Co-ordination Chemistry of Pyridyl and \boldsymbol{N}-Methylimidazolyl Ketones. Synthetic and X-Ray Structural \dagger Studies of Copper(II), Nickel(II), and Dimethylgold(III) Complexes

Peter K. Byers and Allan J. Canty*
Chemistry Department, University of Tasmania, Hobart, Tasmania, Australia, 7001
Lutz M. Engelhardt, Jennifer M. Patrick, and Allan H. White
Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, W.A. 6009

Abstract

Di-2-pyridyl ketone (dpk) reacts with dimethylgold(III) nitrate in water to form the complex [$\left.\mathrm{AuMe} \mathrm{M}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$ in which the ligand has been hydrated to form a geminal diol. The closely related ketones 2 -pyridyl N-methyl-2-imidazolyl ketone (pik) and di(N-methyl-2-imidazolyl) ketone (dik) react with $\mathrm{Au}^{\prime \prime \prime} \mathrm{Me}_{2}$ nitrate to form complexes that do not involve hydration of the ligand, $\left[\mathrm{AuMe}_{2}(\mathrm{~L})\right] \mathrm{NO}_{3}(\mathrm{~L}=$ pik or dik). They react similarly with copper(i1) sulphate and nickel(II) nitrate, forming $\left[\mathrm{Cu}(\right.$ pik $\left.)\left(\mathrm{SO}_{4}\right)\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}(\right.$ dik $\left.)\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}(\text { pik })_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, and $\left[\mathrm{Ni}(\text { dik })_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{MeOH} ; \mathrm{dpk}$ forms $\left[\mathrm{Ni}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ on reaction with nickel(II) nitrate. The crystal structures of $\left[\mathrm{AuMe} 2\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$ and $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ have been determined by single-crystal X-ray diffraction at 295 K and refined by least-squares methods to $R=0.045$ and 0.032 for 2031 and 4754 independent 'observed' reflections, respectively. The cation $\left[\mathrm{AuMe} \mathrm{M}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$has the ligand N, N-chelated with cis-square-planar co-ordination for gold(iii), with an intramolecular hydroxy group positioned 2.850(8) \AA from the gold atom. The complex $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ has square-pyramidal co-ordination for copper(II), with the N, N-chelated ligand in the basal plane together with a water molecule and unidentate sulphate ion, and a water molecule co-ordinated axially. There is an intermolecular $\mathrm{Cu} \cdot \mathrm{O}$ O contact of 3.254(2) \AA with a ketone oxygen. Possible reasons for different behaviour of the ligands toward hydration are discussed. Crystals of [AuMe $\left.\mathrm{Ma}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$ are monoclinic, space group $P 2_{1} / c, a=9.41$ (1), $b=7.328(7), c=22.17(2) \AA, \beta=97.85(8)^{\circ}$, and $Z=4$. Crystals of $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are monoclinic, space group $P 2_{1} / n, a=11.982(3), b=13.803(3), c=8.866(2) A, \beta=107.30(2)^{\circ}$, and $Z=4$.

Di-2-pyridyl ketone (dpk) forms complexes with a range of metal ions, ${ }^{1-10}$ and under certain conditions undergoes hydration on complex formation to give complexes containing $\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}^{2,4-6,9-11}$ and dpk $\cdot \mathrm{OH}^{-}{ }^{2,4.11}$ The hydration reaction has been of particular interest, with two complexes studied by single-crystal X-ray diffraction. ${ }^{9}$ Several reasons for the hydration behaviour have been presented ${ }^{2,3,9,11}$ and the most likely one appears to be that hydration results in a more favourable geometry for the six-membered chelate ring $\mathrm{MNCC}(\mathrm{OH})_{2} \mathrm{CN}$ than that for the planar ligand in complexes containing MNCC(O)CN ${ }^{9,11}$
The related ketones 2-pyridyl N-methyl-2-imidazolyl ketone (pik) and di(N-methyl-2-imidazolyl) ketone (dik) have recently been synthesized. ${ }^{12,13}$ Substitution of pyridyl rings by N methylimidazolyl rings may result in subtle changes affecting the tendency toward hydration, in particular the geometry of the chelate rings, and thus an investigation of the co-ordination behaviour of these ketones has been undertaken. As the major aim of the study is further to elucidate reasons for the hydration behaviour, copper(II) sulphate was used under conditions that readily gave the first isolated $\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, $[\mathrm{Cu}(\mathrm{dpk} \cdot$ $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{SO}_{4}\right)\right],{ }^{2}$ and dimethylgold(III) nitrate was studied in view of a recent crystallographic characterization of $\left[\mathrm{AuCl}_{2}(\mathrm{dpk} \cdot\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}^{9}$ and our current interest in the co-ordination chemistry of $\mathrm{Au}^{\text {III }} \mathrm{Me}_{2}$ with multidentate ligands. ${ }^{14}$

[^0]
dpk

pik

dik

Experimental

The ligand dpk was used as received (Aldrich), and the ligands pik and dik were prepared as described previously. ${ }^{12}$ Dimethylgold(III) iodide was prepared from trichloro(pyridine)gold(III), ${ }^{15}$ which was obtained from laboratory residues of gold as described previously. ${ }^{14}$

The $\mathrm{Au}^{\text {III }} \mathrm{Me}_{2}$ complexes were obtained in moderate yield ($37-63 \%$) by a similar procedure to that described for other complexes $\left[\mathrm{AuMe}_{2}(\mathrm{~L})\right] \mathrm{NO}_{3},{ }^{14}$ involving reaction of equimolar quantities of $\mathrm{Au}^{\mathrm{II}} \mathrm{Me}_{2}$ nitrate and neutral ligand (L) in water, followed by slow evaporation at ambient temperature, collection of product by filtration, and recrystallization from methanol-water ($1: 1$) ($\mathrm{L}=\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}$), chloroform-benzene (pik), or chloroform-ethyl acetate (dik).

