Reduction–Oxidation Properties of Organotransition-metal Complexes. Part 22.<sup>1</sup> Stereospecific Oxidative Cyclopropane Ring Opening and Reductive Cyclobutane Ring Formation in Polycyclic Hydrocarbon Complexes of Iron; X-Ray Crystal Structures of  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})][PF_6]_2\cdot CH_3NO_2$  and  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]^*$ 

Neil G. Connelly, Mark J. Freeman, A. Guy Orpen, John B. Sheridan, Andrew N. D. Symonds, and Mark W. Whiteley

Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS

Electrochemical studies show that  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (2) undergoes irreversible two-electron oxidation at a platinum electrode in  $CH_2CI_2$ . Chemical oxidation with  $[Fe(\eta - C_5H_5)_2][PF_6]$  gives  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})][PF_6]_2(3), X$ -ray structural studies on the nitromethane solvate of which reveal the detailed stereochemistry of the polycyclic hydrocarbon ligand. Two cycloheptadienyl moieties, each  $\eta^{s}$ -bonded to Fe(CO)<sub>3</sub> units, are fused to a central cyclohexene ring at C(2)–C(3) and at C(2')-C(3'). The six-membered ring adopts a very flattened chair conformation with C(4)and C(4') (bonded to iron as terminal members of pentadienyl units) in pseudo-axial sites, at 3.78 Å apart. Complex (3) is reduced by K[BH(CHMeEt)<sub>3</sub>] to  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (4), X-ray structural studies on which show stereospecific cyclobutane ring formation via the linking of atoms C(4) and C(4') of (3). This linking is accompanied by ring inversion of the cyclohexene residue and by significant twisting of the ring double bond [C(2)-C(1)-C(1')-C(2') torsion angle  $-8.6(5)^{\circ}$ ]. The C(4)–C(4') bond formed is the longest in the cyclobutane ring at 1.596(4) Å [cf. others, average 1.548(3) Å]. The ring inversion is required to bring C(4) and C(4') into adjacent pseudo-equatorial sites and hence proximity [the C(4)-C(3)-C(3')-C(4') torsion angle is 159.7(4)° in (3) and 25.2(2)° in (4)]. Complex (4) is oxidised by  $[Fe(\eta - C_{s}H_{5})_{2}][PF_{s}]$  to (3) which reacts with PPh<sub>3</sub> and with iodide ion to give  $[Fe_2(CO)_6\{\eta^4:\eta'^4-C_{16}H_{16}(PPh_3)_2\}][PF_6]_2$  (5) and  $[Fe_2I_2(CO)_4(\eta^5:\eta'^5-C_{16}H_{16})]$  (6), respectively.

We have recently described<sup>2</sup> the stereospecific oxidative cyclopropane ring-opening reaction of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{18})]$ , which generates a *trans*-olefinic double bond in the dicationic product  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{18})]^{2+}$ . We now report details<sup>3</sup> of the related reaction of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (2) (Scheme) to give  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})]^{2+}$  (3) the hydrocarbon ligand of which consists of a cyclohexene ring fused to two cycloheptadienyl units. The reduction of (3) yields  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (4) in which C-C bond formation generates a cyclobutane ring. X-Ray structural studies on (3) and (4), in comparison with those on  $[Fe_2(CO)_4L_2(\eta^5:\eta'^5-C_{16}H_{16})]^{2+}$  [1; L = P(OPh)<sub>3</sub>]<sup>4</sup> and (2),<sup>5</sup> provide an insight into the origin of the observed stereospecificity of the redox reactions. The reactions of (3) with nucleophiles are also reported briefly.

### **Results and Discussion**

Synthetic and Structural Studies.—The complex  $[Fe_2-(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (2) (Scheme), previously prepared <sup>2</sup> by sequentially reacting  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})]^{2+}$  (1; L = CO) with bromide ion and  $[Fe_2(CO)_9]$ , has now been isolated directly by reducing the dication with K[BH(CHMeEt)\_3]. The

yield is no better than that previously obtained but the one-step synthesis is more convenient.

The cyclic voltammogram of (2), in CH<sub>2</sub>Cl<sub>2</sub> at a platinum bead electrode, shows one, diffusion-controlled  $(i/v^{\frac{1}{2}} = \text{constant})$ for scan rates, v, from 50 to 500 mV s<sup>-1</sup>) but irreversible oxidation wave with a peak potential of 0.87 V [vs. a saturated calomel electrode (s.c.e.) at a scan rate of 200 mV s<sup>-1</sup>]. The peak current is approximately twice that of [Fe(CO)<sub>3</sub>( $\eta^4$ -cot)] (cot = cyclo-octatetraene), measured under identical conditions, suggesting that (2) is oxidised in a two-electron step. Although the insolubility of the oxidation product in CH<sub>2</sub>Cl<sub>2</sub> (see below) precluded direct confirmation of the number of electrons involved in the redox reaction (by controlled potential electrolysis and coulometry), chemical oxidation of (2) requires two equivalents of the one-electron oxidant  $[Fe(\eta - C_5H_5)_2][PF_6]$ . Thus, mixing (2) and the ferrocenium ion in  $CH_2Cl_2$  readily gives good yields of  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})][PF_6]_2(3)$  as a pale yellow precipitate. Despite the apparently unfavourable potentials for the oxidation of (2) and the reduction of [Fe( $\eta$ - $(C_5H_5)_2$ <sup>+</sup> (0.48 V), the reaction proceeds because of the irreversible chemical formation of (3).

Chemical reduction of (3), by K[BH(CHMeEt)<sub>3</sub>] in tetrahydrofuran (thf) at -78 °C, gave an orange solution from which a low yield of yellow, crystalline [Fe<sub>2</sub>(CO)<sub>6</sub>( $\eta^4$ : $\eta'^4$ -C<sub>16</sub>H<sub>16</sub>)] (4) was isolated by column chromatography. Complexes (3) and (4) were characterised by elemental analysis and i.r. spectroscopy (Table 1), and by <sup>1</sup>H and <sup>13</sup>C n.m.r. spectroscopy (Table 2) which revealed the basic arrangements of the hydrocarbon skeletons (Scheme). The detailed molecular geometries were, however, only fully established by X-ray crystallography.

The crystal structures of (3)·CH<sub>3</sub>NO<sub>2</sub> and (4) were

<sup>\*</sup>  $\mu$ -(1-5- $\eta$ :8-12- $\eta$ '-1,5a,7a,12,12a,12b-Hexahydrobenzo[*a*,*c*]dicycloheptenyl)-bis(tricarbonyliron) hexafluorophosphate-nitromethane (1/1) and  $\mu$ -(2-5- $\eta$ :6-9- $\eta$ '-1,10-etheno-1,5a,5b,10,10a,10bhexahydrocyclobuta[1,2:3,4]dicycloheptene)-bis(tricarbonyliron).

Supplementary data available (No. SUP 56183, 9 pp.): isotropic and anisotropic thermal parameters, H-atom co-ordinates. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1985, Issue 1, pp. xvii–xix. Structure factors are available from the editorial office.

#### Table 1. Infrared spectral and analytical data

|                                                                                                               | Viold | Min                      | Ма                               |             | Analysis" (%)          |           |  |  |
|---------------------------------------------------------------------------------------------------------------|-------|--------------------------|----------------------------------|-------------|------------------------|-----------|--|--|
| Complex                                                                                                       | (%)   | $(\theta_{c}/^{\circ}C)$ | $\nu(CO)/cm^{-1}$                | С           | Н                      | N         |  |  |
| (3) $[Fe_{3}(CO)_{\ell}(n^{5}:n^{\prime 5}-C_{1\ell}H_{1\ell})][PF_{\ell}]_{2}\cdot CH_{3}NO_{2}$             | 94    |                          | 2 119, 2 075 <sup>b</sup>        | 32.6 (32.9) | 2.2 (2.3)              | 1.7 (1.7) |  |  |
| (4) $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$                                                               | 20    | Decomp.<br>>85           | 2 044, 1 981, 1 977°             | 54.3 (54.1) | 3.4 (3.3)              | _         |  |  |
| (5) $[Fe_2(CO)_6{\eta^4:\eta^{\prime 4}-C_{16}H_{16}(PPh_3)_2}][PF_6]_2$ .<br>CH <sub>2</sub> Cl <sub>2</sub> | 72    | 195—200                  | 2 055, 1 991, 1 981 <sup>d</sup> | 51.0 (51.0) | 3.7 (3.5) <sup>e</sup> | —         |  |  |
| (6) $[Fe_2I_2(CO)_4(\eta^5:\eta'^5-C_{16}H_{16})]$                                                            | 52    |                          | 2 027, 1 991 <sup>d</sup>        | 35.1 (34.9) | 2.5 (2.6)              |           |  |  |

"Calculated values are given in parentheses. <sup>b</sup> In Nujol. <sup>c</sup> In n-hexane. <sup>d</sup> In  $CH_2Cl_2$ . <sup>e</sup> Calculated values include one molecule of  $CH_2Cl_2$  of crystallisation.



Scheme.  $M = Fe(CO)_3$ , L = CO or  $P(OPh)_3$ 

determined by room-temperature single-crystal X-ray diffraction studies, full details of which are given in the Experimental section below. Selected derived bond lengths and angles for (3) and (4) are listed in Tables 3 and 4; Table 5 summarises important torsion angles within the  $C_{16}H_{16}$  skeletons. Figures 1 and 2 show the non-hydrogen frameworks of (3) and (4), respectively, with the atomic labelling scheme adopted.

The dication of (3) (Figure 1) contains a tricyclic  $C_{16}H_{16}$ moiety comprising a cyclohexene ring [C(1), C(2), C(3), C(1'), C(2'), C(3')] fused to two cycloheptadienyl residues at C(2)–C(3) and C(2')–C(3'); the seven-membered rings are each  $\eta^5$ -bonded to Fe(CO)<sub>3</sub> units. The dication as a whole has rather approximate (non-crystallographic)  $C_2$  symmetry, the primed atoms being related to those not primed by this 'symmetry'. Inspection of Table 5 shows that the corresponding C–C–C–C torsion angles in related parts of the molecule differ significantly, by up to ca. 13.9° (> 20 $\sigma$ ).

The heptadienyl units consist of a planar dienyl fragment, C(4)-C(5)-C(6)-C(7)-C(8) (r.m.s. deviation 0.04 [0.04] Å \*), and

a second planar four-carbon fragment C(8)-C(2)-C(3)-C(4) (r.m.s. deviation 0.012 [0.017] Å). The ring is therefore folded about the C(4)  $\cdot \cdot \cdot$  C(8) axis, with an interplanar angle of 46 [46]°. Less pronounced but similar folding was noted in [Fe<sub>2</sub>(CO)<sub>4</sub>{P(OPh)<sub>3</sub>}<sub>2</sub>( $\eta^{5}:\eta^{'5}$ -C<sub>16</sub>H<sub>16</sub>)]<sup>2+</sup> [1;L = P(OPh)<sub>3</sub>]<sup>4</sup> where the corresponding dihedral angle was 36°. The carbonyl ligands are quite normal being near linear and with OC-Fe-CO angles near 90°. The Fe(CO)<sub>3</sub> fragment adopts the ground-state conformation as in structure (A), this being that favoured on electronic grounds <sup>6</sup> and observed in numerous ML<sub>3</sub>(dienyl) complexes, *e.g.* [1; L = P(OPh)<sub>3</sub>].<sup>4</sup> As in the latter complexes the iron-dienyl carbon distances vary, with the longest from the metal to the terminal atoms [C(4), C(4'), C(8), C(8')] [av. 2.184(6) Å; † *cf.* others, av. 2.096(6) Å]. The dienyl C-C dis-

<sup>\*</sup> Values for primed atoms are given in square brackets where applicable.

