New Isomers of $[Os_3(CO)_{10}(PMe_2Ph)_2]$ and $[Os_3(CO)_9(PMe_2Ph)_3]$

Antony J. Deeming,* Susan Donovan-Mtunzi, Shariff E. Kabir, and Peter J. Manning Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ

The compounds $[Os_3(CO)_{10}(\eta^4 - s - cis - C_4H_6)](C_4H_6 = buta - 1,3 - diene), [Os_3(CO)_{10}(\mu - s - trans - C_4H_6)],$ and $[Os_3(CO)_{10}(MeCN)_2]$ react with PMe₂Ph at room temperature to give $[Os_3(CO)_{10}(PMe_2Ph)_2]$ and $[Os_3(CO)_9(PMe_2Ph)_3]$ as mixtures of isomers. The decacarbonyl compound separates on silica into a 1,1 - and a 1,2 - isomer, which do not interconvert at room temperature, although the 1,2isomer exists as two rapidly interconverting isomers of C_s and C_{2v} symmetry respectively. Likewise the nonacarbonyl compound separates into non-interconvertible 1,2,3 - and 1,1,2 - isomers. Carbon-13 and ³¹P n.m.r. studies have demonstrated specific localised and delocalised CO exchanges and that intramolecular phosphine transfer between metal atoms does not occur. Indeed 1,1 - $[Os_3(CO)_{10} - (PMe_2Ph)_2]$ gives $[Os_3H(CO)_9(\mu - Me_2PC_6H_4 - 0) (PMe_2Ph)]$ readily in refluxing toluene whereas the 1,2-isomer does not react at this temperature, giving other decarbonylation products above 120 °C.

Thermal reaction of $[Os_3(CO)_{12}]$ with tertiary phosphines (PR_3) in refluxing toluene gives a mixture of the substitution products $[Os_3(CO)_{11}(PR_3)]$, $[Os_3(CO)_{10}(PR_3)_2]$, and $[Os_3-$ (CO)₉(PR₃)₃], which may be separated by column chromatography on alumina.¹ Substitution of more than three CO ligands by monophosphines is not possible under these conditions and each osmium atom is substituted by only one equatorially positioned PR₃ ligand. No evidence for the formation of isomers from these reactions has been found, although it was briefly mentioned that $[Os_3(CO)_{10}(MeCN)_2]$ and $[Os_2(CO)_{10}(C_8H_{14})_2]$ (C_8H_{14} = cyclo-octene) react at 25 °C with PR₃ to give $[Os_3(CO)_{10}(PR_3)_2]$ and that $[Os_3(CO)_{10}(PMe_2Ph)_2]$ among other compounds was shown by low-temperature n.m.r. studies to exist in two non-defined isomeric forms.² The dynamic behaviour of the compounds $[Os_3(CO)_{11}(PEt_3)]$, $[Os_3(CO)_{10}(PEt_3)_2]$, and [Os₃(CO)₉(PEt₃)₃], formed by direct thermal substitution of $[Os_3(CO)_{12}]$, has been studied by variable-temperature ¹³C and ³¹P n.m.r. with no indication of isomers being present.³ For example, $[Os_3(CO)_{10}(PEt_3)_2]$ shows two ³¹P n.m.r. absorptions at $-60 \ ^\circ C$ (which have coalesced by 40 $^\circ C$) and seven CO signals in the ¹³C n.m.r. spectrum in the intensity ratio 2:2:2:1:1:11. These observations are consistent with a C_s structure in which the PEt₃ ligands are equatorially positioned at two osmium atoms in non-equivalent sites.³ The compound

is dynamic in solution with rapid exchange of CO ligands via bridging-CO intermediates; total exchange of the CO ligands is observed at high temperatures. Although the non-equivalent PEt_3 ligands exchange, this seems to occur without any Os-P bond cleavage.