Green crystals of $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were obtained on slow evaporation of an aqueous solution ($25 \mathrm{~cm}^{3}$) containing $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.504 \mathrm{~g}, 2 \mathrm{mmol})$ and dik ($1.462 \mathrm{~g}, 6 \mathrm{mmol}$), and were recrystallized from water and dried under vacuum over

Table 1. Analytical and spectroscopic data

Complex	$\underbrace{\text { Analysis }}{ }^{(\%)}$			$v(\mathrm{CO})^{b, c} / \mathrm{cm}^{-}$	$\begin{gathered} v\left(\mathrm{NO}_{3}\right) \text { or } \\ v\left(\mathrm{SO}_{4}\right)^{b} / \mathrm{cm}^{-1} \end{gathered}$	$\begin{aligned} & { }^{1} \mathrm{H} \text { N.m.r. } \\ & \delta\left(\mathrm{AuMe}_{2}\right)^{d} \end{aligned}$
	C	$\underbrace{}_{\mathbf{H}}$	N			
$\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$	32.2	3.1	8.6	e	1395	$1.38{ }^{\text {f }}$
	(31.8)	(3.3)	(8.6)			
$\left[\mathrm{AuMe}_{2}(\mathrm{pik})\right] \mathrm{NO}_{3}$	30.0	3.2	11.7	1657	1397	$1.29,1.43^{9}$
	(30.3)	(3.2)	(11.8)			
$\left[\mathrm{AuMe}_{2}(\mathrm{dik})\right] \mathrm{NO}_{3}$	27.6	3.1	14.7	1645	1395	$1.27{ }^{\text {h }}$
	(27.6)	(3.4)	(14.6)			
$\left[\mathrm{Cu}(\right.$ pik $\left.)\left(\mathrm{SO}_{4}\right)\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	34.0	2.6	12.0	1660	1121	
	(33.8)	(2.8)	(11.8)			
$\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	27.6	3.3	15.1	1634	1119	
	(28.0)	(3.7)	(14.5)			
$\left[\mathrm{Ni}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	43.9	3.7	14.5		1385	
	(44.3)	(3.6)	(14.1)			
$\left[\mathrm{Ni}(\text { pik })_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	42.2	3.0	20.4	1670	1414	
	(42.4)	(3.4)	(19.8)			
$\left[\mathrm{Ni}(\mathrm{dik})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{MeOH}$	37.9	4.2	22.9	1641	1389	
	(38.3)	(4.3)	(22.9)			

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b}$ As KBr discs, all strong absorptions. ${ }^{c}$ pik has $v(\mathrm{CO})=1657 \mathrm{~cm}^{-1}$, and dik has $v(\mathrm{CO})=1631 \mathrm{~cm}{ }^{-1}$. ${ }^{d}$ In $\mathrm{D}_{2} \mathrm{O}$, chemical shift from sodium 4,4-dimethyl-4-silapentanesulphonate, integration appropriate for formulae presented. ${ }^{e} \mathrm{v}(\mathrm{OH})$ for the dpk $\cdot \mathrm{H}_{2} \mathrm{O}$ group $3380 \mathrm{br} \mathrm{cm}^{-1} .^{f} 7.67(\mathrm{~m}), \mathrm{H}(4) ; 8.20(\mathrm{~m}), \mathrm{H}(3,5) ; 8.71(\mathrm{~d}), \mathrm{H}(6) ; J(5,6) \mathrm{ca} .6 \mathrm{~Hz}{ }^{g} 4.06(\mathrm{~s}), N-\mathrm{Me} ; 7.53(\mathrm{~s})$ and $7.77(\mathrm{~s}) \mathrm{H}\left(4^{\prime}, 5^{\prime}\right) ; 8.00(\mathrm{~m})$, $\mathrm{H}(4) ; 8.47(\mathrm{~m}), \mathrm{H}(3,5) ; 8.90(\mathrm{~d}), \mathrm{H}(6) ; J(5,6) c a .5 \mathrm{~Hz} .^{h} 4.12$ (s), N-Me; 7.46 (s) and 7.74 (s) H(4', $\left.5^{\prime}\right)$.
$\mathrm{P}_{2} \mathrm{O}_{5}(0.347 \mathrm{~g}, 50 \%)$. Purple crystals of $\left[\mathrm{Ni}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$. $0.5 \mathrm{H}_{2} \mathrm{O}$ were obtained similarly. For the remaining Cu^{I} and $\mathrm{Ni}^{\mathrm{II}}$ complexes aqueous solutions of copper(II) sulphate or nickel(II) nitrate and ligand were allowed to evaporate to dryness, followed by dissolution in methanol, filtration, and addition of acetone to precipitate the complexes as green $\left[\mathrm{Cu}(\mathrm{pik})\left(\mathrm{SO}_{4}\right)\right]$. $0 \cdot 5 \mathrm{H}_{2} \mathrm{O}$, purple $\left[\mathrm{Ni}(\text { dik })_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 1.5 \mathrm{MeOH}$. and blue [$\mathrm{Ni}-$ (pik) $\left.{ }_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$.
Infrared spectra ($4000-400 \mathrm{~cm}^{-1}$) of complexes as KBr pellets were recorded with a Digilab FTS.20E Fourier-transform i.r. spectrometer; mass spectra were obtained with a V.G. micromass 7070 F spectrometer calibrated with perfluorokerosene; ${ }^{1} \mathrm{H}$ n.m.r. spectra were recorded with a JEOL JNM-4H100 spectrometer.