<sup>&</sup>lt;sup>+</sup> Estimated standard deviations in the least significant digit are given in parentheses here and throughout this paper.

#### Table 2. Proton and <sup>13</sup>C n.m.r. spectral data<sup>a</sup>

| Compound                                     | <sup>1</sup> Η (δ) <sup><i>b</i></sup>                                                                                                                                                           | <sup>13</sup> C (p.p.m.) <sup>c</sup>                                                                                                           |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ( <b>3</b> )•CH <sub>3</sub> NO <sub>2</sub> | 3.11 [1 H, dd, J(H <sup>3</sup> H <sup>4</sup> ) 7, H <sup>3</sup> ], 3.50 [1 H, m, J(H <sup>2</sup> H <sup>3</sup> ) 8, H <sup>2</sup> ], 4.95                                                  | 35.7 (C <sup>3</sup> ), 55.5 (C <sup>2</sup> ), 91.2, 94.5 (C <sup>4</sup> , C <sup>8</sup> ), 101.3, 104.6 (C <sup>5</sup> , C <sup>7</sup> ), |
|                                              | $[1 \text{ H}, \text{m}, J(\text{H}^8\text{H}^2) 3.5, J(\text{H}^8\text{H}^7) 10, \text{H}^8], 5.01 (1 \text{ H}, \text{s}, \text{H}^1), 5.19 [1 \text{ H},$                                     | 103.3 (C <sup>6</sup> ), 127.7 (C <sup>1</sup> ), 202.0 (CO) <sup><math>d</math></sup>                                                          |
|                                              | dd, $J(H^4H^3)$ 8, $J(H^4H^3)$ 7, $H^4$ ], 5.96 [1 H, dd, $J(H'H^8)$ 10, $H'$ ],                                                                                                                 |                                                                                                                                                 |
|                                              | $6.16[1 \text{ H}, \text{dd}, J(\text{H}^{\circ}\text{H}^{\circ}) 6, J(\text{H}^{\circ}\text{H}^{*}) 8, \text{H}^{\circ}], 7.11[1 \text{ H}, \text{dd}, J(\text{H}^{\circ}\text{H}^{\prime}) 8,$ |                                                                                                                                                 |
| ( <b>n</b>                                   | J(H <sup>o</sup> H <sup>o</sup> ) 6, H <sup>o</sup> ] <sup>a</sup>                                                                                                                               |                                                                                                                                                 |
| (4)                                          | $2.05 [1 H, m, br, H^3], 2.51 [2 H, m, H^2, H^4], 3.03 [1 H, dd,$                                                                                                                                | $31.8(C^{\circ}), 36.5(C^{\bullet}), 47.0(C^{2}), 64.2, 64.6(C^{\circ}, C^{\circ}), 88.6(C^{\circ}, C^{\prime}),$                               |
|                                              | $J(H^{\circ}H^{2})$ 3, $J(H^{\circ}H^{7})$ 9, $H^{\circ}$ 3, 3.22 [1 H, dd, $J(H^{\circ}H^{4})$ 4.5, $J(H^{\circ}H^{\circ})$ 9,                                                                  | 133.4 ( $C^{1}$ ), 211.3 ( $CO$ ) <sup>7</sup>                                                                                                  |
|                                              | $H^{3}$ ], 5.32 [2 H, m, H <sup>6</sup> , H <sup>7</sup> ], 5.63 [1 H, quartet, <sup>e</sup> $J(H^{1}H^{1})$ 9.5,                                                                                |                                                                                                                                                 |
|                                              | $J(H^{+}H^{2})$ 4.5, $J(H^{+}H^{2}) = 2.3, H^{+}J^{+}$                                                                                                                                           |                                                                                                                                                 |
| $(5) \cdot CH_2 Cl_2$                        | 2.68 $[1 \text{ H}, \text{d}, J(\text{H}^{\circ}\text{H}') \text{ 8}, \text{H}^{\circ}], 2.74 (1 \text{ H}, \text{s,br}, \text{H}^{2}), 3.27 [1 \text{ H}, \text{dd},$                           |                                                                                                                                                 |
|                                              | $J(H^{3}H^{6})$ 7, $J(H^{3}P)$ 16, $H^{3}J$ , 3.42 (1 H, m, H <sup>3</sup> ), 4.70 [1 H, dd,                                                                                                     |                                                                                                                                                 |
|                                              | $J(H^{+}H^{-3}) 2, J(H^{+}P) 20.5, H^{+}], 5.56 (2 H, m, H^{+}, H^{-}), 5.98 [1 H, dd, ]$                                                                                                        |                                                                                                                                                 |
|                                              | $J(H^{\circ}H')$ 6, $J(H^{\circ}H^{3})$ 7, $H^{\circ}J$ , 7.90 (15 H, m, PPh <sub>3</sub> ) <sup>4</sup>                                                                                         |                                                                                                                                                 |
| (6)                                          | $2.56 [1 H, dd, J(H^{3}H^{2}) 8, H^{3}], 2.87 [1 H, m, H^{2}], 3.80 [2 H, m, m]$                                                                                                                 | 35.6 (C <sup>3</sup> ), 53.0 (C <sup>2</sup> ), 80.6 (C <sup>4</sup> , C <sup>6</sup> , br), 97.0 (C <sup>6</sup> ), 100.0, 101.6               |
|                                              | $J(H^{*}H^{*}), J(H^{*}H') 9, H^{*}, H^{*}J, 4.61 (1 H, s, H^{1}), 5.38 (1 H, dd, H'),$                                                                                                          | $(C^{3}, C', br), 126.8 (C^{1})^{J,m}$                                                                                                          |
|                                              | 5.54 (1 H, dd, H <sup>3</sup> ), 6.74 [1 H, dd, $J(H^{\circ}H')$ , $J(H^{\circ}H^{3})$ 6, $H^{\circ}$ ] <sup>3</sup>                                                                             |                                                                                                                                                 |

<sup>a</sup> Numbering as in the Scheme; J values in Hz. Chemical shifts are downfield from SiMe<sub>4</sub>. <sup>b</sup> 200 MHz spectra. <sup>c</sup> 50 MHz spectra unless stated otherwise. <sup>d</sup> In CD<sub>3</sub>NO<sub>2</sub>. <sup>e</sup> [AX]<sub>2</sub> spectrum with  $J(H^2H^{2'}) \approx 0$  Hz. <sup>f</sup> In CDCl<sub>3</sub>. <sup>g</sup> In (CD<sub>3</sub>)<sub>2</sub>CO. <sup>h</sup> 22.50 MHz spectrum. One signal was obscured by the solvent.



tances vary little, from 1.419(8) to 1.368(9) Å, and average 1.393(6) Å.

The cyclohexene ring conformation, as determined in the solid state, is consistent with the <sup>1</sup>H n.m.r. spectrum of (3). Thus, the  $(AX)_2$  spectrum of H(1) is a singlet, implying  $J(H^1H^2)$  is close to zero and bonds C(1)-H(1) and C(2)-H(2) are nearly orthogonal; the H(1)-C(1)-C(2)-H(2) torsion angle is 66(4) [79(5)]°.

The molecular structure of (4) (Figure 2) also shows approximate (non-crystallographic)  $C_2$  symmetry, although rather more precisely than does (3). The largest C-C-C-C torsion angle deviation from this symmetry is  $1.5^{\circ}$  ( $<4\sigma$ ). The hydrocarbon skeleton contains one additional, four-membered ring as compared with (3), formed by linking C(4) and C(4'). The seven-membered rings are now  $\eta^4$ -bonded to the Fe(CO)<sub>3</sub> units, C(4) and C(4') having been detached from iron on reducing (3) to (4).

The seven-membered rings consist once more of two approximately planar sections, one C(5),C(6),C(7),C(8)  $\eta^4$ -bonded to iron (r.m.s. deviation 0.002 [0.002] Å) and the other, C(8),C(2),C(3),C(4),C(5) fused to the cyclobutane [at C(3)-C(4)] and cyclohexene [at C(2)-C(3)] rings. Here the fold along the C(5) ••• C(8) axis is 136 [135]°.

The bonding of the Fe(CO)<sub>3</sub> fragments to the diene portions of the C<sub>7</sub> rings is similar to that observed previously for [Fe(CO)<sub>3</sub>( $\eta^4$ -C<sub>7</sub>H<sub>7</sub>CH=CHPh)]<sup>7</sup> and the related complexes [Fe(CO)<sub>3</sub>( $\eta^4$ -C<sub>7</sub>H<sub>7</sub>Ph)],<sup>8</sup> [Fe(CO)<sub>3</sub>( $\eta^4$ -C<sub>7</sub>H<sub>6</sub>O)],<sup>9</sup> [Fe-(CO)<sub>3</sub>( $\eta^4$ -C<sub>7</sub>H<sub>3</sub>Ph<sub>3</sub>O)],<sup>10</sup> [Fe<sub>2</sub>(CO)<sub>6</sub>( $\eta^4$ : $\eta'^4$ -C<sub>16</sub>H<sub>16</sub>)] (2),<sup>5</sup> [Fe(CO)<sub>3</sub>( $\eta^4$ -C<sub>16</sub>H<sub>16</sub>)],<sup>4</sup> and [Fe<sub>2</sub>(CO)<sub>6</sub>( $\eta^4$ : $\eta'^4$ -C<sub>16</sub>H<sub>18</sub>)].<sup>2</sup> Thus the 'outer' Fe–C(diene) lengths [mean for (4), 2.140(3) Å] are significantly longer than the 'inner' Fe–C distances [av. 2.055(3) Å]. The C–C diene distances indicate substantial occupancy of the diene lowest unoccupied molecular orbital (l.u.m.o.) showing a long-short-long pattern [mean for (4), C(5)–C(6) 1.427(4), C(6)–C(7) 1.392(4), C(7)–C(8) 1.423(4) Å].



Figure 1. Molecular structure of the dication of (3) showing the atomic labelling scheme; hydrogen atoms have been omitted for clarity

The newly formed C(4)–C(4') bond in the cyclobutane ring is clearly under strain having the longest C–C distance 1.596(4) Å [cf. others in the C<sub>4</sub> ring average 1.548(3) Å]. The moduli of torsion angles within this ring vary between 24.3(2) and 25.2(2)°, typical of a range of non-planar cyclobutanes (see ref. 11 and references therein). The conformational changes resulting from C(4)–C(4') bond formation (discussed further below) cause a substantial reduction in the H(1)–C(1)–C(2)–H(2) torsion angle relative to that in (3), to 47(2) [48(2)]°, and hence explain the increase in the <sup>1</sup>H n.m.r. coupling constant  $J(H^1H^2)$  of (4) (4.5 Hz).

Mechanisms of Formation of and Structural Relationships between Complexes (1)—(4).—Each of the reactions linking complexes (1)—(4) involves electron transfer followed by hydrocarbon ring rearrangement. In general terms, the reduction reactions, of (1) and (3), involve electron addition to the



Figure 2. Molecular structure of (4) showing the atomic labelling scheme adopted; hydrogen atoms have been omitted for clarity

metal atom (to give a 19-electron configuration) or to the  $\eta^{5}$ dienyl unit, detachment of a terminal dienyl carbon from each iron to give tricarbonyl( $\eta^{4}$ -diene)iron moieties, and radicalradical coupling between carbon atoms bearing unpaired electrons. The oxidation reactions, of (2) and (4) [the latter is quantitatively reoxidised to (3) on treatment with ferrocenium ion], involve electron loss from the iron centres, as described earlier for [Fe<sub>2</sub>(CO)<sub>6</sub>( $\eta^{4}$ : $\eta'^{4}$ -C<sub>16</sub>H<sub>18</sub>)].<sup>2</sup> Subsequent attainment of the more stable 18-electron configuration, *via* bonding of the metal to an adjacent carbon atom, results in the formation of a cationic tricarbonyl( $\eta^{5}$ -dienyl)iron moiety.

