New Isomers of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]$

Antony J. Deeming,* Susan Donovan-Mtunzi, Shariff E. Kabir, and Peter J. Manning Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ

The compounds $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\eta^{4}-s-\right.\right.$ cis $\left.\left.-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]\left(\mathrm{C}_{4} \mathrm{H}_{6}=\right.$ buta-1,3-diene $),\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-s-t r a n s-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$, and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ react with $\mathrm{PMe}_{2} \mathrm{Ph}$ at room temperature to give $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]$ as mixtures of isomers. The decacarbonyl compound separates on silica into a 1,1-and a 1,2-isomer, which do not interconvert at room temperature, although the 1,2isomer exists as two rapidly interconverting isomers of C_{s} and $C_{2 v}$ symmetry respectively. Likewise the nonacarbonyl compound separates into non-interconvertible 1,2,3- and 1,1,2-isomers. Carbon13 and ${ }^{31} \mathrm{P}$ n.m.r. studies have demonstrated specific localised and delocalised CO exchanges and that intramolecular phosphine transfer between metal atoms does not occur. Indeed 1,1-[$\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$] gives $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mu-\mathrm{Me}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}-o\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right.$] readily in refluxing toluene whereas the 1,2 -isomer does not react at this temperature, giving other decarbonylation products above $120^{\circ} \mathrm{C}$.

Thermal reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ with tertiary phosphines $\left(\mathrm{PR}_{3}\right)$ in refluxing toluene gives a mixture of the substitution products $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PR}_{3}\right)\right],\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PR}_{3}\right)_{2}\right]$, and $\left[\mathrm{Os}_{3}-\right.$ $(\mathrm{CO})_{9}\left(\mathrm{PR}_{3}\right)_{3}$], which may be separated by column chromatography on alumina. ${ }^{1}$ Substitution of more than three CO ligands by monophosphines is not possible under these conditions and each osmium atom is substituted by only one equatorially positioned PR_{3} ligand. No evidence for the formation of isomers from these reactions has been found, although it was briefly mentioned that $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ and $\left[\mathrm{Os}_{2}(\mathrm{CO})_{10}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]\left(\mathrm{C}_{8} \mathrm{H}_{14}=\right.$ cyclo-octene $)$ react at $25{ }^{\circ} \mathrm{C}$ with PR_{3} to give $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PR}_{3}\right)_{2}\right]$ and that $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ among other compounds was shown by low-temperature n.m.r. studies to exist in two nondefined isomeric forms. ${ }^{2}$ The dynamic behaviour of the compounds $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PEt}_{3}\right)\right],\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PEt}_{3}\right)_{2}\right]$, and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PEt}_{3}\right)_{3}\right]$, formed by direct thermal substitution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$, has been studied by variable-temperature ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ n.m.r. with no indication of isomers being present. ${ }^{3}$ For example, $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ shows two ${ }^{31} \mathrm{P}$ n.m.r. absorptions at $-60^{\circ} \mathrm{C}$ (which have coalesced by $40^{\circ} \mathrm{C}$) and seven CO signals in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum in the intensity ratio $2: 2: 2: 1: 1: 1: 1$. These observations are consistent with a C_{s} structure in which the PEt_{3} ligands are equatorially positioned at two osmium atoms in non-equivalent sites. ${ }^{3}$ The compound
is dynamic in solution with rapid exchange of CO ligands via bridging-CO intermediates; total exchange of the CO ligands is observed at high temperatures. Although the non-equivalent PEt_{3} ligands exchange, this seems to occur without any $\mathrm{Os}-\mathrm{P}$ bond cleavage.

Results and Discussion

Synthesis of Compounds.-The syntheses of the compounds $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12-x}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{x}\right](x=1,2$, or 3$)(1)-(3)$ respectively, by direct substitution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right.$] have been described. ${ }^{1}$ In order to introduce more than one $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand at an osmium atom, we used $\mathrm{PMe}_{2} \mathrm{Ph}$ to displace butadiene from the isomer of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]\left(\mathrm{C}_{4} \mathrm{H}_{6}=\right.$ buta-1,3-diene) (4), in which the s-cis-diene is co-ordinated at an axial and an equatorial site at one osmium atom. ${ }^{4}$ Slow diene displacement occurs over days at room temperature in dichloromethane solution in the dark to give good yields of a new isomer of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ ($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$], compound $1,1-(2)$, giving orange crystals, as the major product (50%). The i.r. spectrum is quite unlike that of the known 1,2-isomer, 1,2-(2), which is formed directly from [$\mathrm{Os}_{3}(\mathrm{CO})_{12}$] (Table 1). The new isomer was identified as the 1,1 -isomer (see section on spectroscopic characterisation). The known isomer 1,2-(2) is also produced in small amounts from the reaction of $\mathrm{PMe}_{2} \mathrm{Ph}$ with (4) as are the known cluster 1,2,3-