Crystallography.-For each complex a unique data set was measured at 295 K with a preset $2 \theta_{\text {max. }}$ limit determined by the extent of the data; Syntex $P \mathrm{I}$ (Au complex) and $P 2_{1}$ (Cu complex) diffractometers fitted with monochromatic Mo- K_{α} radiation sources ($\lambda=0.71069 \AA$) were used in conventional $2 \theta-\theta$ scan mode, yielding N independent reflections, N_{o} of these with $I>2 \sigma(I)$ (Au complex) or $I>3 \sigma(I)$ (Cu complex) considered 'observed' and used in the full-matrix least-squares refinement $\left\{\right.$ weights, $\left.w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0005\left(F_{\mathrm{o}}\right)^{2}\right]^{-1}\right\}$ after analytical absorption correction and solution of the structure by vector methods. Anisotropic thermal parameters were used for the non-hydrogen atoms, for the Au complex hydrogen atom parameters were constrained at idealized estimates, and for the Cu complex ($x, y, z, U_{\text {iso. }}$) were also refined for the hydrogen atoms. Residuals quoted for convergence are conventional R and R^{\prime}. Neutral-atom scattering factors were corrected for anomalous dispersion $\left(f^{\prime}, f^{\prime \prime}\right) .^{16-18}$

Computation used the X-RAY 76 program system implemented by S. R. Hall on a Perkin-Elmer 3240 computer. ${ }^{19}$ The results are given in Tables 2-6 and Figures 1-3.

Crystal data for $\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3} \cdot \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{AuN}_{3} \mathrm{O}_{5}$, $M=491.3$, monoclinic, space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$ no. 14), $a=9.41(1), b=7.328(7), c=22.17(2) \AA, \beta=97.85(8)^{\circ}, U=$ $1515(2) \AA^{3}, D_{\mathrm{m}}=2.14(1), Z=4, D_{\mathrm{c}}=2.15 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ 936. Specimen: $0.30 \times 0.22 \times 0.14 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=97 \mathrm{~cm}^{-1}$,

Table 2. Non-hydrogen atom co-ordinates for $\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right.$]NO_{3} with estimated standard deviations in parentheses

Atom	x	y	z
Au	$0.39588(4)$	0.263 81(5)	$0.33281(2)$
C(A)	0.5928 8(13)	0.269 4(17)	0.382 6(7)
C(B)	0.472 8(14)	0.452 2(16)	0.277 6(7)
Ligand, ring a			
$\mathrm{N}(1)$	0.1860 (9)	0.253 4(10)	0.282 2(4)
C(2)	$0.0697(11)$	0.251 2(12)	$0.3106(4)$
C(3)	-0.066 8(12)	0.233 6(14)	0.280 2(5)
C(4)	$-0.0831(15)$	0.215 4(15)	$0.2177(6)$
C(5)	0.034 8(14)	0.219 2(15)	0.187 4(5)
C(6)	0.166 9(13)	0.2383 (13)	0.2204 (5)
Ligand, ring b			
$\mathrm{N}(1)$	0.3151 (8)	0.069 1(10)	0.390 0(4)
C(2)	0.178 9(11)	0.088 2(13)	0.405 6(5)
C(3)	0.119 9(12)	-0.040 6(15)	0.439 7(5)
C(4)	0.2029 9(14)	-0.191 4(16)	0.461 1(5)
C(5)	0.338 4(14)	-0.208 1(15)	0.447 9(6)
C(6)	0.3925 5(12)	-0.074 0(15)	$0.4118(5)$
Ligand, central atoms			
C	0.098 3(11)	$0.2587(12)$	0.3809 (5)
O(1)	$-0.0315(8)$	0.267 9(10)	0.404 6(4)
O(2)	0.1813 (8)	0.414 3(9)	0.397 2(3)
Anion			
N	0.245 3(11)	$0.1673(14)$	0.049 4(5)
O(3)	0.323 2(9)	0.149 2(13)	0.0077 (4)
$\mathrm{O}(4)$	$0.2897(13)$	0.2450 (14)	$0.0967(5)$
$\mathrm{O}(5)$	$0.1219(10)$	$0.1038(14)$	0.040 8(5)

$2 \theta_{\text {max. }}=50^{\circ}, N=2670, N_{\mathrm{o}}=2031$ with $I>2 \sigma(I), R=$ $0.045, R^{\prime}=0.051$.