Results and Discussion

Synthesis of Compounds.-The syntheses of the compounds $[Os_3(CO)_{12-x}(PMe_2Ph)_x]$ (x = 1, 2, or 3) (1)-(3) respectively, by direct substitution of $[Os_3(CO)_{12}]$ have been described.¹ In order to introduce more than one PMe₂Ph ligand at an osmium atom, we used PMe₂Ph to displace butadiene from the isomer of $[Os_3(CO)_{10}(\eta^4 - C_4H_6)] (C_4H_6 = buta-1,3-diene)$ (4), in which the s-cis-diene is co-ordinated at an axial and an equatorial site at one osmium atom.⁴ Slow diene displacement occurs over days at room temperature in dichloromethane solution in the dark to give good yields of a new isomer of $[Os_3(CO)_{10}]$ $(PMe_2Ph)_2$, compound 1,1-(2), giving orange crystals, as the major product (50%). The i.r. spectrum is quite unlike that of the known 1,2-isomer, 1,2-(2), which is formed directly from $[Os_3(CO)_{12}]$ (Table 1). The new isomer was identified as the 1,1-isomer (see section on spectroscopic characterisation). The known isomer 1,2-(2) is also produced in small amounts from the reaction of PMe_2Ph with (4) as are the known cluster 1,2,3-

Figure 1. Observed isomers of $[Os_3(CO)_{12-x}(PMe_2Ph)_x](x = 1,2, \text{ or } 3); \bigcirc = CO, \bullet = PMe_2Ph$. The planes illustrated each contain six CO ligands allowing a 'merry-go-round' mechanism via a di- μ -CO bridged intermediate as proposed for $[Os_3(CO)_{12}]$

Compound	v(CO) ^a /cm ⁻¹	δ(¹ H) ^b	Assignment	J/Hz	δ(³¹ P) ^b
$[Os_3(CO)_{10}(PMe_2Ph)_2]$ Isomer 1,1-(2)	2 089m, 2 037s, 2 012(sh), 2 003vs, 1 985(sh), 1 979w, 1 957s, 1 912(sh), 1 907w	1.81(d)	Ме	9.2	5.01(s)
$[Os_3(CO)_{10}(PMe_2Ph)_2]$ Isomer 1,2-(2)	2 084m, 2 026s, 2 009(sh), 2 002vs, 1 963s, 1 946m, 1 934(sh)	2.15(d) ^c	Me	9.7	6.77(s) ^{d.e} 1.10(s) ^{d.e} 4.41(s) ^{d.f}
$[Os_3(CO)_9(PMe_2Ph)_3]$ Isomer 1,1,2-(3)	2 061w, 2 004s, 1 982s, 1 963m, 1 947m, 1 938m, 1 929m, 1 898w	1.74(d) 1.80(d) 2.14(d)	Me Me Me	9.1 9.3 9.5	$5.7(d)^{g}$ 3.6(t) ^g $-1.5(d)^{g}$
$[Os_3(CO)_9(PMe_2Ph)_3]$ Isomer 1,2,3-(3)	1 988s, 1 974vs, 1 934s, 1 920m	2.27(d)	Me	10	h
$[Os_{3}H(CO)_{9}(Me_{2}PC_{6}H_{4}-o)-(PMe_{2}Ph)]$ (7)	2 066m, 2 029vs, 2 006vs, 1 975s, 1 959m	8.06(m), 7.14(m), 6.83(m), 6.50(m),	C ₆ H ₄		h h
		2.15(d), 2.11(d),	PMe2Ph	8.2 8.9	
		1.96(d), 0.18(d),	PMe ₂ C ₆ H ₄	8.2 8.1	
		17.74(dd)	Os ₃ H	12.0, 18.2	

Table 1. Infrared and ¹H and ³¹P n.m.r. data

^a Recorded in cyclohexane. ^b In CDCl₃ at 20 °C unless stated otherwise. ^c At -90 °C in CD₂Cl₂, two doublets at 2.09 (J = 9.8) and at 2.07 (J = 9.8 Hz) were observed for the major isomer; the expected doublet for the minor isomer probably underlies these strong doublets. ^d At -60 °C in toluene. ^e Major isomer. ^f Minor isomer. ^g Two equal coupling constants (5 Hz). ^h Not recorded.

 $[Os_3(CO)_9(PMe_2Ph)_3]$ [compound 1,2,3-(3)] and a new isomer, 1,1,2- $[Os_3(CO)_9(PMe_2Ph)_3]$ [compound 1,1,2-(3)].