However, more detailed information concerning the mechanisms of the reactions linking (1)—(4) is available from X-ray crystallographic studies, particularly with regard to the observed stereo- and regio-specificities.

Figure 3(a)—(d) illustrates the hydrocarbon skeletons of [1; L = P(OPh)<sub>3</sub>], (2), (3), and (4) (with the positions of the bonded iron atoms) viewed along the bond between C(1) and C(1'). It should be noted that the conformation of [1; L = P(OPh)<sub>3</sub>] {and the very similar conformation of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{18})]$ <sup>2</sup> is somewhat rotated about C(1)–C(1') from that which places the two bicyclo[5.1.0]octadienyl groups exactly *trans*; the dihedral angle H(1)–C(1)–C(1')–H(1') is *ca.* 140°, rather than 180°. This arises because of unfavourable H ••• C non-bonded contacts between H(1') and C(4) and C(5). On rotation about C(1)–C(1') to the *trans* orientation these contacts fall from *ca.* 2.8 Å (similar to other transannular H ••• C distances in these complexes) to less than 2.5 Å.

When (1) is reduced to (2), little conformational change is required to bring C(3) and C(3') close enough to bond. Thus the C(3)-C(3') separation is reduced from 3.58 Å in [1; L = P(OPh)<sub>3</sub>] to 1.56 Å in (2) by rotation of the bicyclo-[5.1.0]octadienyl units about the C(1)-C(1') bond. The C(2)-C(1)-C(1')-C(2') torsion angle falls from 59.7° in [1; L = P(OPh)<sub>3</sub>] to 27° in (2).

Subsequent carbon-carbon bond cleavage and formation in the sequence  $(2) \longrightarrow (3) \longrightarrow (4)$  appears to be controlled in part by the stereochemical requirements of the six-membered ring [C(1)-C(2)-C(3)-C(1')-C(2')-C(3')]. Thus oxidation of (2) results in cleavage of the C(1)-C(8) [C(1')-C(8')] bonds in



Figure 3. The Fe<sub>2</sub>C<sub>16</sub> cores of (a) [1; L = P(OPh)<sub>3</sub>], (b) (2), (c) (3), and (d) (4) viewed along the C(1)–C(1') bonds

preference to C(3)-C(3') [which would regenerate (1)]. Clearly the cyclopropane ring C-C bonds are the most strained in the hydrocarbon skeleton of (2) and therefore most prone to cleavage. The observed cleavage of C(1)-C(8) [C(1')-C(8')] allows relief of angular strain at C(2), and the formation of the Fe-C(8) [C(8')] bonds completes co-ordinative saturation at Fe, C(8), and C(8').

These changes cause relatively little conformational problem for the six-membered ring despite its conversion to a cyclohexene residue in (3) [C(1)-C(1') 1.299(9) Å, cf. 1.49(2) Å in (2)]. However, the conformation about the C(1)-C(1') bond undergoes a further change, in addition to that observed from [1; L = P(OPh)<sub>3</sub>] to (2), in that the angle C(2)-C(1)-C(1')-C(2') is now reduced to 1.0(10)°.

The formation of (3) from (2) can therefore be viewed as an oxidation of the metal followed by electrophilic attack by that metal on C(8). The latter step proceeds with inversion of configuration at C(8), and with an increase of the C(1)–C(1') bond order to two. Other possible courses following the oxidation could be envisaged, for example electrophilic attack on C(2), or attack at C(8) with cleavage of C(2)–C(8) and formation of a C(2)–C(2') bond. These possibilities would appear to be unfavourable because of the preference of the Fe(CO)<sub>3</sub> moiety for binding to an  $\eta^{5}$ -dienyl fragment, rather than to an  $\eta^{4}$ -diene and  $\sigma$ -alkyl group in the former case, and in

### Table 3. Bond lengths and angles for (3)·CH<sub>3</sub>NO<sub>2</sub>

| Bond lengths (Å)    |              |                       |          |                              |                          |          |
|---------------------|--------------|-----------------------|----------|------------------------------|--------------------------|----------|
| Fe(1)-C(4           | 4) 2.160(5)  | Fe(1)-C(5)            | 2.100(6) | C(3)-C(4) 1.504(8)           | C(3)–C(3') 1.563(7)      |          |
| Fe(1)-C(6           | 6) 2.095(7)  | Fe(1)-C(7)            | 2.082(6) | C(9)-O(9) 1.132(8)           | C(4)-C(5) 1.383(8)       |          |
| Fe(1)-C(2           | 8) 2.195(6)  | Fe(1)-C(9)            | 1.799(7) | C(11)-O(11) 1.123(9)         | C(5)-C(6) = 1.406(8)     |          |
| Fe(1)-C(            | 10) 1.828(5) | Fe(1)-C(11)           | 1.814(7) | C(2')-C(8') 1.519(8)         | C(6)-C(7) 1.383(10)      |          |
| Fe(2)C(4            | 4') 2.183(5) | Fe(2)-C(5')           | 2.105(6) | C(3')-C(4') 1.492(7)         | C(7)-C(8) 1.368(9)       |          |
| Fe(2)-C(            | 6') 2.092(6) | Fe(2)-C(7')           | 2.097(6) | C(4')-C(5') 1.419(8)         | C(10)-O(10) 1.125(6)     |          |
| Fe(2)-C(            | 8′) 2.197(6) | Fe(2)-C(12)           | 1.813(7) | C(5')-C(6') 1.399(9)         | C(1) - C(2) = 1.502(8)   |          |
| Fe(2)-C(            | 13) 1.810(6) | Fe(2) - C(14)         | 1.821(6) | C(6')-C(7') 1.396(10)        | C(2') - C(3') = 1.506(8) |          |
| C(1)-C(2)           | ) 1.494(8)   | C(1)-C(1')            | 1.299(9) | C(7) - C(8) = 1.387(8)       | C(12) = O(12) = 1.129(9) |          |
| C(2)-C(8            | ) 1.533(7)   | C(2) - C(3)           | 1.521(7) | C(13) = O(13) = 1.121(8)     | C(14) - O(14) = 1.135(8) |          |
| Bond angles (°)     |              |                       |          |                              |                          |          |
| C(4)-Fe(1)-C(5)     | 37.9(2)      | C(4)-Fe(1)-C(6)       | 71.3(2)  | C(12)-Fe(2)-C(14) 94.0(3)    | C(13)-Fe(2)-C(14)        | 89.5(3)  |
| C(5)-Fe(1)-C(6)     | 39.2(2)      | C(4)-Fe(1)-C(7)       | 89.3(2)  | C(2)-C(1)-C(1') 125.1(5)     | C(1)-C(2)-C(3)           | 113.0(5) |
| C(5)-Fe(1)-C(7)     | 72.1(2)      | C(6)-Fe(1)-C(7)       | 38.7(3)  | C(1)-C(2)-C(8) 108.5(4)      | C(3)-C(2)-C(8)           | 111.6(4) |
| C(4)-Fe(1)-C(8)     | 78.5(2)      | C(5)-Fe(1)-C(8)       | 85.0(2)  | C(2)-C(3)-C(4) 112.6(4)      | C(2)-C(3)-C(3')          | 113.5(4) |
| C(6)-Fe(1)-C(8)     | 68.3(3)      | C(7)-Fe(1)-C(8)       | 37.2(2)  | C(4)-C(3)-C(3') 108.4(4)     | Fe(1)-C(4)-C(3)          | 110.6(4) |
| C(4)-Fe(1)-C(9)     | 87.1(3)      | C(5)-Fe(1)-C(9)       | 124.9(2) | Fe(1)-C(4)-C(5) 68.7(3)      | C(3)-C(4)-C(5)           | 129.6(5) |
| C(6)-Fe(1)-C(9)     | 149.5(3)     | C(7)-Fe(1)-C(9)       | 123.1(3) | Fe(1)-C(5)-C(4) 73.5(4)      | Fe(1)-C(5)-C(6)          | 70.2(4)  |
| C(8) - Fe(1) - C(9) | 86.8(3)      | C(4)-Fe(1)-C(10)      | 174.6(2) | C(4)-C(5)-C(6) 125.7(6)      | Fe(1)-C(6)-C(5)          | 70.6(4)  |
| C(5)-Fe(1)-C(10)    | 139.1(2)     | C(6)-Fe(1)-C(10)      | 104.1(3) | Fe(1)-C(6)-C(7) 70.2(4)      | C(5)-C(6)-C(7)           | 123.8(6) |
| C(7)-Fe(1)-C(10)    | 85.3(2)      | C(8) - Fe(1) - C(10)  | 97.3(2)  | Fe(1)-C(7)-C(6) 71.2(4)      | Fe(1)-C(7)-C(8)          | 75.9(4)  |
| C(9)-Fe(1)-C(10)    | 96.0(3)      | C(4)-Fe(1)-C(11)      | 93.7(2)  | C(6)-C(7)-C(8) 122.3(5)      | Fe(1)-C(8)-C(2)          | 113.6(4) |
| C(5)-Fe(1)-C(11)    | 86.1(3)      | C(6)-Fe(1)-C(11)      | 105.3(3) | Fe(1)-C(8)-C(7) 66.9(3)      | C(2)-C(8)-C(7)           | 123.4(6) |
| C(7)-Fe(1)-C(11)    | 139.7(3)     | C(8) - Fe(1) - C(11)  | 171.1(3) | Fe(1)-C(9)-O(9) 178.2(6)     | Fe(1)-C(10)-O(10)        | 180.0(8) |
| C(9)-Fe(1)-C(11)    | 97.2(3)      | C(10)-Fe(1)-C(11)     | 90.3(3)  | Fe(1)-C(11)-O(11) 176.5(7)   | C(1)-C(1')-C(2')         | 125.2(5) |
| C(4')-Fe(2)-C(5')   | 38.6(2)      | C(4')-Fe(2)-C(6')     | 72.3(2)  | C(1')-C(2')-C(3') 110.5(5)   | C(1')-C(2')-C(8')        | 111.5(5) |
| C(5')-Fe(2)-C(6')   | 38.9(2)      | C(4')-Fe(2)-C(7')     | 90.1(2)  | C(3')-C(2')-C(8') 110.7(4)   | C(3)-C(3')-C(2')         | 113.9(4) |
| C(5')-Fe(2)-C(7')   | 71.7(2)      | C(6')-Fe(2)-C(7')     | 38.9(3)  | C(3)-C(3')-C(4') 110.7(5)    | C(2')-C(3')-C(4')        | 110.5(4) |
| C(4')-Fe(2)-C(8')   | 77.8(2)      | C(5')-Fe(2)-C(8')     | 83.9(2)  | Fe(2)-C(4')-C(3') = 108.4(4) | Fe(2)-C(4')-C(5')        | 67.7(3)  |
| C(6')-Fe(2)-C(8')   | 68.5(2)      | C(7')-Fe(2)-C(8')     | 37.6(2)  | C(3')-C(4')-C(5') 129.7(5)   | Fe(2)-C(5')-C(4')        | 73.7(3)  |
| C(4')-Fe(2)-C(12)   | 85.4(2)      | C(5')-Fe(2)-C(12)     | 123.7(3) | Fe(2)-C(5')-C(6') 70.1(3)    | C(4')-C(5')-C(6')        | 127.3(6) |
| C(6')-Fe(2)-C(12)   | 151.8(2)     | C(7')-Fe(2)-C(12)     | 127.1(3) | Fe(2)-C(6')-C(5') 71.0(3)    | Fe(2)-C(6')-C(7')        | 70.7(3)  |
| C(8')-Fe(2)-C(12)   | 90.4(3)      | C(4')-Fe(2)-C(13)     | 173.3(3) | C(5')-C(6')-C(7') 123.5(5)   | Fe(2)-C(7')-C(6')        | 70.4(3)  |
| C(5')-Fe(2)-C(13)   | 140.2(3)     | C(6') - Fe(2) - C(13) | 104.1(3) | Fe(2)-C(7')-C(8') 75.1(3)    | C(6')-C(7')-C(8')        | 120.5(6) |
| C(7')-Fe(2)-C(13)   | 83.8(3)      | C(8')-Fe(2)-C(13)     | 95.6(3)  | Fe(2)-C(8')-C(2') 113.2(4)   | Fe(2)-C(8')-C(7')        | 67.3(3)  |
| C(12)-Fe(2)-C(13)   | 96.1(3)      | C(4')-Fe(2)-C(14)     | 96.9(2)  | C(2')-C(8')-C(7') 120.9(5)   | Fe(2)-C(12)-O(12)        | 178.9(6) |
| C(5')-Fe(2)-C(14)   | 89.0(3)      | C(6')-Fe(2)-C(14)     | 105.5(3) | Fe(2)-C(13)-O(13) = 177.2(6) | Fe(2)-C(14)-O(14)        | 177.2(6) |
| C(7')-Fe(2)-C(14)   | 138.8(3)     | C(8')-Fe(2)-C(14)     | 172.9(3) |                              |                          |          |

the latter because the resulting hydrocarbon ligand would contain two, strained, fused cyclobutane rings.