Crystal data for $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{CuN}_{4} \mathrm{O}_{7} \mathrm{~S}$, $M=389.9$, monoclinic, space group $P 2_{1} / n$ [$C_{2 h}^{5}$, no. 14 (variant)], $a=11.982(3), b=13.803(3), c=8.866(2) \AA, \beta=$ $107.30(2)^{\circ}, U=1400.0(5) \AA^{3}, D_{\mathrm{m}}=1.83(1), Z=4, D_{\mathrm{c}}=1.83$

Table 3. Atom co-ordinates for $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with estimated standard deviations in parentheses

Atom	x	y	z
Copper, water, and sulphate groups			
Cu	0.262 73(1)	$0.50385(1)$	$0.57413(2)$
O(2)	0.189 1(1)	0.3889 (1)	0.7013 (2)
H(21)	0.233(2)	0.339 (2)	0.718(3)
H(22)	$0.135(2)$	$0.361(2)$	0.647(3)
O(3)	0.126 4(1)	0.519 9(1)	0.3809 (2)
H(31)	0.093(2)	0.572(2)	0.391(3)
H(32)	0.072(3)	0.476(2)	$0.336(4)$
S	0.097 59(3)	0.666 99(3)	0.652 51(5)
$\mathrm{O}(4)$	0.2110 (1)	0.616 8(1)	$0.6687(2)$
$\mathrm{O}(5)$	0.1241 (1)	0.7640 (1)	0.717 3(2)
O(6)	0.031 2(1)	0.613 7(1)	0.739 3(2)
$\mathrm{O}(7)$	$0.0315(1)$	$0.6707(1)$	0.4823 (2)
Ligand, ring a			
C(1)	0.729 6(1)	0.479 8(2)	0.927 6(3)
C(2)	$0.5197(1)$	0.4759 (1)	0.7419 (2)
C(4)	0.448 5(1)	0.598 2(1)	0.8371 (2)
C(5)	$0.5637(1)$	0.590 6(1)	0.922 3(2)
N(1)	0.6081 (1)	0.513 9(1)	0.862 6(2)
N(3)	0.4209 (1)	$0.5269(1)$	0.725 9(2)
H(4)	$0.391(2)$	0.641(2)	0.845(3)
H(5)	0.605(2)	0.632(2)	1.012(3)
H(11)	0.777(2)	0.486(2)	0.842(3)
H(12)	0.725(3)	0.413(3)	0.968(4)
H(13)	0.769(3)	0.520(2)	1.001(4)
Ligand, ring b			
C(1)	$0.5387(2)$	0.214 9(2)	0.438 4(3)
C(2)	0.4351 (1)	0.360 O(1)	0.517 1(2)
C(4)	$0.2613(1)$	0.336 8(2)	0.358 5(2)
C(5)	$0.3308(2)$	$0.2654(2)$	0.329 5(2)
N(1)	0.440 4(1)	0.2805 (1)	0.4293 (2)
N(3)	0.326 8(1)	0.396 4(1)	0.474 1(2)
H(4)	0.182(2)	0.346(2)	0.314(3)
H(5)	0.316(2)	0.216(2)	0.262(3)
H(11)	0.605(2)	0.256(2)	0.428(3)
H(12)	0.560(3)	0.183(2)	0.551(4)
H(13)	0.513(2)	0.172(2)	0.343(3)
Ligand, central atoms			
C	0.5363 (1)	0.397 3(1)	$0.6415(2)$
O	0.633 6(1)	$0.3637(1)$	0.656 8(2)

$\mathrm{g} \mathrm{cm}{ }^{-3}, \quad F(000)=788$. Specimen: $0.16 \times 0.16 \times 0.40 \mathrm{~mm}$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=18.1 \mathrm{~cm}^{-1}, 2 \theta_{\max .}=65^{\circ}, N=6453, N_{\mathrm{o}}=4754$ with $I>3 \sigma(I), R=0.032, R^{\prime}=0.043$.

Results

Preparation and Characterization of Complexes.-The complexes $\left[\mathrm{AuMe}_{2}(\mathrm{~L})\right] \mathrm{NO}_{3}\left(\mathrm{~L}=\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right.$, pik, or dik), [Ni$\left.\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, and $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were obtained from addition reactions in water, using metal:ligand ratios of $1: 1,1: 2$, and $1: 3$ respectively. The $A u^{\mathrm{III}} \mathrm{Me}_{2}$ complexes were recrystallized from non-aqueous solvents, with i.r. absorption unchanged by recrystallization. The remaining $\mathrm{Cu}^{\text {II }}$ and $\mathrm{Ni}^{1 I}$ complexes were obtained on evaporation of aqueous solutions of metal salt and ligand to dryness, followed by recrystallization from methanol-acetone. The crude products from aqueous solution have i.r. spectra with absorptions characteristic of the complexes after recrystallization. Drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ also does not alter the i.r. absorptions, indicating that $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and those complexes formulated as hemi-

Figure 1. Projection of $\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$ normal to the coordination plane, showing 20% thermal ellipsoids for the non-hydrogen atoms, and an arbitrary radius of $0.1 \AA$ for the hydrogen atoms

Figure 2. Projection of $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ normal to the coordination plane; see caption to Figure 1
hydrates have firmly bound water, presumably co-ordinated and/or hydrogen bonded.

For the $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{\text {II }}$ complexes microanalyses are consistent with metal:ligand ratios $1: 1$ and $1: 2$, respectively (Table 1), with solvate formation required to account for microanalyses, and confirmed by the presence of $v(\mathrm{OH})$ absorption in i.r. spectra, a high-resolution massspectrum of $\left[\mathrm{Ni}(\mathrm{dik})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 1.5$ MeOH exhibiting an ion with $\mathrm{m} / \mathrm{e} 31.0183$ corresponding to $\mathrm{CH}_{3} \mathrm{O}^{+}$, and the X-ray structural analysis for $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot$ $2 \mathrm{H}_{2} \mathrm{O}$.