(1)

1,1-(2)

1,2-(2a)

1,2,3-(3)

1,2-(2b)

1,1,2-(3)

Figure 1. Observed isomers of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12-x}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{x}\right](x=1,2$, or 3$) ; \mathrm{O}=\mathrm{CO}, \quad=\mathrm{PMe}{ }_{2} \mathrm{Ph}$. The planes illustrated each contain six CO ligands allowing a 'merry-go-round' mechanism via a di- μ-CO bridged intermediate as proposed for [$\mathrm{Os}_{3}(\mathrm{CO})_{12}$]

Table 1. Infrared and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ n.m.r. data

Compound	$\mathrm{v}(\mathrm{CO})^{a} / \mathrm{cm}^{-1}$	$\delta\left({ }^{1} \mathrm{H}\right)^{\text {b }}$	Assignment	J / Hz	$\delta\left({ }^{31} \mathrm{P}\right)^{\text {b }}$
$\begin{aligned} & {\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]} \\ & \text { Isomer 1,1-(2) } \end{aligned}$	$\begin{aligned} & 2089 \mathrm{~m}, 2037 \mathrm{~s}, 2012(\mathrm{sh}) \\ & 2003 \mathrm{vs}, 1985(\mathrm{sh}), 1979 \mathrm{w}, \\ & 1957 \mathrm{~s}, 1912(\mathrm{sh}), 1907 \mathrm{w} \end{aligned}$	1.81(d)	Me	9.2	5.01(s)
$\begin{aligned} & {\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]} \\ & \quad \text { Isomer } 1,2-(2) \end{aligned}$	$\begin{aligned} & 2084 \mathrm{~m}, 2026 \mathrm{~s}, 2009(\mathrm{sh}) \\ & 2002 \mathrm{vs}, 1963 \mathrm{~s}, 1946 \mathrm{~m} \\ & 1934(\mathrm{sh}) \end{aligned}$	2.15(d) ${ }^{\text {c }}$	Me	9.7	$\begin{aligned} & 6.77(\mathrm{~s})^{d, e} \\ & 1.10(\mathrm{~s})^{d . e} \\ & 4.41(\mathrm{~s})^{d . f} \end{aligned}$
$\begin{gathered} {\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]} \\ \text { Isomer } 1,1,2-(3) \end{gathered}$	$\begin{aligned} & 2061 \mathrm{w}, 2004 \mathrm{~s}, 1982 \mathrm{~s}, \\ & 1963 \mathrm{~m}, 1947 \mathrm{~m}, 1938 \mathrm{~m}, \\ & 1929 \mathrm{~m}, 1898 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1.74(\mathrm{~d}) \\ & 1.80(\mathrm{~d}) \\ & 2.14(\mathrm{~d}) \end{aligned}$	Me Me Me	$\begin{aligned} & 9.1 \\ & 9.3 \\ & 9.5 \end{aligned}$	$\begin{gathered} 5.7(\mathrm{~d})^{g} \\ 3.6(\mathrm{t})^{g} \\ -1.5(\mathrm{~d})^{g} \end{gathered}$
$\begin{aligned} & {\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]} \\ & \text { Isomer } 1,2,3-(\mathbf{3}) \end{aligned}$	$\begin{aligned} & 1988 \mathrm{~s}, 1974 \mathrm{vs}, 1934 \mathrm{~s}, \\ & 1920 \mathrm{~m} \end{aligned}$	2.27(d)	Me	10	h
$\begin{aligned} & {\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{Me}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}-o\right)-\right.} \\ & \left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right](7) \end{aligned}$	$2066 \mathrm{~m}, 2029 \mathrm{vs}, 2006 \mathrm{vs}$, $1975 \mathrm{~s}, 1959 \mathrm{~m}$	$\left\{\begin{array}{r} 8.06(\mathrm{~m}), \\ 7.14(\mathrm{~m}), \\ 6.83(\mathrm{~m}), \\ 6.50(\mathrm{~m}), \\ 2.15(\mathrm{~d}), \\ 2.11(\mathrm{~d}), \\ 1.96(\mathrm{~d}), \\ 0.18(\mathrm{~d}), \end{array}\right\}$	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{PMe}_{2} \mathrm{Ph} \\ \mathrm{PMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \\ \mathrm{Os}_{3} \mathrm{H} \end{gathered}$	$\begin{gathered} 8.2 \\ 8.9 \\ 8.2 \\ 8.1 \\ 12.0,18.2 \end{gathered}$	$\begin{aligned} & h \\ & h \end{aligned}$

