The Preparation and Co-ordination Chemistry of 2,2': $6^{\prime}, \mathbf{2 ' \prime}^{\prime \prime}$-Terpyridine Macrocycles. Part 4. ${ }^{1}$ Structural Characterisation of an Intermediate in a Transient Template Reaction \dagger

Edwin C. Constable, Fatima K. Khan, Jack Lewis,* Michael C. Liptrot, and Paul R. Raithby University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

Abstract

The complex [$\left.\mathrm{SnMe}_{2} \mathrm{~L}\right] \mathrm{Cl}_{2}\left[\mathrm{~L}=6,6^{\prime \prime}\right.$-bis(α-methylhydrazino) - 4^{\prime}-phenyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine] is involved in the dimethyltin(iv) mediated transient template condensation of L with glyoxal; the complex has been structurally characterised, and shown to possess a pentagonal-bipyramidal geometry about the metal. The transient template effect is seen to originate in a reduction in the hole size of the N_{5} donor set on passing from the open-chain ligand to the macrocycle.

We have recently described the template synthesis of quinquedentate N_{5} donor macrocyclic complexes incorporating a $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine moiety in the ligand. ${ }^{1-3}$ We have also described a novel 'transient' template effect in which hole-size mismatch effects result in the formation of metal-free macrocycles. In particular, we have demonstrated the use of dimethyltin(IV) as a transient template, ${ }^{1}$ and in this paper we discuss the crystal and molecular structure of a macrocyclic precursor incorporating a dimethyltin(IV) group.

Experimental

Crystal and Molecular Structure Determination of [$\left.\mathrm{SnMe}_{2} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right] \mathrm{Cl}$.-The reaction between dimethyltin(Iv) dichloride and $6,6^{\prime \prime}$-bis(α-methylhydrazino) -4^{\prime}-phenyl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridine (L) in refluxing chlorobenzene leads to the formation of [$\left.\mathrm{SnMe}_{2} \mathrm{~L}\right] \mathrm{Cl}_{2}$ as a pale yellow salt. Recrystallisation from methanol in the presence of one mol equiv. of ammonium hexafluorophosphate yielded yellow rectangular crystals corresponding to $\left[\mathrm{SnMe}_{2} \mathrm{~L}\right]\left[\mathrm{PF}_{6}\right] \mathrm{Cl}$.

The crystals were air stable and several were mounted on glass fibres: a crystal of dimensions ca. $0.426 \times 0.334 \times 0.293$ mm was used for data collection.

Crystal data. $\left[\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{Sn}\right]\left[\mathrm{PF}_{6}\right] \mathrm{Cl}, M=726.66$, triclinic, $a=7.899(3), b=11.104(3), c=17.276(4) \AA, \alpha=98.66(2), \beta=$ 95.13(3), $\gamma=107.08(2)^{\circ}, \quad U=1417.55 \AA^{3}$ (by least-squares refinement from 40 automatically centred reflections in the range $15<2 \theta<25^{\circ}$), space group $P \overline{1}$ (no. 2), D_{m} not measured, $Z=2, D_{\mathrm{c}}=1.702 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=728$, Мo- K_{α} radiation, $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=10.79 \mathrm{~cm}^{-1}$.

Data collection and processing. ${ }^{4}$ A Stoe four-circle diffractometer, in ω / θ scan mode with a minimum ω scan width of 1.2°, scan speed $0.0125-0.05^{\circ} \mathrm{s}^{-1}$, was used with graphite-monochromated Mo- K_{α} radiation; 5384 reflections were measured $\left(5.0<2 \theta<50.0^{\circ},+h, \pm k, \pm l\right) .4276$ Unique observed reflections $[F>4 \sigma(F)]$ were obtained after averaging and correcting for absorption (transmission factors, 0.191-0.237).

Structure analysis and refinement. The Sn atom was located by a Patterson synthesis, and remaining non-hydrogen atoms from subsequent Fourier difference syntheses. Blocked-cascade least-squares refinement with all non-hydrogen atoms assigned anisotropic thermal parameters. Methyl and aromatic ring H atoms were placed in geometrically idealised positions. Methyl groups were treated as rigid bodies, and each type of H assigned a common isotropic thermal parameter. The hydrazine H

[^0]

Figure. Molecular structure of the $\left[\mathrm{SnMe}_{2} \mathrm{~L}\right]^{2+}$ cation
atoms were not located. The weighting scheme $w=1 /\left[\sigma^{2}(F)+\right.$ $\left.0.0005|F|^{2}\right]$ gave satisfactory agreement analyses. Final R and R^{\prime} values are 0.062 and 0.067 . All computations were performed on the University of Cambridge IBM 370/165 computer using a version of SHELX. ${ }^{5}$ Complex neutral-atom scattering factors were employed. ${ }^{6}$ The final atomic fractional co-ordinates are listed in Table 1.