Infrared spectra of the complexes exhibit absorptions for the ligand shifted from those of the free ligand. The $\mathrm{Au}^{\mathrm{II}} \mathrm{Me}_{2}$ and

Figure 3. Unit-cell contents of $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, showing a different view of the co-ordination geometry of the copper atom, and weak $\mathrm{Cu} \cdots \mathrm{O}$ (ketone) interactions linking the complexes into centrosymmetric dimeric units; see caption to Figure 1
$\mathrm{Ni}^{\mathrm{II}}$ complexes formed on reaction with dpk have the ligands present as the geminal diol: $\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$ and $\left[\mathrm{Ni}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$. Thus, they do not exhibit i.r. bands in the region expected for $\mathrm{v}(\mathrm{C}=\mathrm{O})$ absorption $\left(1682 \mathrm{~cm}^{-1}\right.$ for dpk), with the nearest i.r. absorptions at 1605 and 1607 cm^{-1}, respectively, assigned as a pyridine mode raised from $1582 \mathrm{~cm}^{-1}$ on co-ordination, as observed earlier on complex formation involving hydration of dpk. ${ }^{2,3,6,10}$ In contrast, for the six complexes involving reactions of pik and dik an absorption attributable to $v(\mathrm{C}=\mathrm{O})$ occurs in the range 1641 $1670 \mathrm{~cm}^{-1}$, with absorption frequency increased $3-13 \mathrm{~cm}^{-1}$ from the values for the free ligands, except for [$\left.\mathrm{AuMe}_{2}(\mathrm{pik})\right]$ NO_{3} which has $\mathrm{v}(\mathrm{C}=\mathrm{O})$ unaltered (Table 1).

Proton n.m.r. spectra for the $\mathrm{Au}^{\mathrm{II}} \mathrm{Me}_{2}$ complexes have appropriate integration for the presence of ions $\left[\mathrm{AuMe}_{2}(\mathrm{~L})\right]^{+}$ with N, N-chelated ligands (Table 1). Thus, the complex [AuMe_{2} (pik) NO_{3} has two environments for the methyl groups bonded to gold (1.29 and 1.43 p.p.m.), one of these is trans to a pyridyl donor group with a similar chemical shift to $\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}(1.38$ p.p.m. $)$ and the other trans to an N -methylimidazolyl group with a similar chemical shift to $\left[\mathrm{AuMe}_{2}(\mathrm{dik})\right] \mathrm{NO}_{3}$ (1.27 p.p.m.).

Structures of $\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$ and $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right]$. $2 \mathrm{H}_{2} \mathrm{O}$ in the Solid State.-Aspects of the molecular geometry of
the complexes are given in Tables 4 and 5, and views of the structures in Figures 1-3.

The $\mathrm{Au}^{\text {III }} \mathrm{Me}_{2}$ complex is composed of cations [AuMe_{2} $\left.\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$and regular (within 2σ in bond lengths and angles) nitrate ions which are well removed from the gold atom (shortest $\mathrm{Au} \cdots \mathrm{O}$ distance for a nitrate oxygen is $4.08 \AA$). The square-planar ' $\mathrm{AuC}_{2} \mathrm{~N}_{2}$ ' kernel has bond lengths and angles within 1σ of those for the closely related tri-2-pyridylmethane (tpm)complex $\left[\mathrm{AuMe}_{2}(\mathrm{tpm})\right] \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ wheretheligandisalso N, N-chelated, with one unco-ordinated pyridyl group. ${ }^{14}$ The
$\mathrm{AuNC}_{3} \mathrm{~N}$ ring has a boat conformation essentially identical to that for $\left[\mathrm{AuCl}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}$. A hydroxy group of the geminal diol ligand is situated near the gold atom, with $\mathrm{Au} \cdots \mathrm{O}(2)$ $2.850(8) \AA$, slightly longer than in the $\mathrm{Au}^{\mathrm{III}} \mathrm{Cl}_{2}$ complex, 2.77(1) $\AA .{ }^{9}$ This may represent a weak co-ordination interaction, although the hydroxy group may be constrained in this position
by the most favourable conformation of the $\mathrm{AuNC}{ }_{3} \mathrm{~N}$ ring. The planar pyridyl rings (maximum deviation $0.02 \AA$ from mean planes) form dihedral angles of 44.9° (ring a) and 41.5° (ring b) with the mean $\mathrm{AuC}_{2} \mathrm{~N}_{2}$ plane.
The complex $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ has a square-pyramidal co-ordination geometry, with the ligand N, N-chelated $[\mathrm{Cu}-\mathrm{N}$ 1.995(1), 1.997(2) $\AA]$ together with a unidentate sulphate group $[\mathrm{Cu}-\mathrm{O}(4) 1.957(2) \AA]$ and a water molecule $[\mathrm{Cu}-\mathrm{O}(3) 1.997(1)$

Table 4. Non-hydrogen geometries for $\left[\mathrm{AuMe}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$, with estimated standard deviations in parentheses