${ }^{a}$ Recorded in cyclohexane. ${ }^{b} \ln \mathrm{CDCl}_{3}$ at $20^{\circ} \mathrm{C}$ unless stated otherwise. ${ }^{c}$ At $-90^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, two doublets at $2.09(J=9.8)$ and at 2.07 ($J=9.8 \mathrm{~Hz}$) were observed for the major isomer; the expected doublet for the minor isomer probably underlies these strong doublets. ${ }^{d}$ At $-60{ }^{\circ} \mathrm{C}$ in toluene. ${ }^{e}$ Major isomer. ${ }^{f}$ Minor isomer. ${ }^{g}$ Two equal coupling constants $(5 \mathrm{~Hz}) .{ }^{h}$ Not recorded.

(4)

(6)

(5)

(7)
$\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]$ [compound $\left.1,2,3-(3)\right]$ and a new isomer, $1,1,2-\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]$ [compound 1,1,2-(3)].
We have investigated the nature and yields of these products from the room-temperature reactions of $\mathrm{PMe}_{2} \mathrm{Ph}$ with the clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\eta^{4}\right.\right.$-s-cis- $\left.\left.\mathrm{C}_{4} \mathrm{H}_{6}\right)\right](4),\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu\right.$-s-trans-$\left.\left.\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right](5)$, and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ (6); Table 2 shows the variation of product distribution. It is evident that there is a considerable measure of product control in that, when the diene is displaced from one metal atom, the 1,1 -isomer of compound (2) is the major product whereas $1,2-(2)$ predominates when ligand(s) are replaced from two metal atoms as in compounds (5) and (6).

The two isomers of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right], 1,2,3-(3)$ and $1,1,2-$ (3), produced in small yields from (4), (5), or (6), are not formed by secondary reaction of $\mathrm{PMe}_{2} \mathrm{Ph}$ with either isomer of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$. We have shown separately that compounds 1,2-(2) and 1,1-(2) do not react with $\mathrm{PMe}_{2} \mathrm{Ph}$ under these conditions. In the cases of the butadiene complexes (4) and
(5), intermediates of type $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ might be formed which decarbonylate at room temperature to give isomers of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ subsequently leading to compounds $1,2,3-(\mathbf{3})$ and $1,1,2-(\mathbf{3})$. However, this is not a possible route from $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ (6). How compounds (3) are formed is therefore uncertain, even though a knowledge of their mechanism of formation is important to gain an understanding of these substitution reactions.

Spectroscopic Characterisation and Fluxional Behaviour.The $C_{2 v}$ structure of $1,1-(\mathbf{2})$ is apparent from its lowtemperature ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra (Figure 2) which consist of a triplet and three singlets with relative intensities $2: 4: 2: 2$. The triplet [$\delta 202.1$ p.p.m., ${ }^{2} J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=9.5 \mathrm{~Hz}$] is assigned to the axial CO ligands A (Figures 1 and 2) at the same metal atom as the phosphines, to which they are coupled. The remaining singlets at $\delta 186.7,179.4$, and 170.3 p.p.m. are assigned as shown. The relative assignments of C and D were only made as a consequence of the dynamic behaviour observed in the spectra above $-30^{\circ} \mathrm{C}$. The triplet remains unbroadened and well resolved up to $80^{\circ} \mathrm{C}$, so that the axial CO ligands A are not involved in any exchange process. As the temperature increases above $-30^{\circ} \mathrm{C}$, the signals of B and C broaden more rapidly than that of D so that at around $50^{\circ} \mathrm{C}$ the signals due to B and C are approaching coalescence whilst that of D remains distinct. These observations are consistent with those of Lewis et al. ${ }^{3}$ on $1,2-\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PEt}_{3}\right)\right]$ for which the fastest carbonyl exchange was identified as a 'merry-go-round' process involving six CO ligands in a plane as shown in Figure 1. This exchange occurs via a di- μ-CO intermediate \{with a structure like that of $\left.\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]^{5}\right\}$ and $\left[{ }^{187} \mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ seems to behave similarly. In the latter case 'merry-go-round' scrambling can occur over all three planes, resulting in axialequatorial exchange as well as migration of CO ligands over all three metal atoms. ${ }^{6}$ In compound 1,1-(2) a 'turnstile' mechanism comes into operation at higher temperatures ($>50^{\circ} \mathrm{C}$) resulting