Results and Discussion

Description of the Structure.-The molecular structure of the $\left[\mathrm{SnMe}_{2} \mathrm{~L}\right]^{2+}$ cation is illustrated in the Figure, along with the numbering scheme adopted. The hydrogen atoms have been omitted for clarity. Associated bond lengths and bond angles are given in Tables 2 and 3 respectively.
X-Ray analysis confirms the presence of a slightly distorted pentagonal-bipyramidal $\mathrm{N}_{5} \mathrm{C}_{2}$ tin(iv) environment. The N_{5} donor set of atoms defining the equatorial plane are coplanar (the maximum deviation from the least-squares plane is $0.03 \AA$) and the tin atom is coplanar with this plane. The two axial positions are taken up by two co-ordinated methyl groups.

The angles subtended by adjacent nitrogen-donor atoms at the $\mathrm{tin}(\mathrm{iv})$ centre lie in the range $68-82^{\circ}$. The largest angle of $81.9(2)^{\circ}$ for $\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{N}(7)$ is in keeping with the non-bonded distance of $3.22(1) \AA$ between atoms $\mathrm{N}(1)$ and $\mathrm{N}(7)$. The $\mathrm{Sn}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{Sn}(1)-\mathrm{N}(7)-\mathrm{N}(6)$ angles suggest $s p^{3}$ hybridization at $N(1)$ and $N(7)$, although this cannot be unequivocally established since the amine hydrogen atoms were not located directly. The two non-co-ordinated nitrogen atoms, $\mathrm{N}(2)$ and $\mathrm{N}(6)$, display planar $s p^{2}$ hybridization with the sum of the bond angles around them being 356.4 and 360.0° respectively.

Table 1. Atomic co-ordinates ($\times 10^{4}$)

Atom	X / a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
$\mathrm{Sn}(1)$	$10965(1)$	$2529(1)$	3 151(1)	N(5)	$8724(8)$	$1000(5)$	3 579(3)
N(1)	13 671(11)	$4353(7)$	3 431(4)	C(18)	$7426(10)$	179(7)	3047 (4)
N(2)	14 211(10)	4816 (7)	2 732(4)	C(19)	$5934(11)$	-692(7)	3 254(4)
C(1)	15 759(15)	$5926(10)$	2 846(6)	C(20)	$5892(12)$	-709(8)	4 055(5)
N(3)	11 822(8)	$3130(5)$	$1995(3)$	C(21)	7 257(11)	121(8)	4 608(4)
C(2)	13 223(10)	4 196(7)	$2015(4)$	C(22)	8 647(10)	999(7)	$4361(4)$
C(3)	13 680(11)	4 642(7)	$1312(5)$	N(6)	10 043(9)	$1824(7)$	4 884(3)
C(4)	12 626(11)	$3950(8)$	602(4)	C(23)	9 933(13)	$2030(10)$	$5747(4)$
C(5)	11 208(10)	$2849(7)$	584(4)	N(7)	$11337(11)$	$2823(7)$	4 619(4)
C(6)	$10858(9)$	2 475(6)	1289 (4)	C(24)	12 616(12)	$1325(8)$	3 169(5)
N(4)	9 041(8)	$1210(5)$	$2100(3)$	C(25)	$9482(15)$	3 842(8)	3 278(5)
C(7)	$9339(9)$	$1353(7)$	1346 (4)	P(1)	$9704(3)$	2 688(2)	8 217(1)
C(8)	8 277(10)	504(7)	699(4)	F(1)	$9477(9)$	3 628(6)	8 985(4)
C(9)	$6810(9)$	-534(6)	789(4)	F(2)	$11771(8)$	$3016(7)$	8602(4)
C(10)	$6500(10)$	-624(7)	1566 (4)	F(3)	$10064(13)$	$1802(6)$	$7500(4)$
C(11)	7 636(9)	242(6)	2 199(4)	F(4)	9 214(11)	$1522(6)$	$8685(4)$
C(12)	5 620(9)	-1410(6)	113(4)	F(5)	$10265(10)$	3 855(6)	$7781(4)$
C(13)	$5861(11)$	-1 259(7)	-678(4)	F(6)	7 707(9)	2386 (9)	$7872(5)$
C(14)	$4739(11)$	-2 109(8)	-1305(4)	$\mathrm{Cl}(1)$	$3640(2)$	-3596(2)	5066 (1)
C(15)	3 308(11)	- $3130(8)$	-1188(5)				
C(16)	3 039(11)	-3286(7)	-445(5)				
C(17)	$4179(10)$	-2432(7)	213(4)				