Co-ordination geometry		
$\mathrm{Au}-\mathrm{C}(\mathrm{A}) \quad 2.02(1)$	$\mathrm{C}(\mathrm{A})-\mathrm{Au}-\mathrm{C}(\mathrm{B})$	86.5(5)
$\mathrm{Au}-\mathrm{C}(\mathrm{B}) \quad 2.04(1)$	$C(A)-A u-N(b 1)$	93.7(4)
$\mathrm{Au}-\mathrm{N}(\mathrm{a} 1) \quad 2.136(9)$	$\mathrm{C}(\mathrm{B})-\mathrm{Au}-\mathrm{N}(\mathrm{al})$	95.0(4)
$\mathrm{Au}-\mathrm{N}(\mathrm{b} 1) \quad 2.118(8)$	$\mathrm{N}(\mathrm{a} 1)-\mathrm{Au}-\mathrm{N}(\mathrm{bl})$	84.7(3)
$\mathrm{Au} \cdots \mathrm{O}(2) \quad 2.850(8)$	C(A)-Au-N(a1)	178.4(6)
	$\mathrm{C}(\mathrm{B})-\mathrm{Au}-\mathrm{N}(\mathrm{b} 1)$	179.7(4)
Ligand geometry		
$\mathrm{C}-\mathrm{O}(1) \quad 1.40$ (1)	$\mathrm{O}(1)-\mathrm{C}-\mathrm{O}(2)$	110.4(8)
$\mathrm{C}-\mathrm{O}(2) \quad 1.40$ (1)	$\mathrm{C}(\mathrm{a} 2)-\mathrm{C}-\mathrm{C}(\mathrm{b} 2)$	110.1(8)
	Ring a Rin	
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.34(1) \quad 1.38$	
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.37(1)$	
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.38(2) \quad 1.4$	
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.37(2) \quad 1.3$	
$\mathrm{C}(5)-\mathrm{C}(6)$	1.36 (2) 1.4	
$\mathrm{C}(6)-\mathrm{N}(1)$	$1.36(1)$	
$\mathrm{C}-\mathrm{C}(2)$	$1.55(1) 1.5$	
$\mathrm{Au}-\mathrm{N}(1)-\mathrm{C}(2)$	120.8(7) 120	
$\mathrm{Au}-\mathrm{N}(1)-\mathrm{C}(6)$	121.1(8) 12	
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$118.0(9)$	
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.9(9) 12	
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}$	$115.7(8)$	(8)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}$	121.3(10) 12	(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.0(11) 118	(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.2(11) 11	(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.6(11) 11	(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	122.3(11) 122.	(11)
$\mathrm{C}(2)-\mathrm{C}-\mathrm{O}(1)$	109.9(8) 108.8	
$\mathrm{C}(2)-\mathrm{C}-\mathrm{O}(2)$	107.7(8) 109	(8)
Anion		
$\mathrm{N}-\mathrm{O}(3) \quad 1.26(1)$	$\mathrm{O}(3)-\mathrm{N}-\mathrm{O}(4)$	121(1)
$\mathrm{N}-\mathrm{O}(4) \quad 1.22(1)$	$\mathrm{O}(3)-\mathrm{N}-\mathrm{O}(5)$	118(1)
$\mathrm{N}-\mathrm{O}(5) \quad 1.24(1)$	$\mathrm{O}(4)-\mathrm{N}-\mathrm{O}(5)$	121(1)

$\AA]$ forming the basal plane, $\mathrm{CuN}_{2} \mathrm{O}_{2}$, with maximum deviation from the mean plane occurring for $\mathrm{N}(\mathrm{a} 3), 0.19 \AA$. Angles within the square plane are within the range $86.70(6)-91.50(6)^{\circ}$, with the ligand forming a $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angle of $90.25(5)^{\circ}$. A more weakly bound axial water molecule $[\mathrm{Cu}-\mathrm{O}(2) 2.271$ (1) \AA] completes the square-pyramidal geometry, although a very weak interaction with the oxygen atom of a ketone group in a neighbouring complex, also axial [$\mathrm{Cu} \cdots \mathrm{O}$ 3.254(2) \AA], links the complexes into centrosymmetric dimeric units (Figure 3). There is also a complex hydrogen-bonding network, linking water molecules, sulphate groups, and ketone oxygen atoms.

The imidazolyl rings are planar, and the copper atom lies only -0.047 and $-0.180 \AA$ from the mean planes of ring a and b, respectively. The $\mathrm{CuN}_{2} \mathrm{O}_{2}$ square plane forms dihedral angles of 9.5 and 12.1° with rings a and b, respectively. The ketone ligand is planar as the imidazolyl rings form a dihedral angle of only 3.1°, the ketone carbon atom lies 0.106 and $-0.045 \AA$ from rings a and b, and the ketone oxygen atom is 0.256 and $0.098 \AA$ from these ring planes, respectively.

With one axially bonded water molecule and the sulphate group bonded within the square plane, $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ differs from related Cu^{11} complexes with bidentate nitrogen donor ligands $\left[\mathrm{Cu}(\mathrm{L})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{L}=2,2^{\prime}\right.$-bipyridyl, ${ }^{20}$ ethylenediamine, ${ }^{21}$ or 1,10 -phenanthroline ${ }^{22}$), as these complexes have both water molecules bonded within the square plane with bridging sulphate groups bonded axially to give a polymeric and distorted-octahedral geometry for $\mathrm{Cu}^{\mathrm{II}}$.