Table 2. Yields (\%) of isomers isolated from the room-temperature reactions of (4), (5), and (6) with $\mathrm{PMe}_{2} \mathrm{Ph}^{\left(3 \mathrm{~mol} \text { per mol } \mathrm{Os}_{3} \text {) in dichloromethane }\right.}$ in the dark

		$\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$		$[\underbrace{\left(\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]}$	
Starting compound	Reaction time/d	1,1-(2)	1,2-(2)	$\overparen{1,1,2-(\mathbf{3})}$	1,2,3-(3)
$\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\eta^{4}-\mathrm{s}-c i s-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ (4)	9	50.0	5.7	2.8	2.8
$\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu\right.\right.$-s-trans- $\left.\left.\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ (5)	2	6.8	18.8	6.2	7.0
$1,2-\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right](6)$	2	5.1	60.6	6.7	2.7

Figure 2. Carbon-13 n.m.r. spectra of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$, isomer $1,1-(2)$, recorded in CDCl_{3} in the presence of $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]$ as a shiftless relaxation agent. The low-field triplet at $-30^{\circ} \mathrm{C}$ is expanded
in complete B-C-D scrambling although we were unable to observe the spectrum at the high-temperature limit because decarbonylation of $1,1-(2)$ occurs above $100^{\circ} \mathrm{C}$. Note that there are no suitable planes for 'merry-go-round' exchange at the substituted osmium atom of $1,1-(2)$ at whatever sites the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands are positioned so that carbonyl ligands A cannot migrate between osmium atoms.

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of compound 1,2-(2) show that it is a mixture of two isomers which are in rapid exchange at room temperature and above and are inseparable chromatographically. The major isomer has non-equivalent phosphorus nuclei whereas these are equivalent in the minor isomer. The likely structures of these isomers are 1,2-(2a) and 1,2-(2b) respectively (Figure 1) and, although the third possible 1,2-
isomer with adjacent equatorial $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands cannot be ruled out, this is likely to be significantly higher in energy for steric reasons.
The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of $1,2-(2)$ showed signals due to the major isomer 1,2-(2a) [singlets at $\delta 193.1$ (intensity 4, two isochronous signals each of intensity 2), 184.4 (2), 180.1 (1), 177.6 (1), 175.8 (1), 171.4 (1); $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\left.-90^{\circ} \mathrm{C}\right]$ corresponding to that described for $1,2-\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{3}$ and, although some weak signals in the low-temperature spectrum are attributable to $1,2-(\mathbf{2 b})$, no useful information was obtained. Figure 3 shows that at higher temperatures there is interconversion between isomers $1,2-(2 a)$ and $1,2-(\mathbf{2 b})$ in addition to exchange of the non-equivalent phosphines of isomer $1,2-(2 a)$. We have now observed similar 1,2 -isomers for various tertiary phosphines and phosphites and we are examining their interconversions. These isomers are probably those alluded to by Tachikawa and Shapley. ${ }^{2}$ The major isomer of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right], 1,2,3-(3)$, contains equivalent $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands and corresponds to that studied by Lewis and co-workers. ${ }^{3}$ The minor isomer is of lower symmetry, contains non-equivalent $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands, is identified as $1,1,2-(3)$, and probably has the configuration shown in Figure 1. One ${ }^{31} \mathrm{P}$ nucleus couples to the other two and gives a triplet in the ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum while the others give doublets. Presumably the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand which shares an osmium atom with another phosphine and is linearly related to the third phosphine across the osmium-osmium bond gives the triplet signal. Too little of the isomer $1,1,2-(3)$ was obtained for a ${ }^{13} \mathrm{C}$ n.m.r. study.

Thermal Decarbonylation of $1,1-\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$.Compound $1,1-(2)$ readily undergoes thermal decarbonylation in refluxing toluene to produce after 5 h a mixture of compounds (see Experimental section). The major product is $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mu-\mathrm{Me}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}-o\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]$ (7), in which orthometallation of one phenyl group has occurred with oxidative transfer of a hydrogen atom to the osmium atoms. The hydride ligand gives a ${ }^{1} \mathrm{H}$ n.m.r. signal (Table 1) showing coupling to two non-equivalent phosphorus nuclei. The structure shown is consistent with data in Table 1, but in view of the μ-aryl moieties established in other systems such as $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPhC}_{6} \mathrm{H}_{4}-o\right)\right]^{7}$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mu-\mathrm{Ph})\left(\mathrm{PPh}_{2}\right)-\right.$ ($\mathrm{PPhC}_{6} \mathrm{H}_{4}-o$)], ${ }^{8}$ the $\mathrm{Me}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}$ ligand is very possibly triply bridging.