Table 2. Bond lengths (\AA)

$\operatorname{Sn}(1)-\mathrm{N}(1)$	$2.425(7)$	$\mathrm{C}(11)-\mathrm{C}(18)$	$1.499(10)$	$\mathrm{Sn}(1)-\mathrm{N}(3)$	$2.295(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.425(10)$
$\mathrm{Sn}(1)-\mathrm{N}(4)$	$2.268(5)$	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.396(10)$	$\mathrm{Sn}(1)-\mathrm{N}(5)$	$2.326(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.372(9)$
$\mathrm{Sn}(1)-\mathrm{N}(7)$	$2.489(6)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.400(11)$	$\mathrm{Sn}(1)-\mathrm{C}(24)$	$2.126(10)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.349(12)$
$\mathrm{Sn}(1)-\mathrm{C}(25)$	$2.121(12)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.411(9)$	$\mathrm{N}(1)-\mathrm{N}(2)$	$1.435(10)$	$\mathrm{N}(5)-\mathrm{C}(18)$	
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.432(11)$	$\mathrm{N}(5)-\mathrm{C}(22)$	$1.358(9)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1.368(9)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.401(8)$
$\mathrm{N}(3)-\mathrm{C}(2)$	$1.356(8)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.390(11)$	$\mathrm{N}(3)-\mathrm{C}(6)$	$1.356(8)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.375(10)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.415(11)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.385(11)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.395(10)$	$\mathrm{C}(22)-\mathrm{N}(6)$	$1.361(9)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.388(10)$	$\mathrm{N}(6)-\mathrm{C}(23)$	$1.488(10)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.371(10)$	$\mathrm{N}(6)-\mathrm{N}(7)$	$1.434(10)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.477(9)$	$\mathrm{P}(1)-\mathrm{F}(1)$	$1.618(7)$	$\mathrm{N}(4)-\mathrm{C}(7)$	$1.368(9)$	$\mathrm{P}(1)-\mathrm{F}(2)$	$1.620(7)$
$\mathrm{N}(4)-\mathrm{C}(11)$	$1.344(8)$	$\mathrm{P}(1)-\mathrm{F}(3)$	$1.563(8)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.376(8)$	$1.600(7)$	
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.413(9)$	$\mathrm{P}(1)-\mathrm{F}(5)$	$1.568(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.399(10)$	$\mathrm{P}(1)-\mathrm{F}(4)$	$1.55(6)$
$\mathrm{C}(9)-\mathrm{C}(12)$	$1.456(8)$		$\mathrm{C}(10)-\mathrm{C}(11)$	$1.388(8)$			

Scheme.

The two outer pyridine rings make angles of 8.0 and 7.0° with the central pyridine ring, and the dihedral angle between this central ring and the phenyl ring is 2.4°. This suggests that while a completely planar system would give maximum π-overlap a slight twisting of the ring system reduces steric crowding between the ring hydrogens. Even with this distortion there are a number of intramolecular ring-hydrogen contacts which are significantly shorter than the sum of the van der Waals radii of $2.4 \AA: \quad H(5) \cdots H(8), \quad 2.026 ; \quad H(8) \cdots H(13), \quad 1.925$; $H(10) \cdots H(17), 1.877 ; H(10) \cdots H(19), 2.030 \AA$.

The chloride and the hexafluorophosphate anions are not coordinated to the cation.

