Insertion of NO into Transition Metal–Aryl Bonds: Formation of Zirconium Complexes containing the $[ON(R)NO]^-$ (R = Ph or p-MeC₆H₄) Ligand

Christopher J. Jones, Jon A. McCleverty,* and Anne S. Rothin

Department of Chemistry, The University of Birmingham, P. O. Box 363, Birmingham B15 2TT

Reaction of $[Zr(\eta-C_{5}H_{5})_{2}Ph_{2}]$ with NO in benzene afforded $[Zr(\eta-C_{5}H_{5})_{2}Ph\{ON(Ph)NO\}]$. Treatment of $[Zr(\eta-C_{5}H_{5})_{2}Cl_{2}]$ with Ag[ON(R)NO] (R = Ph or p-MeC₆H₄) gave $[Zr(\eta-C_{5}H_{5})_{2}-Cl\{ON(R)NO\}]$, whereas with $[NH_{4}][ON(C_{6}H_{4}Me-p)NO]$, only $[Zr\{ON(C_{6}H_{4}Me-p)NO\}_{4}]$ was formed.

Reaction of NO with d^0 and d^{10} transition metal-alkyls affords complexes containing the *N*-alkyl-*N*-nitrosohydroxylaminatoligand, $[ON(R)NO]^{-.1^{-3}}$ Thus $[Zr(\eta-C_5H_5)_2Me_2]$ and $ZnMe_2$ were converted into $[Zr(\eta-C_5H_5)_2\{ON(Me)NO\}_2]^4$ and $[Zn\{ON(Me)NO\}_2]$,⁵ respectively. It is also known that methyl group migration to NO can occur in such species as $[Co-(\eta-C_5H_5)Me(NO)]$, affording complexes containing MeNO,⁶ and that direct alkylation of transition metal-bonded NO can afford, presumably, alkylnitroso-intermediates which rearrange to more stable organo-nitrogen derivatives.^{7,8}

It has not been clearly demonstrated, however, that transition metal-*aryl* complexes can undergo 'NO insertion' into the M-C(aryl) bond, and in this paper we describe the reactions of the 'model compound,' $[Zr(\eta-C_5H_5)_2Ph_2]$, with NO, and our attempts to characterise the product.

Results and Discussion

When NO was passed into a benzene solution of $[Zr(\eta-C_5H_5)_2Ph_2]$, the mixture became yellow and, on evaporation and work-up, a white solid was obtained. This solid was 'dried' *in vacuo* at 60–70 °C for at least 2 d, whereupon elemental analyses showed that only two moles of NO were taken up per mole of zirconium complex, the data being consistent with the formulation $[Zr(\eta-C_5H_5)_2Ph{ON(Ph)NO}]$.

I.r. spectroscopic data obtained from the new compound suggested that the chelated ON(Ph)NO ligand was present, the bands at 1 345, 1 295, 1 218, and 928 cm⁻¹ (Table 1) being characteristic of the $M{ON(R)NO}$ chelate ring.⁹ The ¹H n.m.r.

spectrum of $[Zn(\eta-C_5H_5)_2Ph{\dot{O}N(Ph)NO}]$ in several solvents (Table 2) revealed a sharp singlet due to the η -C₅H₅ protons at δ ca. 5.9, which was relatively solvent independent (except in C₆D₆), and a broad multiplet due to the aryl protons, in the ratio 1:1, as expected.

In order to substantiate further the nature of $[Zr(\eta-C_5H_5)_2-Ph\{ON(Ph)NO\}]$, we prepared the related chloro-complexes, $[Zr(\eta-C_5H_5)_2Cl\{ON(R)NO\}]$ (R = Ph or p-MeC₆H₄), by reacting $[Zr(\eta-C_5H_5)_2Cl_2]$ with Ag[ON(R)NO]. The i.r. spectra of these complexes were very similar to those of their phenyl analogues, especially in the regions characteristic of the ON(R)NO ligand, viz. ca. 1 350, ca. 1 300, ca. 1 210, and ca. 930 cm⁻¹. The ¹H n.m.r. spectra of the complexes were consistent with the presence of two C₅H₅ rings per ON(R)NO group (Table 2). Furthermore, we noted that the chemical shifts of the aryl protons, and of the methyl protons in p-MeC₆H₄, exhibited

