* (0.13 g, 56%). The bromide was made similarly using conc. HBr.

 $[OsO_2Cl_2\{o-C_6H_4(PPh_2)(SMe)\}]$.—To OsO_4 (0.5 mmol) in ethanol (3 cm³) and conc. HCl (0.5 cm³), was added the ligand (0.154 g, 0.5 mmol) in CH₂Cl₂ (2 cm³). The mixture was stirred for 30 min, when an orange-brown solid was deposited. The CH₂Cl₂ was removed under reduced pressure, the solid collected and washed as described above (0.1 g, 36%).

The other complexes were generally prepared as described above for the 2,5-dithiahexane complex, those of the selenium ligands being prepared at 0 °C, and washed with cooled (<0 °C) solvents to minimise decomposition. Analytical data are given in Table 2.

Acknowledgements

We thank the S.E.R.C. for support and for a postgraduate studentship (to S. K. H.), Mr. E. G. Hope for the sample of 2,5-diselenahexane, and Dr. M. Tajik for the data on $[OsO_2X_4]^{2^-}$.

References

- 1 Part 13, H. C. Jewiss, W. Levason, M. Tajik, M. Webster, and N. Walker, preceding paper.
- 2 D. J. Gulliver, W. Levason, K. G. Smith, M. J. Selwood, and S. G. Murray, J. Chem. Soc., Dalton Trans., 1980, 1872.
- 3 R. Ali, S. J. Higgins and W. Levason, Inorg. Chim. Acta, 1984, 84, 65.

- 4 For a review see D. J. Gulliver and W. Levason, Coord. Chem. Rev., 1982, **46**, 1.
- 5 S. G. Murray and F. R. Hartley, Chem. Rev., 1981, 81, 365.
- 6 J. E. Armstrong and R. A. Walton, Inorg. Chem., 1983, 22, 1545.
- 7 D. J. Salmon and R. A. Walton, *Inorg. Chem.*, 1978, 17, 2379. 8 K. A. K. Lott and M. C. R. Symons, *J. Chem. Soc.*, 1960, 973.
- 9 D. Britnell, G. W. A. Fowles, and D. A. Rice, J. Chem. Soc., Dalton Trans., 1975, 213.

Received 8th May 1984; Paper 4/735