We have investigated the nature and yields of these products from the room-temperature reactions of PMe₂Ph with the clusters[Os₃(CO)₁₀(η^4 -s-cis-C₄H₆)](4),[Os₃(CO)₁₀(μ -s-trans- η^4 -C₄H₆)](5), and [Os₃(CO)₁₀(MeCN)₂](6); Table 2 shows the variation of product distribution. It is evident that there is a considerable measure of product control in that, when the diene is displaced from one metal atom, the 1,1-isomer of compound (2) is the major product whereas 1,2-(2) predominates when ligand(s) are replaced from two metal atoms as in compounds (5) and (6).

The two isomers of $[Os_3(CO)_9(PMe_2Ph)_3]$, 1,2,3-(3) and 1,1,2-(3), produced in small yields from (4), (5), or (6), are not formed by secondary reaction of PMe_2Ph with either isomer of $[Os_3(CO)_{10}(PMe_2Ph)_2]$. We have shown separately that compounds 1,2-(2) and 1,1-(2) do not react with PMe_2Ph under these conditions. In the cases of the butadiene complexes (4) and (5), intermediates of type $[Os_3(CO)_{10}(PMe_2Ph)(\eta^2-C_4H_6)]$ might be formed which decarbonylate at room temperature to give isomers of $[Os_3(CO)_9(PMe_2Ph)(\eta^4-C_4H_6)]$ subsequently leading to compounds 1,2,3-(3) and 1,1,2-(3). However, this is not a possible route from $[Os_3(CO)_{10}(MeCN)_2]$ (6). How compounds (3) are formed is therefore uncertain, even though a knowledge of their mechanism of formation is important to gain an understanding of these substitution reactions.

Spectroscopic Characterisation and Fluxional Behaviour.-The C_{2v} structure of 1,1-(2) is apparent from its lowtemperature ${}^{13}C-{}^{1}H$ n.m.r. spectra (Figure 2) which consist of a triplet and three singlets with relative intensities 2:4:2:2. The triplet [δ 202.1 p.p.m., ${}^{2}J({}^{13}C{}^{31}P) = 9.5$ Hz] is assigned to the axial CO ligands A (Figures 1 and 2) at the same metal atom as the phosphines, to which they are coupled. The remaining singlets at δ 186.7, 179.4, and 170.3 p.p.m. are assigned as shown. The relative assignments of C and D were only made as a consequence of the dynamic behaviour observed in the spectra above -30 °C. The triplet remains unbroadened and well resolved up to 80 °C, so that the axial CO ligands A are not involved in any exchange process. As the temperature increases above -30 °C, the signals of B and C broaden more rapidly than that of D so that at around 50 °C the signals due to B and C are approaching coalescence whilst that of D remains distinct. These observations are consistent with those of Lewis *et al.*³ on $1,2-[Os_3(CO)_{10}(PEt_3)_2]$ and $[Os_3(CO)_{11}(PEt_3)]$ for which the fastest carbonyl exchange was identified as a 'merry-go-round' process involving six CO ligands in a plane as shown in Figure 1. This exchange occurs via a di-µ-CO intermediate {with a structure like that of $[Fe_3(CO)_{12}]^5$ and $[{}^{187}Os_3(CO)_{12}]$ seems to behave similarly. In the latter case 'merry-go-round' scrambling can occur over all three planes, resulting in axialequatorial exchange as well as migration of CO ligands over all three metal atoms.⁶ In compound 1,1-(2) a 'turnstile' mechanism comes into operation at higher temperatures (> 50 °C) resulting

Table 2. Yields (%) of isomers isolated from the room-temperature reactions of (4), (5), and (6) with PMe_2Ph (3 mol per mol Os₃) in dichloromethane in the dark

			$[Os_3(CO)_{10}(PMe_2Ph)_2]$		$[Os_3(CO)_9(PMe_2Ph)_3]$	
Starting compound	Reaction time/d	1,1-(2)	1,2-(2)	1,1,2-(3)	1,2,3-(3)	
$[Os_3(CO)_{10}(\eta^4 - s - cis - C_4H_6)]$ (4)	9	50.0	5.7	2.8	2.8	
$[Os_3(CO)_{10}(\mu-s-trans-C_4H_6)]$ (5)	2	6.8	18.8	6.2	7.0	
$1,2-[Os_3(CO)_{10}(MeCN)_2]$ (6)	2	5.1	60.6	6.7	2.7	