The final reductive coupling reaction, converting (3) to (4), requires the greatest apparent conformational change as illustrated in Figure 3. The formation of the C(4)–C(4') bond is allowed by a dramatic change in the C(4)–C(3)–C(4') torsion angle from 159.7(4)° in (3) to 25.2(2)° in (4) (where it is one of the cyclobutane intra-ring torsion angles). This change is accompanied by inversion of the cyclohexene ring conformation as illustrated by Figure 3 (see also Table 5). The effect of this inversion is to move C(4) and C(4') from *trans* to *gauche* positions on C(3)–C(3'), *i.e.* from adjacent axial to equatorial sites on the C<sub>6</sub> ring as is required to reduce C(4) · · · C(4') to a bonding distance.

The conformational pressure within the six-membered ring, caused by the formation of C(4)-C(4') and the low torsion angle at C(3)-C(3') is illustrated by the pronounced twisting in the C(1)-C(1') double bond [*e.g.* C(2)-C(1)-C(1')-C(2'),  $-8.6(5)^{\circ}$ ]. This bond is also marginally lengthened by the twisting motion [C(1)-C(1') in (4) is 1.322(4) Å, *cf.* 1.299(9) Å in (3)].

The conversion of (3) to (4) may therefore be considered to proceed by reduction of the Fe(CO)<sub>3</sub>( $\eta^5$ -dienyl) systems, leading to uncoupling of the terminal contact carbons of the dienyl units [*i.e.* C(4) and C(4')], followed by C<sub>6</sub> ring inversion and formation of the C(4)–C(4') bond and with it the cyclobutane ring [C(3),C(3'),C(4),C(4')]. Oxidation of (4) regenerates (3) by cleavage of the long, strained C(4)-C(4') bond. As for the reaction of (2) to (3), that of (4) to (3) may be considered to involve electrophilic attack by a cationic 17-electron iron centre on a saturated carbon atom [C(4)], which proceeds with inversion of configuration [at C(4)] and cleavage of the C(4)-C(4') bond. The specific nature of the interconversion of (3) and (4) prompts consideration of other reaction paths which might be envisaged. For example, reduction of (3) does not lead to cleavage of Fe–C(8) [C(8')] and formation of a bond between C(8) and C(8'). Such a sequence is not possible since C(8) and C(8') are transoid 1,4-substituents on the C<sub>6</sub> ring (see Figure 3) and hence cannot be brought into proximity without inversion of configuration at C(2) and C(2'). Other possibilities include cleavage of Fe-C(8) [C(8')] and formation of C(1)-C(8) [C(1')-C(8')] bonds, *i.e.* reformation of (2), presumably disfavoured since it results in two cyclopropane rings rather than one cyclobutane ring.

Other possible reactions on oxidation of (4) can likewise be seen to be unfavourable. Thus electrophilic attack on C(2) [C(2')] rather than C(4) [C(4')] would have to result in cleavage of C(2)–C(1) [C(2)–C(1')] with expulsion of HCCH (!) and retention of the strained C<sub>4</sub> ring.

In the case of (4) it is clear that the C–C bond cleaved on oxidation is the longest and presumably the weakest such bond in the hydrocarbon skeleton. Similarly, although with reduced statistical significance it is the longest cyclopropane ring bonds