The $\mathrm{Sn}-\mathrm{N}$ bond distances fall in the range $2.27-2.49 \AA$; the long $\mathrm{Sn}-\mathrm{N}($ amine $)$ [2.425(7) and 2.489(6) \AA] and the shorter $\mathrm{Sn}-\mathrm{N}($ terminal pyridine) [2.295(6) and $2.326(6) \AA]$ and $\mathrm{Sn}-$ N (central pyridine) $[2.268(5) \AA]$ bonds are similar to the $\mathrm{Sn}-\mathrm{N}$ bond distances found in the cation of the compound [$\mathrm{SnMe}_{2} \mathrm{Cl}$ (terpy) $]\left[\mathrm{SnMe}_{2} \mathrm{Cl}_{3}\right]$, the adduct formed from the reaction of dimethyltin(IV) dichloride and $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy). ${ }^{7}$ An analogy is also found in the pentagonal-

Table 3. Bond angles (${ }^{\circ}$)

$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{N}(3)$	69.8(2)	$\mathrm{Sn}(1)-\mathrm{N}(5)-\mathrm{C}(22)$	121.3(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	117.5(6)
$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{N}(5)$	150.5(2)	$\mathrm{C}(11)-\mathrm{C}(18)-\mathrm{N}(5)$	115.8(6)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	117.8(6)
$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{C}(24)$	87.9(3)	$\mathrm{N}(5)-\mathrm{C}(18)-\mathrm{C}(19)$	122.8(6)	$\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	114.3(6)
$\mathrm{N}(3)-\mathrm{Sn}(1)-\mathrm{N}(4)$	69.9(2)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	120.3(7)	$\mathrm{Sn}(1)-\mathrm{N}(4)-\mathrm{C}(7)$	120.3(4)
$\mathrm{N}(3)-\mathrm{Sn}(1)-\mathrm{N}(7)$	151.7(2)	$\mathrm{N}(5)-\mathrm{C}(22)-\mathrm{C}(21)$	120.7(6)	$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{C}(11)$	118.5(5)
$\mathrm{N}(3)-\mathrm{Sn}(1)-\mathrm{C}(25)$	91.5(3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{N}(6)$	121.6(7)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	123.5(6)
$\mathrm{N}(4)-\mathrm{Sn}(1)-\mathrm{N}(7)$	138.3(2)	$\mathrm{C}(22)-\mathrm{N}(6)-\mathrm{N}(7)$	119.8(6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.06)
$\mathrm{N}(4)-\mathrm{Sn}(1)-\mathrm{C}(25)$	93.8(3)	$\mathrm{Sn}(1)-\mathrm{N}(7)-\mathrm{N}(6)$	111.6(4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(12)$	122.06)
$\mathrm{N}(5)-\mathrm{Sn}(1)-\mathrm{C}(24)$	89.8(3)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(3)$	175.9(5)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.6(6)
$\mathrm{N}(7)-\mathrm{Sn}(1)-\mathrm{C}(24)$	87.5(3)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(5)$	90.0(4)	$\mathrm{N}(4)-\mathrm{C}(11)-\mathrm{C}(18)$	114.1(5)
$\mathrm{C}(24)-\mathrm{Sn}(1)-\mathrm{C}(25)$	172.8(3)	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(3)$	88.8(5)	$\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{C}(13)$	121.7(6)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(1)$	116.3(7)	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(5)$	89.5(4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	117.0(6)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	124.8(8)	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(4)$	90.6(4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.2(7)
$\mathrm{Sn}(1)-\mathrm{N}(3)-\mathrm{C}(6)$	120.3(4)	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(6)$	92.8(5)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.7(7)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	118.2(7)	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(6)$	91.3(5)	$\mathrm{Sn}(1)-\mathrm{N}(5)-\mathrm{C}(18)$	118.8(5)
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	121.0(6)	$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{N}(4)$	139.7(2)	$\mathrm{C}(18)-\mathrm{N}(5)-\mathrm{C}(22)$	119.6 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.3(7)	$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{N}(7)$	81.9(2)	$\mathrm{C}(11)-\mathrm{C}(18)-\mathrm{C}(19)$	121.3(5)
$\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	123.1(6)	$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{C}(25)$	88.1(3)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	117.1(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.6(5)	$\mathrm{N}(3)-\mathrm{Sn}(1)-\mathrm{N}(5)$	139.7(2)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	119.4 (7)
$\mathrm{Sn}(1)-\mathrm{N}(4)-\mathrm{C}(11)$	121.2(4)	$\mathrm{N}(3)-\mathrm{Sn}(1)-\mathrm{C}(24)$	$92.8(3)$	$\mathrm{N}(5)-\mathrm{C}(22)-\mathrm{N}(6)$	117.6 (6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(4)$	115.0(5)	$\mathrm{N}(4)-\mathrm{Sn}(1)-\mathrm{N}(5)$	69.8(2)	$\mathrm{C}(22)-\mathrm{N}(6)-\mathrm{C}(23)$	120.7(7)
$\mathrm{N}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	121.4(6)	$\mathrm{N}(4)-\mathrm{Sn}(1)-\mathrm{C}(24)$	$93.1(3)$	$\mathrm{C}(23)-\mathrm{N}(6)-\mathrm{N}(7)$	115.9(6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	116.1(5)	$\mathrm{N}(5)-\mathrm{Sn}(1)-\mathrm{N}(7)$	68.6 (2)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(2)$	87.2(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(12)$	121.8(6)	$\mathrm{N}(5)-\mathrm{Sn}(1)-\mathrm{C}(25)$	90.7(3)	$F(1)-P(1)-F(4)$	89.2(4)
$\mathrm{N}(4)-\mathrm{C}(11)-\mathrm{C}(10)$	122.3(6)	$\mathrm{N}(7)-\mathrm{Sn}(1)-\mathrm{C}(25)$	86.0(3)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(6)$	91.2(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(18)$	123.6(6)	$\mathrm{Sn}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	112.5(4)	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(4)$	88.1(4)
$\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{C}(17)$	$121.3(6)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$118.9(6)$	$F(2)-P(1)-F(6)$	178.3(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.6(7)	$\mathrm{Sn}(1)-\mathrm{N}(3)-\mathrm{C}(2)$	120.2(4)	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(5)$	90.0(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.4(6)	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(6)$	119.4(6)	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(5)$	177.5(4)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	121.1(7)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	120.7(6)	$\mathrm{F}(5)-\mathrm{P}(1)-\mathrm{F}(6)$	91.1(5)