Table 5. Non-hydrogen geometries for $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, with estimated standard deviations in parentheses

Co-ordination geometry			
$\mathrm{Cu}-\mathrm{N}(\mathrm{a} 3)$	1.997(2)	$\mathrm{N}(\mathrm{a} 3)-\mathrm{Cu}-\mathrm{N}(\mathrm{b} 3)$	90.25(5)
$\mathrm{Cu}-\mathrm{N}(\mathrm{b} 3)$	1.995(1)	$\mathrm{N}(\mathrm{a} 3)-\mathrm{Cu}-\mathrm{O}(2)$	101.98(6)
$\mathrm{Cu}-\mathrm{O}(2)$	2.271(2)	$\mathrm{N}(\mathrm{a} 3)-\mathrm{Cu}-\mathrm{O}(3)$	158.56(5)
$\mathrm{Cu}-\mathrm{O}(3)$	1.997(1)	$\mathrm{N}(\mathrm{a} 3)-\mathrm{Cu}-\mathrm{O}(4)$	86.70(6)
$\mathrm{Cu}-\mathrm{O}(4)$	1.957(2)	$\mathrm{N}(\mathrm{b} 3)-\mathrm{Cu}-\mathrm{O}(2)$	87.65(6)
		$\mathrm{N}(\mathrm{b} 3)-\mathrm{Cu}-\mathrm{O}(3)$	91.50(6)
		$\mathrm{N}(\mathrm{b} 3)-\mathrm{Cu}-\mathrm{O}(4)$	174.75(7)
		$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3)$	99.44(5)
		$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(4)$	97.16(6)
		$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(4)$	89.79(6)
Ligand geometry			
$\mathrm{C}-\mathrm{O}$	1.224(2)	$\mathrm{C}(\mathrm{a} 2)-\mathrm{C}-\mathrm{C}(\mathrm{b} 2)$	119.2(1)
		Ring a	Ring b
$\mathrm{C}(1)-\mathrm{N}(1)$		1.475(2)	1.469(3)
$\mathrm{C}(2)-\mathrm{N}(1)$		1.367(2)	$1.358(2)$
$\mathrm{C}(2)-\mathrm{N}(3)$		1.348(2)	1.337(2)
$\mathrm{C}(4)-\mathrm{N}(3)$		1.363(2)	1.366 (2)
$\mathrm{C}(4)-\mathrm{C}(5)$		$1.366(2)$	$1.364(3)$
$\mathrm{C}(5)-\mathrm{N}(1)$		1.360 (3)	1.364(2)
$\mathrm{C}(2)-\mathrm{C}$		1.455(3)	1.468(2)
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(2)$		128.0(1)	128.5(1)
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(4)$		125.5(1)	124.7(1)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$		106.5(1)	106.3(1)
$\mathrm{C}-\mathrm{C}(2)-\mathrm{N}(1)$		123.4(1)	123.0(1)
$\mathrm{C}-\mathrm{C}(2)-\mathrm{N}(3)$		127.0(1)	126.7(2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$		109.5(2)	110.3(1)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$		128.9(2)	129.8(1)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$		123.4(2)	122.9(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(5)$		107.6(1)	107.2(1)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$		109.4(2)	$109.2(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$		107.0(2)	106.9(2)
$\mathrm{C}(2)-\mathrm{C}-\mathrm{O}$		120.9(1)	119.8(2)
Sulphate group			
S-O(4)	1.493(1)	$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{S}$	136.37(8)
S-O(5)	1.455(2)	$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(5)$	107.68(8)
S-O(6)	1.460(2)	$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(6)$	109.76(9)
S-O(7)	1.482(1)	$\mathrm{O}(4)-\mathrm{S}-\mathrm{O}(7)$	108.03(9)
		$\mathrm{O}(5)-\mathrm{S}-\mathrm{O}(6)$	110.19(11)
		$\mathrm{O}(5)-\mathrm{S}-\mathrm{O}(7)$	110.99(8)
		$\mathrm{O}(6)-\mathrm{S}-\mathrm{O}(7)$	110.13(9)

Hydrogen bonding $(\mathrm{O} \cdots \mathrm{H}<2.4 \AA)$			
$\mathrm{O}(4) \cdots \mathrm{H}(\mathrm{a} 4)$	$2.28(2)$	$\mathrm{O}(7) \cdots \mathrm{H}(31)$	$1.85(3)$
$\mathrm{O}(6) \cdots \mathrm{H}\left(32^{\mathrm{i}}\right)$	$1.73(3)$	$\mathrm{O}(7) \cdots \mathrm{H}\left(22^{\mathrm{i}}\right)$	$2.03(3)$
$\mathrm{O}(5) \cdots \mathrm{H}\left(21^{\text {ii) }}\right)$	$1.94(3)$	$\mathrm{O} \cdots \mathrm{H}\left(\mathrm{b} 5^{\mathrm{iii}}\right)$	$2.38(2)$
$\mathrm{O}(5) \cdots \mathrm{H}\left(\mathrm{a}^{\mathrm{iv}}\right)$	$2.28(2)$		

i $(\bar{x}, 1-y, 1-z)$; ii $\left(\frac{1}{2}-x, \frac{1}{2}+y, 1 \frac{1}{2}-z\right)$; iii $\left(\frac{1}{2}+x, \frac{1}{2}-y\right.$, $\left.\frac{1}{2}+z\right)$; iv $\left(x-\frac{1}{2}, 1 \frac{1}{2}-y, z-\frac{1}{2}\right)$.

Discussion

Di-2-pyridyl ketone reacts with $\mathrm{Au}^{1 \mathrm{II}} \mathrm{Me}_{2}$ and nickel(II) nitrate in water to form complexes involving hydration of dpk and coordination as $\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}$. However, the ketones containing imidazolyl rings (pik and dik) react with $\mathrm{Au}^{\mathrm{III}} \mathrm{Me}_{2}$, copper(II) and nickel(II) nitrate under identical conditions to form complexes of the ketones without hydration.