 Table 1. I.r. spectroscopic data obtained from zirconium complexes in KBr discs

Compound	Bands characteristic of [ON(R)NO] ⁻ (cm ⁻¹)		
$[Zr(\eta-C_5H_5)_2Ph{ON(Ph)NO}]$	1 345s, 1 295vs, 1 218s, 928s		
$[Zr(\eta-C_5H_5)_2Cl{ON(C_6H_4Me-p)NO}]$	1 350s, 1 298vs, 1 205s, 925s		
$[Zr(\eta-C_sH_s)_2Cl{ON(Ph)NO}]$	1 362vs, 1 300vs, 1 215vs,		
	935vs		
$[Zr{ON(C_6H_4Me-p)NO}_4]$	1 360s, 1 305vs, 1 215vs,		
	1 175vs, 945vs		
Ag[ON(Ph)NO]	1 340vs, 1 275vs, 1 280s, 920s		
$Ag[ON(C_6H_4Me-p)NO]$	1 335s, 1 275s, 1 230s, 920s		

Table 2. ¹H N.m.r. spectra (δ/p.p.m., internal SiMe4 reference) for zirconium complexes

Complex	Solvent	δ(C ₅ H ₅)	$\delta(C_6H_5)$	δ(CH ₃)
$[Zr(\eta-C_5H_5)_2Ph{ON(Ph)NO}]$	C_6D_6	5.79	6.838.00°	
	CDCl ₃	5.95	6.908.00°	
	CD,Cl,	5.95 (1) ^b	$6.72 - 7.95 (1)^{a,b}$	
$[Zr(\eta-C_5H_5)_2Cl{ON(Ph)NO}]$	$C_6 D_6$	5.98	6.688.02	
	CĎČĺ ₁	$6.24 (2)^{b}$	$7.78 - 8.04 (1)^{b}$	
	CD,Cl,	6.23	7.3-8.0	
	$(CD_3)_2CO$	6.28	7.388.14	
$[Zr(\eta-C_5H_5)_2Cl{ON(C_6H_4Me-p)NO}]$	$C_6 D_6$	5.98	7.24°	1.88
	CĎČĺ,	6.24 (10) ^b	7.54 (4) ^{b,c}	2.42 $(3)^{b}$
	CD,CI,	6.20	7.50	2.39
	$(CD_3)_2CO$	6.24	7.54°	2.42
$[Zr(\eta-C_5H_5)_2Cl_2]$	CD,Cl,	6.48		
$[Zr(\eta-C_5H_5)_2Ph_2]$	CS ₂	6.02	6.47.36	
^a Zr-C ₆ H ₅ + ON(C ₆ H ₅)NO. ^b Relative area in parenthese	s. $^{\circ}A_{2}B_{2}$ spectru	m.		

a marked solvent dependence. This phenomenon has also been observed in the δ values for the methyl protons in [Zr- $(\eta-C_{5}H_{5})_{2}Me\{ON(Me)NO\}]$, prepared by reaction of NO with [Zr($\eta-C_{5}H_{5})_{2}Me_{2}$].⁴

When $[Zr(\eta-C_5H_5)_2Cl_2]$ was treated with $[NH_4][ON-(C_6H_4Me-p)NO]$, however, complete displacement of the ligands at the metal occurred, and only $[Zr\{ON(C_6H_4Me-p)-NO\}_4]$ was isolated in spite of using less than four mol equivalents of the NH_4^+ salt. This species was also formed by direct reaction of $ZrCl_4$ with Ag $[ON(C_6H_4Me-p)NO]$. Cupferron $\{[NH_4][ON(Ph)NO]\}$ has long been used as an analytical reagent for Zr and, although the composition of the zirconium 'cupferronates' is variable and dependent on reaction time, acidity, and method of preparation, $[Zr\{ON(Ph)NO\}_4]$ has been isolated and characterised crystallographically.¹⁰ The zirconium atom is eight-co-ordinate, the O atoms forming an irregular dodecahedron with triangular faces. We presume that $[Zr\{ON(C_6H_4Me-p)NO\}_4]$ is similar.