Figure 2. Carbon-13 n.m.r. spectra of $[Os_3(CO)_{10}(PMe_2Ph)_2]$, isomer 1,1-(2), recorded in CDCl₃ in the presence of $[Cr(acac)_3]$ as a shiftless relaxation agent. The low-field triplet at -30 °C is expanded

in complete B–C–D scrambling although we were unable to observe the spectrum at the high-temperature limit because decarbonylation of 1,1-(2) occurs above 100 °C. Note that there are no suitable planes for 'merry-go-round' exchange at the substituted osmium atom of 1,1-(2) at whatever sites the PMe₂Ph ligands are positioned so that carbonyl ligands A cannot migrate between osmium atoms.

The ${}^{31}P{}^{1}H$ n.m.r. spectra of compound 1,2-(2) show that it is a mixture of two isomers which are in rapid exchange at room temperature and above and are inseparable chromatographically. The major isomer has non-equivalent phosphorus nuclei whereas these are equivalent in the minor isomer. The likely structures of these isomers are 1,2-(2a) and 1,2-(2b) respectively (Figure 1) and, although the third possible 1,2isomer with adjacent equatorial PMe_2Ph ligands cannot be ruled out, this is likely to be significantly higher in energy for steric reasons.

The ¹³C-{¹H} n.m.r. spectrum of 1,2-(2) showed signals due to the major isomer 1,2-(2a) [singlets at 8 193.1 (intensity 4, two isochronous signals each of intensity 2), 184.4 (2), 180.1 (1), 177.6 (1), 175.8 (1), 171.4 (1); CD₂Cl₂-CH₂Cl₂ at -90 °C] corresponding to that described for 1,2-[Os₃(CO)₁₀(PEt₃)₂]³ and, although some weak signals in the low-temperature spectrum are attributable to 1,2-(2b), no useful information was obtained. Figure 3 shows that at higher temperatures there is interconversion between isomers 1,2-(2a) and 1,2-(2b) in addition to exchange of the non-equivalent phosphines of isomer 1,2-(2a). We have now observed similar 1,2-isomers for various tertiary phosphines and phosphites and we are examining their interconversions. These isomers are probably those alluded to by Tachikawa and Shapley.² The major isomer of [Os₃(CO)₉(PMe₂Ph)₃], 1,2,3-(3), contains equivalent PMe₂Ph ligands and corresponds to that studied by Lewis and co-workers.³ The minor isomer is of lower symmetry, contains non-equivalent PMe₂Ph ligands, is identified as 1,1,2-(3), and probably has the configuration shown in Figure 1. One ³¹P nucleus couples to the other two and gives a triplet in the ³¹P-{¹H} n.m.r. spectrum while the others give doublets. Presumably the PMe₂Ph ligand which shares an osmium atom with another phosphine and is linearly related to the third phosphine across the osmium-osmium bond gives the triplet signal. Too little of the isomer 1,1,2-(3) was obtained for a ¹³C n.m.r. study.

Thermal Decarbonylation of 1,1-[Os₃(CO)₁₀(PMe₂Ph)₂].-Compound 1,1-(2) readily undergoes thermal decarbonylation in refluxing toluene to produce after 5 h a mixture of compounds (see Experimental section). The major product is $[Os_3H(CO)_9(\mu-Me_2PC_6H_4-o)(PMe_2Ph)]$ (7), in which orthometallation of one phenyl group has occurred with oxidative transfer of a hydrogen atom to the osmium atoms. The hydride ligand gives a ¹H n.m.r. signal (Table 1) showing coupling to two non-equivalent phosphorus nuclei. The structure shown is consistent with data in Table 1, but in view of the μ -aryl moieties established in other systems such as $[Os_3H(CO)_8(\mu_3 Ph_2PCH_2PPhC_6H_4-o)]^7$ and $[Os_3(CO)_8(\mu-Ph)(PPh_2) (PPhC_6H_4-o)]$,⁸ the Me₂PC₆H₄ ligand is very possibly triply bridging.