These results are consistent with the proposal that dpk readily hydrates so that a six-membered chelate ring
$M \mathrm{MCC}(\mathrm{OH})_{2} \mathrm{CN}$ with a conventional and stable boat conformation can be obtained, rather than that expected for dpk co-ordination where typical $\mathrm{M}-\mathrm{N}$ distances of $c a$. $2.0 \AA$ require
either disruption of planarity of the ketone with loss of carbonyl conjugation ${ }^{9.11}$ or retention of planarity with poor overlap of nitrogen lone pairs with metal orbitals. Replacement of pyridyl rings with imidazolyl rings, having smaller angles within the ring, is expected to increase the distance between the nitrogendonor atoms, and to give direction of nitrogen lone pairs more consistent with $\mathrm{M}-\mathrm{N}$ distances of $c a .2 .0 \AA$ and $\mathrm{N}-\mathrm{M}-\mathrm{N}$ angles of $c a .90^{\circ}$. Thus, in $\left[\mathrm{Cu}(\mathrm{dik})\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the ketone is planar with $\mathrm{N}-\mathrm{Cu}-\mathrm{N} 90.25(5)^{\circ}$ and the lone pairs are directed toward the copper atom with similar $\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(2,4)$ angles of 124.7(1)-128.5(1) ${ }^{\circ}$. Although the results of this investigation are consistent with this view, and thus support previous suggestions regarding the reason for hydrolysis of dpk on complex formation, other factors may be important in this study. In particular, replacement of pyridyl groups by imidazolyl groups may affect the properties of the ketones obtained in other ways, e.g. alteration in the extent of conjugation. In addition, dpk does form many complexes where hydration does not occur, e.g. palladium(II) chloride forms both $\left[\mathrm{PdCl}_{2}\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\left[\mathrm{PdCl}_{2}(\mathrm{dpk})\right],{ }^{9}$ and zinc(II) bromide forms $1: 1$ complexes with both dpk^{7} and bis(4,5-di-isopropyl-N-methyl-2-imidazolyl) ketone. ${ }^{23}$ The latter complex has $\mathrm{N}-\mathrm{Zn}-\mathrm{N} 91.3(4)^{\circ},{ }^{23}$ similar to that of the copper(II) complex of dik, $90.25(5)^{\circ}$.

Acknowledgements

This work was supported by the University of Tasmania and the Australian Research Grants Scheme.

References

1 R. R. Osborne and W. R. McWhinnie, J. Chem. Soc. A, 1967, 2075.
2 M. C. Feller and R. Robson, Aust. J. Chem., 1968, 21, 2919.
3 M. C. Feller and R. Robson, Aust. J. Chem., 1970, 23, 1997.

4 I. J. Bakker, M. C. Feller, and R. Robson, J. Inorg. Nucl. Chem., 1971, 33, 747.
5 J. D. Ortego and D. L. Perry, J. Inorg. Nucl. Chem., 1973, 35, 3031
6 J. D. Ortego, D. D. Waters, and C. S. Steele, J. Inorg. Nucl. Chem., 1974, 36, 751.
7 J. D. Ortego, S. Upalawanna, and S. Amanollahi, J. Inorg. Nucl. Chem., 1979, 41, 593.
8 R. Jagannathan and S. Soundararajan, J. Inorg. Nucl. Chem., 1980, 42, 145.
9 G. Annibale, L. Canovese, L. Cattalini, G. Natile, M. Biagini-Cingi, A-M. Manotti-Lanfredi, and A. Tiripicchio, J. Chem. Soc., Dalton Trans., 1981, 2280.
10 J. D. Ortego and M. Seymour, Polyhedron, 1982, 1, 21.
11 B. E. Fischer and H. Sigel, J. Inorg. Nucl. Chem., 1975, 37, 2127.
12 A. J. Canty, E. E. George, and C. V. Lee, Aust. J. Chem., 1983, 36, 415.
13 E. Regel and K-H. Büchel, Liebigs Ann. Chem., 1977, 145.
14 A. J. Canty, N. J. Minchin, P. C. Healy, and A. H. White, J. Chem. Soc., Dalton Trans., 1982, 1795.
15 F. H. Brain and C. S. Gibson, J. Chem. Soc., 1931, 762.
16 D. T. Cromer and J. B. Mann, Acta Crystallogr., 1968, 24, 321.
17 D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891.
18 R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
19 'The X-RAY System, Version of March 1976,' Technical Report TR446, ed. J. M. Stewart, Computer Science Center, University of Maryland.
20 J. C. Tedenac and E. Philip, J. Inorg. Nucl. Chem., 1975, 37, 846; Acta Crystallogr., Sect B, 1974, 30, 2286.
21 P. C. Healy, C. H. L. Kennard, G. Smith, and A. H. White, Cryst. Struct. Commun., 1978, 7, 565.
22 P. C. Healy, J. M. Patrick, and A. H. White, Aust. J. Chem., 1984, 37, 1111.

23 R. J. Read and M. N. G. James, Acta Crystallogr., Sect. B, 1980, 36, 3100.

[^0]: \dagger Supplementary data available (No. SUP 56161, 8 pp.): H-atom coordinates for $\left[\mathrm{AuMe} 2\left(\mathrm{dpk} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$, least-squares planes, thermal parameters. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1985, Issue 1, pp. xvii-xix. Structure factors are available from the editorial office.