bipyramidal complex [$\mathrm{SnMe}_{2}($ terpy $)(\mathrm{NCS})_{2}$], which has bond lengths $\mathrm{Sn}-\mathrm{N}$ (terminal pyridine) of $2.479(3)$ and $2.570(4) \AA$, and $\mathrm{Sn}-\mathrm{N}$ (central pyridine) of $2.497(3) \AA .^{8}$

The condensation of L with glyoxal to produce the Schiffbase macrocycle L' (Scheme) proceeds readily about a nickel(II) or manganese (II) template; in each case the product is the metal complex of the macrocycle $L^{\prime} .{ }^{1}$ In the absence of a template ion, predominantly polymeric products are obtained. When dimethyltin(Iv) is used as the template ion, the metal-free macrocycle L^{\prime} is obtained. The labilisation of the tin(IV) in the macrocyclic complex is undoubtedly thermodynamic in origin (the formation of SnO_{2}), although we consider the reduction of hole size from the hydrazine ($2.32 \AA$) to the macrocycle ($2.10 \AA$) results in destabilisation of the macrocyclic complex.

Acknowledgements

We would like to thank the S.E.R.C. for the award of a Research Studentship (to M. C. L.) and the Commission for the Royal

Exhibition of 1851 for the award of a research fellowship (to E. C. C.).

References

1. Part 3, E. C. Constable, J. Lewis, M. C. Liptrot, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1984, 2177.
2 E. C. Constable, J. Lewis, M. C. Liptrot, and M. Schröder, Polyhedron, 1983, 2, 301.
3 E. C. Constable and J. Lewis, Polyhedron, 1982, 1, 303.
4 W. Clegg, Acta Crystallogr., Sect A, 1981, 37, 33.
5 G. M. Sheldrick, SHELX crystallographic computing package, University of Cambridge, 1976.
6 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
7 F. W. B. Einstein and B. R. Penfold, J. Chem. Soc. A, 1968, 3019.
8 D. V. Naik and W. R. Scheidt, Inorg. Chem., 1973, 12, 272.

Received 1st March 1984; Paper 4/347

[^0]: \dagger Supplementary data available (No. SUP 56103, 5 pp .): H -atom coordinates, thermal parameters, hydrogen-bond angles. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1985, Issue 1, pp. xvii-xix. Structure factors are available from the editorial office.