The other products isolated from thermolysis of 1,1-(2) were (1), 1,2-(2), and 1,2,3-(3). The formation of these minor products implies competitive dissociation of CO and PMe₂Ph,the former predominating. The build-up of the 1,2-isomer of $[Os_3(CO)_{10}(PMe_2Ph)_2]$ does not imply that this is more thermo-dynamically stable than 1,1-(2) since it is the more inert. Thus, the thermal decarbonylation of compound 1,1-(2) contrasts with that of its isomer, 1,2-(2), which shows no reaction in refluxing toluene even after 5 h. Thermolysis of the 1,2-isomer at higher temperatures (> 125 °C) has previously been shown to give many products including $[Os_3(CO)_7(\mu_3-C_6H_4)(PMe_2)_2]$ or $[Os_3H(CO)_8(\mu_3-C_6H_4)(PMe_2)(PMe_2Ph)]$ depending upon the reflux temperature, but not compound (7).¹

Figure 3. Phosphorus-31 n.m.r. spectra of $[Os_3(CO)_{10}(PMe_2Ph)_2]$, isomers 1,2-(2a) (*) and 1,2-(2b) (\blacktriangle) recorded in CD₃C₆D₅-CH₃C₆H₅ (25% deuteriated compound) and referenced to external H₃PO₄ (85%)

Experimental

N.m.r. spectra were recorded on a Varian XL-200 spectrometer. Phosphorus-31 chemical shifts are relative to external H_3PO_4 (85%). Carbon-13 spectra were obtained at natural abundance for solutions which contained *ca*. 0.05 mol dm⁻³ tris(pentane-2,4-dionato)chromium(III), [Cr(acac)₃], as relaxation agent. The starting materials [Os₃(CO)₁₀(MeCN)₂] (**6**),⁹ [Os₃(CO)₁₀-(η^4 -s-*cis*-C₄H₆)] (**4**),⁴ and [Os₃(CO)₁₀(μ -s-*trans*- η^4 -C₄H₆] (**5**),⁴ were prepared by methods already reported.

Reaction of $[Os_3(CO)_{10}(cis-\eta^4-C_4H_6)]$ (4) with Dimethylphenylphosphine.—A solution of PMe₂Ph (0.257 g, 3 mol per mol Os₃) and compound (4) (0.411 g) in dichloromethane (50 cm³) was allowed to stand at room temperature in the dark

J. CHEM. SOC. DALTON TRANS. 1985

under nitrogen for 9 d by which time the i.r. spectrum indicated that no compound (4) remained. Removal of the solvent under vacuum followed by chromatographic separation of the residue [t.l.c. (SiO₂); eluant, light petroleum (b.p. 30–40 °C)–dichloromethane (10:2 v/v)] gave in order of elution: $[Os_3(CO)_{10}-(PMe_2Ph)_2]$ isomer 1,1-(2) (0.256 g, 50%) (Found: C, 27.7; H, 1.9. $C_{26}H_{22}O_{10}Os_3P_2$ requires C, 27.7; H, 2.0%), isomer 1,2-(2) (0.029 g, 5.7%), and $[Os_3(CO)_9(PMe_2Ph)_3]$, isomer 1,1,2-(3) (0.015 g, 2.8%) (Found: C, 32.4; H, 2.55; P, 7.5. $C_{33}H_{33}O_9Os_3P_3$ requires C, 32.05; H, 2.7; P, 7.5%), and isomer 1,2,3-(3) (0.015 g, 2.8%). Compounds 1,2-(2) and 1,2,3-(3) were characterised by comparison of their spectra with those reported.¹

Reaction of $[Os_3(CO)_{10}(\mu$ -s-trans-C₄H₆)] (5) with Dimethylphenylphosphine.—A similar reaction to that above using compound (5) (0.096 g) and PMe₂Ph (0.058 g, 3 mol per mol Os₃) in dichloromethane (20 cm³), reacting for 48 h, gave 1,1-(2) (0.008 g, 6.8%), 1,2-(2) (0.022 g, 18.8%), 1,1,2-(3) (0.008 g, 6.2%), and 1,2,3-(3) (0.009 g, 7.0%).