| ) 2.152(3)        | Fe(1)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.123(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(4)–C(4')                                                                                                                                                                                                                                                                                                                                                                                              | 1.596(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(9)–O(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.129(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ) 2.051(3)        | Fe(1)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.800(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                               | 1.427(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(11)-O(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.138(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ) 1.803(4)        | Fe(2)-C(5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.148(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(6)-C(7)                                                                                                                                                                                                                                                                                                                                                                                               | 1.392(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(2') - C(8')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.515(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1) 1.785(3)       | Fe(2)-C(7')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.058(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                               | 1.423(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C(3^{\circ}) - C(4^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.537(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.053(3) 2.053(3) | Fe(2)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.795(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(10) - O(10)                                                                                                                                                                                                                                                                                                                                                                                           | 1.122(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C(4^{\circ}) - C(5^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.512(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.138(3)          | Fe(2)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.811(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C(\Gamma) - C(2')$                                                                                                                                                                                                                                                                                                                                                                                     | 1.529(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(5) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.420(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3) 1.795(4)       | C(1)-C(1')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.322(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(2) = C(3)                                                                                                                                                                                                                                                                                                                                                                                             | 1.497(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(0) - C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.413(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.523(4)          | C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.496(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(12) - O(12)                                                                                                                                                                                                                                                                                                                                                                                           | 1.120(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(7) = C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.425(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.520(4)          | C(3)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.551(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(14) = O(14)<br>E <sub>2</sub> (1) $C(4)$                                                                                                                                                                                                                                                                                                                                                              | 1.130(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(13) = O(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.133(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.543(4)          | C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.508(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(1) = C(0)                                                                                                                                                                                                                                                                                                                                                                                            | 2.039(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39.5(1)           | C(5)-Fe(1)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(2)-C(3)-C(4)                                                                                                                                                                                                                                                                                                                                                                                          | 128.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(2)-C(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(3′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 39.6(1)           | C(5)-Fe(1)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.6(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(4)-C(3)-C(3')                                                                                                                                                                                                                                                                                                                                                                                         | ) 87.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(3)-C(4)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 72.2(1)           | C(7)-Fe(1)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(3)-C(4)-C(4')                                                                                                                                                                                                                                                                                                                                                                                         | ) 86.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(5)-C(4)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(4′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 92.4(1)           | C(6)-Fe(1)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe(1)-C(5)-C(4)                                                                                                                                                                                                                                                                                                                                                                                         | ) 117.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(1)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 122.5(1)          | C(8) - Fe(1) - C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(4)-C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                          | 128.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe(1)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 169.7(1)          | C(6)-Fe(1)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(1)-C(6)-C(7)                                                                                                                                                                                                                                                                                                                                                                                         | ) 69.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(5)-C(6)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 98.3(1)           | C(8) - Fe(1) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe(1)-C(7)-C(6)                                                                                                                                                                                                                                                                                                                                                                                         | ) 70.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe(1)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 91.0(2)           | C(5)-Fe(1)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(6)-C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                          | 122.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe(1)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 126.0(1)          | C(7)-Fe(1)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(1)-C(8)-C(7)                                                                                                                                                                                                                                                                                                                                                                                         | ) 67.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(2)-C(8)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 95.7(1)           | C(9)-Fe(1)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(1)-C(9)-O(9)                                                                                                                                                                                                                                                                                                                                                                                         | ) 178.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(1)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )-O(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100.3(1)          | C(5')-Fe(2)-C(6')                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe(1)-C(11)-O(                                                                                                                                                                                                                                                                                                                                                                                          | 11) 176.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(1)-C(1')-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(2')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 126.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 72.2(1)           | C(6')-Fe(2)-C(7')                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(1')-C(2')-C(3)                                                                                                                                                                                                                                                                                                                                                                                        | 3') 104.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(1')-C(2')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(8′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 85.4(1)           | C(6')-Fe(2)-C(8')                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(3')-C(2')-C(8)                                                                                                                                                                                                                                                                                                                                                                                        | 3') 116.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(3)-C(3')-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(2')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 39.7(1)           | C(5')-Fe(2)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(3)-C(3')-C(4')                                                                                                                                                                                                                                                                                                                                                                                        | <sup>(</sup> ) 89.0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(2')-C(3')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(4′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 128.4(1)          | C(7')-Fe(2)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(4)-C(4')-C(3')                                                                                                                                                                                                                                                                                                                                                                                        | <sup>(</sup> ) 85.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(4) - C(4')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -C(5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 94.5(1)           | C(5')-Fe(2)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 166.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(3')-C(4')-C(5')                                                                                                                                                                                                                                                                                                                                                                                       | 5') 115.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fe(2)-C(5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⊢C(4′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 127.2(1)          | C(7')-Fe(2)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe(2)-C(5')-C(6')                                                                                                                                                                                                                                                                                                                                                                                       | 5 <sup>′</sup> ) 66.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(4')-C(5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(6')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 88.0(1)           | C(12)-Fe(2)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(2)-C(6')-C(2)                                                                                                                                                                                                                                                                                                                                                                                        | 5') 73.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe(2)-C(6')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $+\mathbf{C}(7')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 92.0(1)           | C(6')-Fe(2)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(5')-C(6')-C(7                                                                                                                                                                                                                                                                                                                                                                                         | <sup>(')</sup> 122.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe(2)-C(7')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⊢C(6′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 122.0(1)          | C(8')-Fe(2)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(2)-C(7')-C(8)                                                                                                                                                                                                                                                                                                                                                                                        | s') 73.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(6')-C(7')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(8′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 104.3(2)          | C(13)-Fe(2)- $C(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe(2)-C(8')-C(2)                                                                                                                                                                                                                                                                                                                                                                                        | 2') 117.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fe(2)-C(8')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⊢C(7′)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 126.1(3)          | C(1)-C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(2')-C(8')-C(7)                                                                                                                                                                                                                                                                                                                                                                                        | <i>(</i> ) 127.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe(2)-C(12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )-O(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 113.1(2)          | C(3)-C(2)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(2)-C(13)-O(                                                                                                                                                                                                                                                                                                                                                                                          | (13) 178.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe(2)-C(14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )–O(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | ) $2.152(3)$<br>) $2.051(3)$<br>) $1.803(4)$<br>1) $1.785(3)$<br>) $2.053(3)$<br>) $2.138(3)$<br>3) $1.795(4)$<br>1.523(4)<br>1.520(4)<br>1.520(4)<br>1.543(4)<br>39.5(1)<br>39.6(1)<br>72.2(1)<br>92.4(1)<br>122.5(1)<br>169.7(1)<br>98.3(1)<br>91.0(2)<br>126.0(1)<br>95.7(1)<br>100.3(1)<br>72.2(1)<br>85.4(1)<br>39.7(1)<br>128.4(1)<br>94.5(1)<br>127.2(1)<br>85.4(1)<br>39.7(1)<br>128.4(1)<br>94.5(1)<br>127.2(1)<br>88.0(1)<br>92.0(1)<br>122.0(1)<br>104.3(2)<br>126.1(3)<br>113.1(2) | ) 2.152(3) $Fe(1)-C(8)$<br>) 2.051(3) $Fe(1)-C(10)$<br>) 1.803(4) $Fe(2)-C(5')$<br>1) 1.785(3) $Fe(2)-C(12)$<br>) 2.053(3) $Fe(2)-C(12)$<br>) 2.138(3) $Fe(2)-C(14)$<br>3) 1.795(4) $C(1)-C(1')$<br>1.523(4) $C(2)-C(3)$<br>1.520(4) $C(3)-C(3')$<br>1.543(4) $C(4)-C(5)$<br>39.5(1) $C(5)-Fe(1)-C(7)$<br>39.6(1) $C(5)-Fe(1)-C(8)$<br>72.2(1) $C(7)-Fe(1)-C(8)$<br>92.4(1) $C(6)-Fe(1)-C(9)$<br>122.5(1) $C(8)-Fe(1)-C(9)$<br>122.5(1) $C(8)-Fe(1)-C(10)$<br>98.3(1) $C(8)-Fe(1)-C(10)$<br>98.3(1) $C(8)-Fe(1)-C(10)$<br>91.0(2) $C(5)-Fe(1)-C(11)$<br>126.0(1) $C(7)-Fe(2)-C(11)$<br>100.3(1) $C(5')-Fe(2)-C(6')$<br>72.2(1) $C(6')-Fe(2)-C(6')$<br>72.2(1) $C(6')-Fe(2)-C(6')$<br>72.2(1) $C(5')-Fe(2)-C(12)$<br>128.4(1) $C(5')-Fe(2)-C(12)$<br>128.4(1) $C(5')-Fe(2)-C(12)$<br>128.4(1) $C(5')-Fe(2)-C(12)$<br>128.4(1) $C(7')-Fe(2)-C(13)$<br>127.2(1) $C(7')-Fe(2)-C(13)$<br>127.2(1) $C(6')-Fe(2)-C(13)$<br>127.2(1) $C(6')-Fe(2)-C(13)$<br>127.2(1) $C(6')-Fe(2)-C(13)$<br>127.2(1) $C(6')-Fe(2)-C(13)$<br>127.2(1) $C(7')-Fe(2)-C(13)$<br>127.2(1) $C(7')-Fe(2)-C(13)$<br>127.2(1) $C(7')-Fe(2)-C(13)$<br>127.2(1) $C(7')-Fe(2)-C(14)$<br>122.0(1) $C(6')-Fe(2)-C(14)$<br>122.0(1) $C(6')-Fe(2)-C(14)$<br>123.1(2) $C(3)-C(2)-C(8)$ | ) 2.152(3) $Fe(1)-C(8)$ 2.123(3)<br>) 2.051(3) $Fe(1)-C(10)$ 1.800(3)<br>) 1.803(4) $Fe(2)-C(5')$ 2.148(3)<br>1) 1.785(3) $Fe(2)-C(7')$ 2.058(3)<br>') 2.053(3) $Fe(2)-C(12)$ 1.795(4)<br>') 2.138(3) $Fe(2)-C(14)$ 1.811(3)<br>3) 1.795(4) $C(1)-C(1')$ 1.322(4)<br>1.523(4) $C(2)-C(3)$ 1.496(4)<br>1.520(4) $C(3)-C(3')$ 1.531(4)<br>1.520(4) $C(3)-C(3')$ 1.531(4)<br>1.543(4) $C(4)-C(5)$ 1.508(4) | ) 2.152(3) Fe(1)-C(8) 2.123(3) C(4)-C(4')<br>) 2.051(3) Fe(1)-C(10) 1.800(3) C(5)-C(6)<br>) 1.803(4) Fe(2)-C(5') 2.148(3) C(6)-C(7)<br>1) 1.785(3) Fe(2)-C(12) 1.795(4) C(10)-O(10)<br>) 2.053(3) Fe(2)-C(14) 1.811(3) C(1')-C(2')<br>3) 1.795(4) C(1)-C(1') 1.322(4) C(2')-C(3')<br>1.523(4) C(2)-C(3') 1.531(4) C(14)-O(14)<br>1.520(4) C(3)-C(3') 1.531(4) C(14)-O(14)<br>1.543(4) C(4)-C(5) 1.508(4) Fe(1)-C(6)<br>39.5(1) C(5)-Fe(1)-C(7) 71.8(1) C(2)-C(3')<br>72.2(1) C(7)-Fe(1)-C(8) 39.8(1) C(3)-C(4)-C(4')<br>92.4(1) C(6)-Fe(1)-C(9) 94.8(1) Fe(1)-C(5)-C(4<br>122.5(1) C(8)-Fe(1)-C(9) 161.7(1) C(4)-C(5)-C(4<br>122.5(1) C(8)-Fe(1)-C(10) 130.5(1) Fe(1)-C(5)-C(4<br>122.5(1) C(8)-Fe(1)-C(10) 130.5(1) Fe(1)-C(5)-C(6)<br>169.7(1) C(6)-Fe(1)-C(10) 130.5(1) Fe(1)-C(7)-C(6)<br>91.0(2) C(5)-Fe(1)-C(11) 130.7(1) Fe(1)-C(8)-C(7)<br>95.7(1) C(9)-Fe(1)-C(11) 130.7(1) Fe(1)-C(8)-C(7)<br>95.7(1) C(9)-Fe(1)-C(11) 130.7(1) Fe(1)-C(8)-C(7)<br>95.7(1) C(9)-Fe(2)-C(7) 40.2(1) C(1')-C(2)-C(3)<br>126.0(1) C(7)-Fe(2)-C(7) 40.2(1) C(1')-C(2)-C(3)<br>126.0(1) C(7)-Fe(2)-C(7) 40.2(1) C(1')-C(2)-C(3)<br>126.0(1) C(7)-Fe(2)-C(7) 40.2(1) C(1')-C(2)-C(3)<br>126.0(1) C(7)-Fe(2)-C(7) 40.2(1) C(1')-C(2)-C(3)<br>126.0(1) C(7)-Fe(2)-C(12) 91.4(1) C(3)-C(3)-C(4)<br>127.2(1) C(6)-Fe(2)-C(7) 40.2(1) C(1')-C(2)-C(3)<br>126.0(1) C(7)-Fe(2)-C(12) 91.4(1) C(3)-C(3)-C(4)<br>128.4(1) C(7)-Fe(2)-C(13) 95.3(1) Fe(2)-C(5)-C(6)<br>127.2(1) C(6)-Fe(2)-C(14) 94.0(1) C(5')-C(6)-C(7)<br>122.0(1) C(8)-Fe(2)-C(14) 94.0(1) Fe(2)-C(8)- | ) 2.152(3) $Fe(1)-C(8)$ 2.123(3) $C(4)-C(4')$ 1.596(4)<br>) 2.051(3) $Fe(1)-C(10)$ 1.800(3) $C(5)-C(6)$ 1.427(4)<br>) 1.803(4) $Fe(2)-C(5')$ 2.148(3) $C(6)-C(7)$ 1.392(4)<br>1) 1.785(3) $Fe(2)-C(12)$ 1.795(4) $C(10)-O(10)$ 1.122(4)<br>) 2.053(3) $Fe(2)-C(12)$ 1.795(4) $C(10)-O(10)$ 1.122(4)<br>) 2.138(3) $Fe(2)-C(14)$ 1.811(3) $C(1')-C(2')$ 1.529(4)<br>3) 1.795(4) $C(1)-C(1')$ 1.322(4) $C(2')-C(3')$ 1.497(4)<br>1.523(4) $C(2)-C(3')$ 1.496(4) $C(12)-O(12)$ 1.120(5)<br>1.520(4) $C(3)-C(3')$ 1.531(4) $C(14)-O(14)$ 1.130(4)<br>1.543(4) $C(4)-C(5)$ 1.508(4) $Fe(1)-C(6)$ 2.059(3) | ) 2.152(3) Fe(1)-C(8) 2.123(3) C(4)-C(4') 1.596(4) C(9)-O(9)<br>) 2.051(3) Fe(1)-C(10) 1.800(3) C(5)-C(6) 1.427(4) C(11)-O(11)<br>1.183(3) Fe(2)-C(7') 2.058(3) C(7)-C(8) 1.423(4) C(3')-C(4')<br>) 1.785(3) Fe(2)-C(12) 1.795(4) C(10)-O(10) 1.122(4) C(4')-C(5')<br>) 2.138(3) Fe(2)-C(14) 1.811(3) C(1')-C(2') 1.529(4) C(5')-C(6')<br>3) 1.795(4) C(1)-C(1') 1.322(4) C(2')-C(3') 1.497(4) C(6')-C(7')<br>1.523(4) C(2)-C(3) 1.496(4) C(12)-O(12) 1.120(5) C(7)-C(8')<br>1.520(4) C(3)-C(3') 1.531(4) C(14)-O(14) 1.130(4) C(13)-O(13)<br>1.543(4) C(4)-C(5) 1.508(4) Fe(1)-C(6) 2.059(3)<br>39.5(1) C(5)-Fe(1)-C(8) 85.6(1) C(4)-C(3') 87.9(2) C(3)-C(4')<br>72.2(1) C(7)-Fe(1)-C(8) 39.8(1) C(3)-C(4') 86.4(2) C(5)-C(4)-<br>72.2(1) C(7)-Fe(1)-C(8) 130.8(1) Fe(1)-C(5)-C(4) 117.3(2) Fe(1)-C(5)-<br>122.5(1) C(8)-Fe(1)-C(9) 94.8(1) Fe(1)-C(5)-C(4) 117.3(2) Fe(1)-C(5)-<br>169.7(1) C(6)-Fe(1)-C(9) 130.5(1) Fe(1)-C(6) 7.05(2) Fe(1)-C(7)-<br>98.3(1) C(8)-Fe(1)-C(10) 88.5(1) C(4)-C(7)-6(8) 122.2(3) Fe(1)-C(5)-<br>126.0(1) C(7)-Fe(1)-C(11) 130.7(1) Fe(1)-C(6) 7.05(2) Fe(1)-C(7)-<br>91.0(2) C(5)-Fe(1)-C(11) 130.7(1) Fe(1)-C(8)-C(7) 6.99.9(2) C(5)-C(6)-<br>95.7(1) C(9)-Fe(1)-C(11) 102.4(2) Fe(1)-C(9)-O(9) 178.1(3) Fe(1)-C(10)<br>100.3(1) C(5')-Fe(2)-C(7) 40.2(1) C(1')-C(2')-C(8) 116.7(2) C(2)-C(8)-<br>95.7(1) C(9)-Fe(1)-C(11) 102.4(2) Fe(1)-C(9)-O(9) 178.1(3) Fe(1)-C(10)<br>100.3(1) C(5')-Fe(2)-C(6) 39.4(1) Fe(1)-C(1)-O(1) 176.2(3) C(2)-C(8)-<br>95.7(1) C(9)-Fe(2)-C(12) 91.4(1) C(3)-C(3')-C(4') 85.9(2) C(1)-C(1')-<br>72.2(1) C(6')-Fe(2)-C(13) 130.5(1) C(3')-C(2')-C(8') 116.7(2) C(3)-C(3')-<br>73.9.7(1) C(9)-Fe(2)-C(13) 136.5(1) C(3')-C(2')-C(8') 116.7(2) C(3)-C(3')-<br>73.9.7(1) C(5')-Fe(2)-C(13) 166.5(1) C(3')-C(4') 110.2(2) C(1')-C(2')-<br>88.0(1) C(12)-Fe(2)-C(13) 166.5(1) C(3')-C(4') 115.9(2) Fe(2)-C(5')-<br>88.0(1) C(12)-Fe(2)-C(13) 136.5(1) C(3')-C(2')-C(8') 115.9(2) Fe(2)-C(5')-<br>88.0(1) C(12)-Fe(2)-C(13) 166.5(1) C(3')-C(4')-C(5') 115.9(2) Fe(2)-C(5')-<br>88.0(1) C(12)-Fe(2)-C(13) 166.5(1) C(3')-C(4')-C(5') 115.9(2) Fe(2)-C(5')-<br>88.0(1) C(12)-Fe(2)-C(14) 94.0(1) C(5')-C(6')-C(5') 73.9(2) Fe(2 | ) 2.152(3) Fe(1)-C(8) 2.123(3) C(4)-C(4') 1.596(4) C(9)-O(9) 1.129(5)<br>) 2.051(3) Fe(1)-C(10) 1.800(3) C(5)-C(6) 1.427(4) C(11)-O(11) 1.138(4)<br>) 1.803(4) Fe(2)-C(5') 2.148(3) C(6)-C(7) 1.392(4) C(2')-C(8') 1.515(4)<br>) 1.785(3) Fe(2)-C(7) 2.058(3) C(7)-C(8) 1.423(4) C(3')-C(4') 1.537(4)<br>) 2.033(3) Fe(2)-C(12) 1.795(4) C(10)-O(10) 1.122(4) C(4')-C(5') 1.512(4)<br>) 2.138(3) Fe(2)-C(14) 1.811(3) C(1')-C(2') 1.529(4) C(5')-C(6') 1.420(4)<br>1.523(4) C(2)-C(3') 1.496(4) C(12)-O(12) 1.120(5) C(7')-C(8') 1.425(4)<br>1.520(4) C(3)-C(3') 1.531(4) C(14)-O(14) 1.130(4) C(13)-O(13) 1.133(4)<br>1.520(4) C(3)-C(3') 1.531(4) C(14)-O(14) 1.130(4) C(13)-O(13) 1.133(4)<br>1.520(4) C(5)-Fe(1)-C(7) 71.8(1) C(2)-C(3) 87.9(2) C(3)-C(4)-C(5')<br>72.2(1) C(7)-Fe(1)-C(8) 39.8(1) C(3)-C(4) 128.8(2) C(2)-C(3)-C(3')<br>39.6(1) C(5)-Fe(1)-C(7) 71.8(1) C(2)-C(3) 87.9(2) C(3)-C(4)-C(5)<br>72.2(1) C(7)-Fe(1)-C(8) 39.8(1) C(3)-C(4) 128.8(2) C(3)-C(4)-C(5)<br>169.7(1) C(6)-Fe(1)-C(9) 94.8(1) Fe(1)-C(5)-C(4) 117.3(2) Fe(1)-C(5)-C(6)<br>169.7(1) C(6)-Fe(1)-C(10) 130.5(1) Fe(1)-C(5)-C(4) 117.3(2) Fe(1)-C(5)-C(6)<br>169.7(1) C(6)-Fe(1)-C(10) 130.5(1) Fe(1)-C(6)-C(5) Fe(1)-C(7)-C(8)<br>91.0(2) C(5)-Fe(1)-C(11) 130.7(1) Fe(1)-C(6) 7.05(2) Fe(1)-C(7)-C(8)<br>91.0(2) C(5)-Fe(1)-C(11) 130.7(1) Fe(1)-C(6)-C(5) 128.1(3) Fe(1)-C(7)-C(8)<br>91.0(2) C(5)-Fe(1)-C(11) 130.7(1) Fe(1)-C(6)-C(7) 67.3(2) C(2)-C(8)-C(7)<br>95.7(1) C(9)-Fe(1)-C(11) 130.7(1) Fe(1)-C(1)-0(1) 176.2(3) C(1)-C(1)-C(1)<br>95.7(1) C(5)-Fe(2)-C(7) 40.2(1) C(1)-C(2)-C(3) 146.6(2) C(1)-C(7)-C(8)<br>95.7(1) C(5)-Fe(2)-C(7) 40.2(1) C(1)-C(2)-C(3) 146.6(2) C(1)-C(1)-C(2)-C(8)<br>55.4(1) C(5)-Fe(2)-C(12) 130.7(1) Fe(1)-C(1)-0(1) 176.2(3) C(1)-C(1)-C(2)<br>72.2(1) C(5)-Fe(2)-C(12) 130.7(1) C(4)-C(5) 115.9(2) Fe(2)-C(6)-C(7)<br>73.7(1) C(5)-Fe(2)-C(12) 130.7(1) C(4)-C(5) 115.9(2) C(3)-C(3)-C(2)<br>72.2(1) C(5)-Fe(2)-C(11) 100.9(2) Fe(2)-C(5)-C(6) 66.7(2) C(4)-C(5)-C(6)<br>88.0(1) C(12)-Fe(2)-C(11) 100.9(2) Fe(2)-C(5)-C(6) 66.7(2) C(4)-C(5)-C(6)<br>88.0(1) C(12)-Fe(2)-C(11) 100.9(2) Fe(2)-C(6)-C(5) 73.9(2) C(4)-C(4)-C(5)<br>72.2(1) C(6)-Fe(2)- |