Although we have not demonstrated conclusively that the ON(R)NO ligand in $[Zr(\eta-C_5H_5)_2X\{ON(R)NO\}]$ (X = Ph or Cl) is bidentate, we feel that this is a reasonable supposition, especially in view of the structure of $[Zr\{ON(Ph)NO\}_4]$. Accordingly, the metal in $[Zr(\eta-C_5H_5)_2Ph\{ON(Ph)NO\}]$ is formally nine-co-ordinate, assuming that the cyclopentadienyl rings each occupy three co-ordination sites. The inertness of the second Zr-Ph bond towards NO 'insertion' may therefore be understood in terms of the inability or unwillingness of the metal to increase its co-ordination number further. A similar situation has been apparently encountered in $[WMe_4\{ON-(Me)NO\}_2]$, which is eight-co-ordinate, and where further NO 'insertion' into W-Me bonds, which would require an increase in co-ordination number, does not occur.²

From the results reported here, we conclude that 'insertion' of NO into d^0 and d^{10} metal-aryl complexes will probably occur in a manner entirely similar to that of their alkyl analogues.

Experimental

Cupferron, $[NH_4][ON(Ph)NO]$, and $[NH_4][ON(C_6H_4Me-p)NO]$ were prepared as described in the literature.¹¹ Ag[ON(R)NO] (R = Ph or p-MeC_6H_4) has been reported earlier ¹² and $[Zr(\eta-C_5H_5)_2Cl_2]$ and $ZrCl_4$ were supplied by Aldrich Chemical Co. Ltd. NO gas was prepared by reaction of NaNO₂, FeSO₄, and H₂SO₄ in water, as described elsewhere.¹³ It was purified by passage through 10 mol dm⁻³ KOH solution, a column of KOH pellets, and a trap cooled to -78 °C (CO₂-acetone). All reactions were carried out under nitrogen and all solvents were degassed with N₂ before use. All yields are quoted relative to the Zr-containing starting material.

I.r. spectra were recorded using a PE 297 spectrophotometer, and ¹H n.m.r. spectra were obtained using Varian HA100 or JEOL JMN-PMX 60 spectrometers. Elemental analyses were determined by the Microanalytical Laboratory of this Department.

Reaction between $[Zr(\eta-C_5H_5)_2Ph_2]$ and NO: $[Zr(\eta-C_5H_5)_2-(Ph){ON(Ph)NO}]$.—A solution of phenyl-lithium (13 cm³, 0.87 mol dm⁻³) was added to a suspension of $[Zr(\eta-C_5H_5)_2Cl_2]$ (1.5 g) in degassed diethyl ether (Na-dried, 20 cm³) at -40 °C (chloroform-CO₂ slush-bath). The mixture was stirred at this temperature for 2 h, then warmed to 0 °C, and evaporated to dryness, the resulting solid being washed with n-pentane (50 cm³) and dried *in vacuo*. The solid was extracted into benzene (50 cm³) (CAUTION: carcinogen) and the solution filtered. The clear filtrate of $[Zr(\eta-C_5H_5)_2Ph_2]$ was then treated with a stream of NO gas for 10—15 min. The resulting pale yellow solution was degassed with N₂ and evaporated to dryness, the

remaining solid being twice recrystallised from benzenen-hexane affording the complex as a white microcrystalline powder. The compound was dried *in vacuo* at 60–70 °C for 2–3 d (yield 0.98 g, 44%) (Found: C, 60.6; H, 4.9; N, 6.2. Calc. for $C_{22}H_{20}N_2O_2Zr$: C, 60.6; H, 4.6; N, 6.4%).

Preparation of $[Zr(\eta-C_5H_5)_2Cl\{ON(Ph)NO\}]$.—Ag[ON-(Ph)NO] (1.8 g) was added to a suspension of $[Zr(\eta-C_5H_5)_2Cl_2]$ (2.0 g) in benzene (30 cm³). The mixture was stirred in the dark for 2 d at room temperature, and the resulting solution filtered to remove AgCl, giving a pale yellow filtrate. This was reduced in volume *in vacuo* and treated with n-hexane. Further evaporation *in vacuo* afforded a white solid, and the mixture was then allowed to stand for 1 h to assist completion of crystallisation. The white complex was filtered off and dried *in vacuo* at 50 °C for 5 h (1.92 g, 71%) (Found: C, 48.5; H, 3.9; Cl, 9.2; N, 6.9. Calc. for $C_{16}H_{15}ClN_2O_2Zr$: C, 48.8; H, 3.8; Cl, 9.0; N, 7.1%).