Reaction of $[Os_3(CO)_{10}(MeCN)_2]$ (6) with Dimethylphenylphosphine.—A similar reaction using compound (6) (0.113 g) and PMe₂Ph (0.051 g, 3 mol per mol Os₃) in dichloromethane (15 cm³), reacting for 48 h, gave (1) (0.013 g, 10.6%) {possibly derived from some $[Os_3(CO)_{11}(MeCN)]$ impurity in compound (6)}, 1,1-(2) (0.007 g, 5.1%), 1,2-(2) (0.083 g, 60.6%), 1,1,2-(3) (0.010 g, 6.7%), and 1,2,3-(3) (0.004 g, 2.7%).

Reaction of Compound 1,1-(2) with Dimethylphenylphosphine.—A solution of $PMe_2Ph(0.0025 g)$ and 1,1-(2) (0.019 g) in dichloromethane (8 cm³) was allowed to stand at room temperature in the dark for 48 h. Chromatographic work-up as described above gave a single band, identified as starting material, 1,1-(2). A similar treatment of 1,2-(2) with PMe_2Ph gave only unchanged starting material.

Thermolysis of $[Os_3(CO)_{10}(PMe_2Ph)_2]$, Isomer 1,1-(2).—A solution of 1,1-(2) (0.163 g) in toluene (15 cm³) was refluxed under argon for 2 h. Removal of the solvent under vacuum and separation of the residue [t.l.c. (SiO₂); eluant, light petroleum (b.p. 30—40 °C)–dichloromethane (10:3 v/v)] gave in order of elution: (1) (0.033 g, 23%), 1,1-(2) (0.004 g, 3%), 1,2-(2) (0.032 g, 20%), $[Os_3H(CO)_9(Me_2PC_6H_4-o)(PMe_2Ph)]$ (7) (0.047 g, 30%) (Found: C, 26.9; H, 1.9. $C_{25}H_{22}O_9Os_3P_2$ requires C, 27.3; H, 2.0%), and 1,2,3-(3) (0.018 g, 10%).

Thermolysis of $[Os_3(CO)_{10}(PMe_2Ph)_2]$, Isomer 1,2-(2).—A similar treatment of this isomer, but refluxing under nitrogen for 5 h, gave a solution containing only the starting material (i.r. evidence). Thermolysis at higher temperatures (125 °C) has been shown to give $[Os_3(CO)_7(\mu_3-C_6H_4)(PMe_2)_2]$ among other compounds.¹

Acknowledgements

We thank the S.E.R.C. for support, the Association of Commonwealth Universities for a studentship (to S. E. K.), and Johnson-Matthey for a generous loan of osmium tetraoxide.

References

- 1 A. J. Deeming, B. F. G. Johnson, and J. Lewis, J. Chem. Soc. A, 1970, 897; A. J. Deeming, R. E. Kimber, and M. Underhill, J. Chem. Soc., Dalton Trans., 1973, 2589.
- 2 M. Tachikawa and J. R. Shapley, J. Organomet. Chem., 1977, 124, C19.
- 3 B. F. G. Johnson, J. Lewis, B. E. Reichert, and K. T. Schorpp, J. Chem. Soc., Dalton Trans., 1976, 1403.
- 4 M. Tachikawa, J. R. Shapley, R. C. Haltiwanger, and C. G. Pierpont, J. Am. Chem. Soc., 1976, 98, 4651; C. G. Pierpont, Inorg. Chem., 1978, 17, 1976.

- 5 C. H. Wei and L. F. Dahl, J. Am. Chem. Soc., 1969, 91, 1351; F. A. Cotton and J. M. Troup, *ibid.*, 1974, 96, 4155.
 6 A. A. Koridze, O. A. Kizas, N. M. Astakhova, P. V. Petrovskii, and Yu. K. Grishin, J. Chem. Soc., Chem. Commun., 1981, 853.
- 7 J. A. Clucas, D. F. Foster, M. M. Harding, and A. K. Smith, J. Chem. Soc., Chem. Commun., 1984, 949.
- 8 C. W. Bradford and R. S. Nyholm, J. Chem. Soc., Dalton Trans., 1973, 529 and refs. therein.
- 9 B. F. G. Johnson, J. Lewis, and D. A. Pippard, J. Chem. Soc., Dalton Trans., 1981, 407.

Received 14th August 1984; Paper 4/1437