# Table 4. Bond lengths and angles for (4)

in (2) and in  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{18})]^2$  which are cleaved on oxidation. It is also clear, however, that the ring cleavage occurs at the C-C bond which lies opposite the incoming electrophilic iron centre. The stereo- and regio-specificity of these reactions can be seen to result from the requirements for co-ordinative saturation at the iron atoms and for minimisation of conformational and angular strain energies in the hydrocarbon skeleton.

Reactions of Complexes (3) and (4).—By comparison with the reactions of (1) with nucleophiles, which result in hydrocarbon ring rearrangement,<sup>4,12</sup> complex (3) and PPh<sub>3</sub> or iodide ion give simple products more similar to those observed with mono-nuclear tricarbonyl(dienyl)iron cations.

In CH<sub>2</sub>Cl<sub>2</sub>, a suspension of (3) reacts with two equivalents of PPh<sub>3</sub> to give a yellow solution from which the crystalline bis(phosphonium) salt  $[Fe_2(CO)_6\{\eta^4:\eta'^4-C_{16}H_{16}(PPh_3)_2\}]$ - $[PF_6]_2$  (5) (Scheme) can be isolated in high yield (Table 1). The <sup>1</sup>H n.m.r. spectrum of (5) (Table 2) shows that nucleophilic attack by the phosphorus ligands occurs at the terminal carbon atoms of the two pentadienyl moieties of (3). The assignment of the spectrum, given in Table 2, is based on PPh<sub>3</sub> addition to C(4) and C(4'), although reaction at C(8) and C(8') cannot be ruled out.

Iodide ions react with (3) in  $CH_2Cl_2$  to give moderate yields of the neutral di-iodide (6) in which nucleophilic attack at the metal results in carbonyl displacement. The <sup>1</sup>H n.m.r. spectrum of (6) (Table 2) is very similar to that of (3), apart from the shift to low field on carbonyl substitution. However, the roomtemperature <sup>13</sup>C n.m.r. spectrum of (6) is somewhat different from that of (3) in that resonances due to carbon atoms C(4), C(5), C(7), and C(8) (Scheme) are broadened. More detailed studies on  $[Fe_2I_2(CO)_4(\eta^5:\eta'^5-C_{16}H_{16})]$  have shown<sup>2</sup> that such broadening is due to rotational isomerism, involving the position of the iodide and two carbonyl ligands in relation to the unsymmetrical  $\eta^5$ -bonded pentadienyl group.

#### Conclusions

The synthesis of (3) and (4) completes a series of reactions in which  $[Fe(CO)_3(\eta^4\text{-cot})]$  is converted, via electron-transfer reactions, to complexes containing four different  $C_{16}H_{16}$  hydrocarbons. The stereo- and regio-specificity of each step further underlines the synthetic potential of organometallic electrochemistry.

# Experimental

The preparation, purification, and reactions of the complexes described were carried out under an atmosphere of dry nitrogen. Where appropriate, reactions were monitored by i.r. spectroscopy; unless stated otherwise the complexes are moderately air-stable in the solid state, and dissolve in polar solvents such as  $CH_2Cl_2$  and acetone to give solutions which slowly decompose in air. The complexes  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})]$ - $[PF_6]_2$  (1; L = CO)<sup>4</sup> and  $[Fe(\eta-C_5H_5)_2][PF_6]^{13}$  were pre-

Table 5. Torsion angles (°)\* for (3)·CH<sub>3</sub>NO<sub>2</sub> and (4)

|                             | (3)                     | (4)                       |
|-----------------------------|-------------------------|---------------------------|
| C(1')-C(1)-C(2)-C(3)        | 5.4(8) [18.3(8)]        | -10.8(4) [ $-9.6(4)$ ]    |
| C(1')-C(1)-C(2)-C(8)        | 129.7(6) [141.8(6)]     | 116.7(3) [117.8(3)]       |
| C(2) - C(1) - C(1') - C(2') | 1.0(10)                 | -8.6(5)                   |
| C(1)-C(2)-C(3)-C(4)         | 93.4(5) [82.6(5)]       | 153.2(3) [153.7(3)]       |
| C(1)-C(2)-C(3)-C(3')        | - 30.2(6) [-42.7(6)]    | 47.1(3) [46.0(3)]         |
| C(8)-C(2)-C(3)-C(4)         | -29.2(7) [-41.4(6)]     | 27.8(4) [29.3(4)]         |
| C(8)-C(2)-C(3)-C(3')        | -152.8(5) [-166.7(5)]   | -78.4(3) [-78.5(3)]       |
| C(1)-C(2)-C(8)-C(7)         | -43.7(7) [-32.5(8)]     | -89.7(3) [-88.4(4)]       |
| C(3)-C(2)-C(8)-C(7)         | 81.4(7) [91.0(7)]       | 31.4(4) [32.2(4)]         |
| C(2)-C(3)-C(4)-C(5)         | -38.1(8) [ $-27.3(8)$ ] | -26.7(4) [ $-29.0(4)$ ]   |
| C(2)-C(3)-C(4)-C(4')        |                         | -141.4(3) [ $-142.8(3)$ ] |
| C(3')-C(3)-C(4)-C(5)        | 88.3(7) [99.8(6)]       | 90.5(2) [89.4(2)]         |
| C(3')-C(3)-C(4)-C(4')       |                         | -24.3(2) [ $-24.4(2)$ ]   |
| C(2)-C(3)-C(3')-C(2')       | 50.8(6)                 | -71.7(3)                  |
| C(2)-C(3)-C(3')-C(4')       | -74.4(5) [-75.1(5)]     | 156.7(2) [156.9(2)]       |
| C(4)-C(3)-C(3')-C(4')       | 159.7(4)                | 25.2(2)                   |
| C(3)-C(4)-C(5)-C(6)         | 50.0(9) [48.0(9)]       | -33.4(4) [-32.5(4)]       |
| C(4')-C(4)-C(5)-C(6)        |                         | 64.7(4) [64.4(4)]         |
| C(3)-C(4)-C(4')-C(3')       |                         | 24.2(2)                   |
| C(3)-C(4)-C(4')-C(5')       |                         | -92.2(3) [-93.0(2)]       |
| C(5)-C(4)-C(4')-C(5')       |                         | 150.6(2)                  |
| C(4)-C(5)-C(6)-C(7)         | 2.8(10) [-0.4(8)]       | 54.5(4) [55.2(4)]         |
| C(5)-C(6)-C(7)-C(8)         | -10.4(10) [-8.3(8)]     | 0.8(4) [0.6(4)]           |
| C(6)-C(7)-C(8)-C(2)         | -47.5(8) [-48.4(8)]     | -54.9(4) [-55.8(4)]       |
| H(1)-C(1)-C(2)-H(2)         | 66.3(39) [79.4(47)]     | 47.7(27) [48.7(27)]       |

\* The corresponding value for the given geometric parameter replacing primed atom labels with unprimed (and vice versa) is given in square brackets.

pared by the published methods; the compound  $K[BH-(CHMeEt)_3]$  was purchased from the Aldrich Chemical Company Ltd. Electrochemical studies were carried out as previously described.<sup>14</sup>

Infrared spectra were recorded on Nicolet MX-1 FT or Perkin-Elmer PE 257 instruments and calibrated against the absorption band of polystyrene at 1 601 cm<sup>-1</sup>. Hydrogen-1 n.m.r. spectra were recorded on a JEOL FX 200 spectrometer, and <sup>13</sup>C n.m.r. spectra on JEOL FX 200 or FX 90Q instruments; both were calibrated against SiMe<sub>4</sub> as internal reference. Mass spectra were recorded on an AEI MS902 instrument. Microanalyses were by the staff of the Microanalytical Service of the School of Chemistry, University of Bristol. Melting points are uncorrected.