 $[Zr(\eta-C_5H_5)_2Cl\{ON(C_6H_4Me-p)NO\}]$ was prepared similarly using $[Zr(\eta-C_5H_5)_2Cl_2]$ (1.0 g) and Ag $[ON(C_6H_4Me-p)-NO]$ (1.0 g), and was isolated as a white solid (0.85 g, 61%) (Found: C, 49.7; H, 4.2; Cl, 8.6; N, 6.6. Calc. for $C_{17}H_{17}ClN_2O_2Zr$: C, 50.0; H, 4.2; Cl, 8.7; N, 6.9%).

Reaction of $[Zr(\eta-C_5H_5)_2Cl_2]$ with $[NH_4][ON(C_6H_4Me-p)-NO]$.— $[Zr(\eta-C_5H_5)Cl_2]$ (0.5 g) was added to a warm solution of $[NH_4][ON(C_6H_4Me-p)NO]$ (0.58 g) in dry ethanol (50 cm³). After a few seconds a white solid began to precipitate and the mixture was stirred at 50 °C for 2 h, and then cooled to room temperature. The white solid was filtered off, washed with light petroleum (b.p. 40—60 °C), and dried *in vacuo*. The compound was identified as $[Zr{ON(C_6H_4Me-p)NO}_4]$ (0.48 g, 81%) (Found: C, 48.5; H, 4.1; N, 15.8. Calc. for $C_{28}H_{28}N_8O_8Zr$: C, 48.3; H, 4.1; N, 16.1%).

Using a 1:1 mol ratio of $[Zr(\eta-C_5H_5)_2Cl_2]$ and $[NH_4]-[ON(C_6H_4Me-p)NO]$, the same compound was obtained.

Alternative Preparation of $[Zr{ON(C_6H_4Me-p)NO}_4]$.—To a suspension of $ZrCl_4$ (0.5 g) in dry benzene (50 cm³) was added Ag[ON(C₆H₄Me-p)NO] (1.1 g). The mixture was stirred in the dark overnight and the white precipitate which had formed was filtered off and recrystallised from chloroform–light petroleum (b.p. 60—80 °C) mixtures. The complex was dried in vacuo (0.56 g, 76% based on the Ag⁺ salt) (Found: C, 48.6; H, 4.1; N, 16.3. Calc. for C₂₈H₂₈N₈O₈Zr: C, 48.3; H, 4.1; N, 16.1%).

Acknowledgements

We are grateful to the S.E.R.C. for support of this work.

References

- 1 J. A. McCleverty, Chem. Rev., 1979, 79, 53.
- 2 A. J. Shortland and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 873; S. R. Pletcher, A. J. Shortland, A. C. Skapski, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1972, 922.
- 3 A. R. Middleton and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1980, 1888.
- 4 P. C. Wailes, H. Weigold, and A. P. Bell, J. Organomet. Chem., 1972, 34, 155.
- 5 E. Frankland, *Liebigs. Ann. Chem.*, 1856, **99**, 345; M. H. Abraham, J. H. N. Garland, J. A. Hill, and L. F. Larkworthy, *Chem. Ind.* (*London*), 1962, 1615.
- 6 W. P. Weiner and R. G. Bergman, J. Am. Chem. Soc., 1983, 105, 3922.
- 7 J. A. McCleverty, C, W. Ninnes, and I. Wolochowicz, J. Chem. Soc., Chem. Commun., 1976, 1061.
- 8 M. Foa and L. Casson, J. Organomet. Chem., 1971, 30, 123.

J. CHEM. SOC. DALTON TRANS. 1985

- R. S. Bottei and R. G. Schneggenberger, J. Inorg. Nucl. Chem., 1970, 32, 1525; T. Urbanski and M. Piskorz, Biul. Wojsk. Akad. Tech., 1961, 10, 109.
- 10 W. Mark, Acta Chem. Scand., 1970, 24, 1398.
- 11 C.S. Marvel and O. Kamm, Org. Synth., Col. Vol. 1, p. 177.
- 12 M. Ahmed, C. J. Jones, J. A. McCleverty, A. S. Rothin, and J. P. Tate, unpublished work.
- 13 A. A. Blanchland, Inorg. Synth., 1946, 2, 126.

Received 2nd May 1984; Paper 4/708