Synthesis of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (2).—To a cold  $(-78 \,^{\circ}C)$  stirred suspension of  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})][PF_6]_2$  (1; L = CO) (1.38 g, 1.8 mmol) in thf (50 cm<sup>3</sup>) was added K[BH(CHMeEt)\_3] (4 cm<sup>3</sup> of a 1 mol dm<sup>-3</sup> solution in thf, 4.0 mmol). After 1.5 h the red solution was warmed to room temperature and evaporated to dryness. Extraction of the orange residue with CH<sub>2</sub>Cl<sub>2</sub> (15 cm<sup>3</sup>) and chromatography on a silica–n-hexane column (40 cm × 3 cm) gave a yellow band which was eluted with n-hexane–diethyl ether (10:1). Evaporation to dryness and recrystallisation from CH<sub>2</sub>Cl<sub>2</sub>–n-hexane gave the product as yellow crystals, yield 0.15 g (20%).

Preparation of  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})][PF_6]_2(3)$ .—To a stirred solution of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (2) (0.35 g, 0.7 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 cm<sup>3</sup>) was added  $[Fe(\eta-C_5H_5)_2][PF_6]$  (0.45 g, 1.4 mmol). After 1 h, the white precipitate was filtered off and washed with diethyl ether. Recrystallisation from nitromethane-diethyl ether gave the product, (3)-CH<sub>3</sub>NO<sub>2</sub>, as a pale yellow solid, yield 0.47 g (78%). The product is insoluble in CH<sub>2</sub>Cl<sub>2</sub> but soluble in CH<sub>3</sub>NO<sub>2</sub> and acetone.

Preparation of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (4).—To a cold  $(-78 \circ C)$  stirred suspension of  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})]$ -

 $[PF_6]_2 \cdot CH_3 NO_2$  (0.42 g, 0.54 mmol) in thf (75 cm<sup>3</sup>) was added K[BH(CHMeEt)\_3] (1.2 cm<sup>3</sup> of a 1 mol dm<sup>-3</sup> solution in thf, 1.20 mmol). After 1 h, the orange solution was warmed to room temperature and evaporated to dryness. Extraction of the orange residue into  $CH_2Cl_2$  (10 cm<sup>3</sup>) and chromatography on an alumina-n-hexane column (20 cm × 2.5 cm), gave a yellow band which was eluted with n-hexane. Evaporation to dryness gave the product as yellow crystals, yield 0.053 g (20%).

Oxidation of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (4) with Ferrocenium Ion.—To a stirred solution of  $[Fe_2(CO)_6(\eta^4:\eta'^4-C_{16}H_{16})]$  (4) (0.020 g, 0.04 mmol) in  $CH_2Cl_2$  (20 cm<sup>3</sup>), was added  $[Fe(\eta-C_5H_5)_2][PF_6]$  (0.028 g, 0.08 mmol). After 1 h, the white precipitate was filtered off and washed with diethyl ether to give  $[Fe_2(CO)_6(\eta^5:\eta'^5-C_{16}H_{16})][PF_6]_2$  (3) as a white solid, yield 0.028 g (88%).

Preparation of  $[Fe_2(CO)_6[\eta^4:\eta'^4-C_{16}H_{16}(PPh_3)_2]][PF_6]_2$ (5).—Solid PPh<sub>3</sub> (0.06 g, 0.23 mmol) was added to a stirred suspension of (3)·CH<sub>3</sub>NO<sub>2</sub> (0.1 g, 0.13 mmol), in CH<sub>2</sub>Cl<sub>2</sub> (20 cm<sup>3</sup>). After 3.5 h the yellow solution was filtered and evaporated to low volume. Addition of diethyl ether gave the product, (5)·CH<sub>2</sub>Cl<sub>2</sub>, as a pale yellow solid, yield 0.11 g (72%).

**Preparation** of  $[Fe_2I_2(CO)_4(\eta^5:\eta'^5-C_{16}H_{16})]$  (6).—Solid  $[PMePh_3]I$  (0.05 g, 0.12 mmol) was added to a yellow suspension of (3)·CH<sub>3</sub>NO<sub>2</sub> (0.05 g, 0.06 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 cm<sup>3</sup>). After stirring for 1 h, the red solution was filtered, evaporated to dryness, and the residue extracted into toluene (100 cm<sup>3</sup>). After removal of toluene *in vacuo*, recrystallisation from dichloromethane–n-hexane yielded the product as a redbrown solid, yield 0.02 g (52%).

Crystal Structure Analyses of (3)•CH<sub>3</sub>NO<sub>2</sub> and (4).—Crystals of (3)•CH<sub>3</sub>NO<sub>2</sub> grow as thin yellow needles from nitromethane– diethyl ether solution. A fragment of dimensions  $0.7 \times 0.13 \times$ 0.13 mm was cut from a larger crystal and glued in a thin-walled glass capillary under N<sub>2</sub> for structure analysis. Intensity data

| Atom                     | x                             | у                                  | z        | Atom               | x                                     | у                    | z                    |
|--------------------------|-------------------------------|------------------------------------|----------|--------------------|---------------------------------------|----------------------|----------------------|
| Fe(1)                    | 17 028(1)                     | 5 340(1)                           | 3 671(1) | C(13)              | 13 126(11)                            | 6 829(3)             | -140(2)              |
| Fe(2)                    | 12 824(1)                     | 6 534(1)                           | 573(1)   | O(13)              | 13 356(10)                            | 7 035(3)             | -571(2)              |
| C(1)                     | 15 635(9)                     | 7 155(3)                           | 2 620(2) | C(14)              | 10 363(9)                             | 6 353(3)             | 235(3)               |
| C(2)                     | 14 750(8)                     | 6 525(3)                           | 2 840(2) | O(14)              | 8 826(7)                              | 6 226(3)             | 45(2)                |
| C(3)                     | 14 775(7)                     | 5 856(3)                           | 2 469(2) | P(1)               | 13 208(2)                             | 6 624(1)             | 4 913(1)             |
| C(4)                     | 16 453(9)                     | 5 391(3)                           | 2 713(2) | F(1)               | 15 190(5)                             | 6 864(3)             | 4 839(2)             |
| C(5)                     | 18 286(8)                     | 5 582(3)                           | 2 973(2) | F(2)               | 13 267(6)                             | 7 247(3)             | 5 372(2)             |
| C(6)                     | 18 858(10)                    | 6 081(4)                           | 3 434(3) | F(3)               | 14 157(7)                             | 6 125(3)             | 5 442(2)             |
| C(7)                     | 17 638(10)                    | 6 428(3)                           | 3 709(2) | F(4)               | 12 271(7)                             | 7 096(3)             | 4 372(2)             |
| C(8)                     | 15 734(9)                     | 6 400(3)                           | 3 494(2) | F(5)               | 13 173(6)                             | 5 986(2)             | 4 463(2)             |
| C(9)                     | 14 691(9)                     | 4 995(3)                           | 3 578(2) | F(6)               | 11 229(5)                             | 6 375(3)             | 4 986(2)             |
| O(9)                     | 13 202(6)                     | 4 795(3)                           | 3 515(2) | P(2)               | 9 456(3)                              | 4 493(1)             | 1 499(1)             |
| C(10)                    | 17 572(9)                     | 5 386(3)                           | 4 481(2) | F(7)               | 9 812(8)                              | 3 679(2)             | 1 422(3)             |
| O(10)                    | 17 905(7)                     | 5 412(2)                           | 4 980(2) | F(8)               | 9 113(9)                              | 5 291(3)             | 1 589(4)             |
| C(11)                    | 18 220(10)                    | 4 486(4)                           | 3 712(3) | F(9) <sup>a</sup>  | 7 592(15)                             | 4 406(7)             | 1 679(5)             |
| O(11)                    | 19 014(9)                     | 3 971(3)                           | 3 720(2) | F(10) <sup>a</sup> | 11 228(24)                            | 4 645(7)             | 1 277(9)             |
| C(1')                    | 16 237(9)                     | 7 168(3)                           | 2 139(3) | F(11) <sup>a</sup> | 10 529(19)                            | 4 678(11)            | 2 098(5)             |
| C(2')                    | 16 122(7)                     | 6 556(3)                           | 1 713(2) | F(12) <sup>a</sup> | 8 299(18)                             | 4 420(6)             | 815(4)               |
| C(3')                    | 14 695(8)                     | 6 017(3)                           | 1 802(2) | F(13) <sup>b</sup> | 7 394(12)                             | 4 394(5)             | 1 279(7)             |
| C(4′)                    | 12 769(7)                     | 6 243(3)                           | 1 480(2) | F(14) <sup>b</sup> | 9 389(22)                             | 4 203(6)             | 2 135(5)             |
| C(5')                    | 12 044(8)                     | 6 938(3)                           | 1 326(2) | F(15) <sup>b</sup> | 11 659(12)                            | 4 595(5)             | 1 744(6)             |
| C(6′)                    | 12 847(9)                     | 7 481(3)                           | 1 055(2) | F(16) <sup>b</sup> | 9 778(19)                             | 4 742(7)             | 928(4)               |
| C(7′)                    | 14 553(10)                    | 7 409(3)                           | 897(2)   | С                  | 4 347(14)                             | 3 232(5)             | 1 730(4)             |
| C(8′)                    | 15 673(8)                     | 6 813(3)                           | 1 072(2) | N(1)               | 4 509(10)                             | 3 102(5)             | 2 370(4)             |
| C(12)                    | 13 548(9)                     | 5 618(4)                           | 507(2)   | <b>O</b> (1)       | 4 125(11)                             | 2 514(6)             | 2 493(4)             |
| O(12)                    | 13 986(8)                     | 5 044(3)                           | 473(2)   | O(2)               | 5 137(12)                             | 3 564(5)             | 2 709(3)             |
| <sup>a</sup> Occupancy 0 | .457(6). <sup>b</sup> Occupan | cy 0.543(6).                       |          |                    |                                       |                      |                      |
| Table 7. Atom            | ic co-ordinates (×            | 10 <sup>4</sup> ) for ( <b>4</b> ) |          |                    | · · · · · · · · · · · · · · · · · · · |                      |                      |
| Atom                     | x                             | у                                  | Z        | Atom               | x                                     | у                    | Z                    |
| Fe(1)                    | 3 219(1)<br>8 933(1)          | 8 299(1)<br>7 761(1)               | 7 010(1) | O(11)              | 4 067(2)                              | 6 484(2)<br>9 891(2) | 5 997(2)<br>7 295(3) |

| Table 6. Atomic co-ordinates | ( > | : 10 <sup>4</sup> ) | for | (3)•CH <sub>3</sub> NO <sub>2</sub> |
|------------------------------|-----|---------------------|-----|-------------------------------------|
|------------------------------|-----|---------------------|-----|-------------------------------------|

|       |          |          |          |       |           | -        |           |
|-------|----------|----------|----------|-------|-----------|----------|-----------|
| Fe(1) | 3 219(1) | 8 299(1) | 7 010(1) | O(11) | 4 067(2)  | 6 484(2) | 5 997(2)  |
| Fe(2) | 8 933(1) | 7 761(1) | 9 929(1) | C(1') | 7 303(3)  | 9 891(2) | 7 295(3)  |
| C(1)  | 6 425(3) | 9 715(2) | 6 579(2) | C(2') | 7 557(2)  | 9 395(2) | 8 402(2)  |
| C(2)  | 5 562(2) | 8 881(2) | 6 647(2) | C(3') | 6 529(2)  | 8 846(2) | 8 540(2)  |
| C(3)  | 6 040(2) | 8 197(2) | 7 564(2) | C(4') | 6 388(2)  | 7 887(2) | 9 242(2)  |
| C(4)  | 5 451(2) | 7 527(2) | 8 301(2) | C(5') | 7 333(2)  | 7 125(2) | 9 437(2)  |
| C(5)  | 4 333(2) | 7 897(2) | 8 431(2) | C(6') | 8 066(2)  | 6 861(2) | 8 741(2)  |
| C(6)  | 3 939(2) | 8 956(2) | 8 432(2) | C(7′) | 8 671(2)  | 7 636(3) | 8 298(2)  |
| C(7)  | 4 002(2) | 9 652(2) | 7 600(2) | C(8') | 8 578(2)  | 8 728(2) | 8 540(2)  |
| C(8)  | 4 450(2) | 9 349(2) | 6 691(2) | C(12) | 8 433(3)  | 8 702(3) | 10 781(3) |
| C(9)  | 2 076(3) | 7 762(3) | 7 527(3) | O(12) | 8 094(3)  | 9 300(3) | 11 284(2) |
| O(9)  | 1 347(2) | 7 419(3) | 7 823(3) | C(13) | 10 325(3) | 8 170(3) | 10 045(3) |
| C(10) | 2 326(3) | 8 875(3) | 5 903(3) | O(13) | 11 194(2) | 8 456(3) | 10 109(3) |
| O(10) | 1 801(2) | 9 227(2) | 5 188(2) | C(14) | 9 341(3)  | 6 638(3) | 10 783(2) |
| C(11) | 3 702(3) | 7 180(2) | 6 378(2) | O(14) | 9 629(2)  | 5 938(2) | 11 304(2) |
|       |          |          |          |       |           |          |           |

for a quadrant of reciprocal space were collected in the range  $4 < 2\theta < 50^{\circ}$  on a Nicolet P3m diffractometer at room temperature. For reflections with  $2\theta > 40^{\circ}$  only those with raw intensity >25 counts in a 2-s prescan were collected. Integrated intensities were measured by the  $\theta$ -2 $\theta$  method with scan widths  $(2.4 + \Delta \alpha_1 \alpha_2)^\circ$  and speeds varying between 2.0 and 29.3° min<sup>-1</sup>. Three check reflections (1 8 4, 4 4 7, 2012) were remeasured after every 50 reflections and showed no significant variation during the experiment. A numerical absorption correction based on the indexed crystal faces was applied to the 4 644 intensity data collected; maximum and minimum transmission coefficients were 0.870 and 0.796, respectively. 4 054 Unique data remained after averaging of duplicate and symmetry related measurements and deletion of systematic absences; of these 3 242 with  $I > 1.5\sigma(I)$  were used in the structure solution and refinement.

Crystal data for (3)·CH<sub>3</sub>NO<sub>2</sub>. C<sub>22</sub>H<sub>16</sub>F<sub>12</sub>Fe<sub>2</sub>O<sub>6</sub>P<sub>2</sub>·CH<sub>3</sub>NO<sub>2</sub>, M = 840.9, monoclinic, a = 7.353(3), b = 18.706(10), c = 23.205(15) Å,  $\beta = 104.06(4)^\circ$ , U = 3.095(3) Å<sup>3</sup>, Z = 4,  $D_c = 104.06(4)^\circ$ , U = 3.095(3) Å<sup>3</sup>, Z = 4,  $D_c = 104.06(4)^\circ$ , U = 3.095(3) Å<sup>3</sup>, Z = 4,  $D_c = 104.06(4)^\circ$ , U = 3.095(3) Å<sup>3</sup>, Z = 4,  $D_c = 104.06(4)^\circ$ , U = 3.095(3) Å<sup>3</sup>, Z = 4,  $D_c = 104.06(4)^\circ$ , U = 3.095(3) Å<sup>3</sup>, Z = 4,  $D_c = 104.06(4)^\circ$ ,  $U = 100.06(4)^\circ$ , U = 100 1.80 g cm<sup>-3</sup>, F(000) = 1 680 electrons, space group  $P2_1/n$  (nonstandard setting of no. 14,  $P2_1/c$ ), Mo- $K_{\alpha}$  X-radiation, graphite monochromator,  $\bar{\lambda} = 0.710$  69 Å,  $\mu$ (Mo- $K_{\alpha}$ ) = 11.44 cm<sup>-1</sup>, T =295 K, crystal faces [distance from origin (mm)]: (0 0 1) [0.10], (0 0 I) [0.10], (0 1 I) [0.06], (0 I 1) [0.06], (0 I I) [0.09], (0 1 1) [0.09], (1 0 0) [0.35], (I 0 0) [0.35].

Data collection and reduction for (4) proceeded in a similar fashion as for (3)·CH<sub>3</sub>NO<sub>2</sub> with the following exceptions. Yellow-green plate-like crystals of (4) were grown from n-hexane solution at -20 °C. Crystal dimensions were *ca.*  $0.8 \times 0.65 \times 0.13$  mm. Three check reflections (500, 060, and 006) were remeasured after every 100 reflections;  $2\theta_{max}$ . was 50° with all reflections collected after the prescan. The transmission coefficients for the 4950 reflections collected varied between 0.797 and 0.348; data reduction gave 4 462 unique observations of which 3 878 with  $I > 1.5\sigma(I)$  were used.

Crystal data for (4).  $C_{22}H_{16}Fe_2O_6$ , M = 487.9, monoclinic, a = 12.489(5), b = 12.655(5), c = 12.768(5) Å,  $\beta = 99.74(4)^\circ$ , U = 1.988(1) Å<sup>3</sup>, Z = 4,  $D_c = 1.63$  g cm<sup>-3</sup>, F(000) = 992, space group  $P2_1/c$  (no. 14), Mo- $K_q$  X-radiation, graphite monochromator,  $\lambda = 0.710$  69 Å,  $\mu$ (Mo- $K_q$ ) = 14.94 cm<sup>-1</sup>, T = 295 K, crystal faces [distances from origin (mm)]: (100) [0.075], (100) [0.075], (011) [0.35], (011) [0.35], (011) [0.425], (011) [0.425].

Structure solution and refinement. The structures were solved by orthodox heavy-atom methods, all atoms including hydrogen being located directly. Refinement was by blockedcascade full-matrix least squares with all non-hydrogen atoms being assigned anisotropic vibrational parameters, and hydrogen atoms isotropic parameters. In the case of (3)·CH<sub>3</sub>NO<sub>2</sub>, one  $[PF_6]^-$  anion showed disorder in having two sites for a set of four (coplanar) fluorine atoms. The occupancies of these sites were refined to 0.457(6) and 0.543(6), respectively. Individual reflections were assigned weights  $w = [\sigma^2(F_0) + gF_0^2]^{-1}$  $[\sigma^2(F_0)]$  = variance due to counting statistics, g = 0.0007 for (3)·CH<sub>3</sub>NO<sub>2</sub> and g = 0.0005 for (4)]. Refinement converged to final residuals R = 0.0543, R' = 0.0536, and S = 1.33 for (3)·CH<sub>3</sub>NO<sub>2</sub> and R = 0.0541, R' = 0.0531, S = 1.85 for (4).\* Final difference electron-density maps showed features of magnitude  $<0.45 \text{ e} \text{ Å}^{-3}$  for (3)-CH<sub>3</sub>NO<sub>2</sub>, the largest being near the disordered [PF<sub>6</sub>]<sup>-</sup> anion; for (4) the corresponding value was 0.69 e Å<sup>-3</sup>, the peaks being near the metal atoms. Nonhydrogen atom positional parameters for (3)-CH<sub>3</sub>NO<sub>2</sub> and (4)are given in Tables 6 and 7, respectively. Complex neutral-atom scattering factors were taken from ref. 15, and all calculations carried out with programs of the SHELXTL package.<sup>16</sup> The crystal structure of  $(3) \cdot CH_3NO_2$  consists of isolated [Fe<sub>2</sub>(CO)<sub>6</sub>( $\eta^5$ : $\eta'^5$ -C<sub>16</sub>H<sub>16</sub>)]<sup>2+</sup> dications, [PF<sub>6</sub>]<sup>-</sup> anions, and CH<sub>3</sub>NO<sub>2</sub> molecules of solvation, separated by normal nonbonded distances. The structure of (4) is likewise composed of isolated molecules separated by typical van der Waals distances.

# Acknowledgements

We thank the S.E.R.C. for a Research Studentship (to J. B. S.) and a Postdoctoral Research Assistantship (to M. W. W.). We

\*  $R = \Sigma |F_o - |F_c|| / \Sigma |F_o|; R' = \Sigma w^{\frac{1}{2}} |F_o - |F_c|| / \Sigma w^{\frac{1}{2}} |F_o|; S = [\Sigma w(F_o - |F_c|)^2 / (N.O. - N.V.)]^{\frac{1}{2}}.$ 

also thank Drs. R. J. Goodfellow and M. Murray for invaluable assistance with n.m.r. spectroscopy, and Professor B. R. Penfold for the atomic positional parameters of complex (2).

#### References

- 1 Part 21, N. G. Connelly, M. J. Freeman, A. G. Orpen, A. R. Sheehan, J. B. Sheridan, and D. A. Sweigart, preceding paper.
- 2 N. G. Connelly, A. R. Lucy, R. M. Mills, J. B. Sheridan, and P. Woodward, J. Chem. Soc., Dalton Trans., 1985, 699.
- 3 N. G. Connelly, A. R. Lucy, R. M. Mills, J. B. Sheridan, M. W. Whiteley, and P. Woodward, J. Chem. Soc., Chem. Commun., 1982, 1057.
- 4 N. G. Connelly, R. L. Kelly, M. D. Kitchen, R. M. Mills, R. F. D. Stansfield, M. W. Whiteley, S. M. Whiting, and P. Woodward, J. Chem. Soc., Dalton Trans., 1981, 1317.
- 5 H. A. Bockmeulen, R. G. Holloway, A. W. Parkins, and B. R. Penfold, J. Chem. Soc., Chem. Commun., 1976, 298.
- 6 T. A. Albright, P. Hofmann, and R. Hoffmann, J. Am. Chem. Soc., 1977, 99, 7546.
- 7 K. Broadley, N. G. Connelly, R. M. Mills, M. W. Whiteley, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 683.
- 8 J. A. D. Jefferys and C. Metters, J. Chem. Soc., Dalton Trans., 1977, 729.
- 9 R. P. Dodge, J. Am. Chem. Soc., 1964, 86, 5429.
- 10 D. L. Smith and L. F. Dahl, J. Am. Chem. Soc., 1962, 84, 1743.
- 11 J. C. J. Bart, P. Piccardi, and I. W. Bassi, *Acta Crystallogr., Sect. B*, 1980, **36**, 842.
- 12 N. G. Connelly, A. R. Lucy, R. M. Mills, M. W. Whiteley, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 161.
- 13 J. C. Smart and B. L. Pinsky, J. Am. Chem. Soc., 1980, 102, 1009.
- 14 N. G. Connelly, M. J. Freeman, I. Manners, and A. G. Orpen, J. Chem. Soc., Dalton Trans., 1984, 2703.
- 15 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4.
- 16 G. M. Sheldrick, SHELXTL programs for use with the Nicolet X-Ray System, Cambridge, 1976; updated Göttingen, 1981.

Received 13th August 1984; Paper 4/1419