The other products isolated from thermolysis of 1,1-(2) were (1), 1,2-(2), and 1,2,3-(3). The formation of these minor products implies competitive dissociation of CO and $\mathrm{PMe}_{2} \mathrm{Ph}$, the former predominating. The build-up of the 1,2 -isomer of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$] does not imply that this is more thermodynamically stable than $1,1-(2)$ since it is the more inert. Thus, the thermal decarbonylation of compound 1,1-(2) contrasts with that of its isomer, 1,2-(2), which shows no reaction in refluxing toluene even after 5 h . Thermolysis of the 1,2 -isomer at higher temperatures ($>125^{\circ} \mathrm{C}$) has previously been shown to give many products including $\left[\mathrm{Os}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{2}\right)_{2}\right]$ or $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{8}\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]$ depending upon the reflux temperature, but not compound (7). ${ }^{1}$

Figure 3. Phosphorus-31 n.m.r. spectra of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$, isomers $1,2-(2 a)\left(^{*}\right)$ and $1,2-(\mathbf{2 b})(\Delta)$ recorded in $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ (25% deuteriated compound) and referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%)$

Experimental

N.m.r. spectra were recorded on a Varian XL-200 spectrometer. Phosphorus- 31 chemical shifts are relative to external $\mathrm{H}_{3} \mathrm{PO}_{4}$ (85%). Carbon-13 spectra were obtained at natural abundance for solutions which contained $c a .0 .05 \mathrm{~mol} \mathrm{dm}^{-3}$ tris(pentane-2,4-dionato)chromium(III), $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]$, as relaxation agent. The starting materials $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right](6),{ }^{9}\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left(\eta^{4}-\mathrm{s}\right.$-cis- $\left.\left.\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \quad$ (4), ${ }^{4}$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{s}\right.\right.$-trans $\left.-\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right]$ (5), ${ }^{4}$ were prepared by methods already reported.

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\right.\right.$ cis $\left.\left.-\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ (4) with Dimethyl-phenylphosphine.-A solution of $\mathrm{PMe}_{2} \mathrm{Ph}(0.257 \mathrm{~g}, 3 \mathrm{~mol}$ per mol Os 3) and compound (4) $(0.411 \mathrm{~g})$ in dichloromethane (50 cm^{3}) was allowed to stand at room temperature in the dark
under nitrogen for 9 d by which time the i.r. spectrum indicated that no compound (4) remained. Removal of the solvent under vacuum followed by chromatographic separation of the residue [t.l.c. $\left(\mathrm{SiO}_{2}\right)$; eluant, light petroleum (b.p. $30-40^{\circ} \mathrm{C}$)-dichloromethane ($10: 2 \mathrm{v} / \mathrm{v}$)] gave in order of elution: $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$] isomer $1,1-(2)(0.256 \mathrm{~g}, 50 \%$) (Found: $\mathrm{C}, 27.7 ; \mathbf{H}, 1.9$. $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{P}_{2}$ requires $\mathrm{C}, 27.7 ; \mathrm{H}, 2.0 \%$), isomer $1,2-(2)$ $(0.029 \mathrm{~g}, 5.7 \%)$, and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]$, isomer $1,1,2-(3)$ ($0.015 \mathrm{~g}, 2.8 \%$) (Found: C, 32.4; H, 2.55; P, 7.5. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{P}_{3}$ requires $\mathrm{C}, 32.05 ; \mathrm{H}, 2.7 ; \mathrm{P}, 7.5 \%)$, and isomer $1,2,3-(\mathbf{3})(0.015 \mathrm{~g}$, 2.8%). Compounds $1,2-(2)$ and $1,2,3-(3)$ were characterised by comparison of their spectra with those reported. ${ }^{1}$

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{s}\right.\right.$-trans $\left.\left.-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ (5) with Dimethyl-phenylphosphine.-A similar reaction to that above using compound (5) $(0.096 \mathrm{~g})$ and $\mathrm{PMe}_{2} \mathrm{Ph}\left(0.058 \mathrm{~g}, 3 \mathrm{~mol}\right.$ per mol Os $\left.{ }_{3}\right)$ in dichloromethane ($20 \mathrm{~cm}^{3}$), reacting for 48 h , gave $1,1-(2)$ $(0.008 \mathrm{~g}, 6.8 \%), 1,2-(2)(0.022 \mathrm{~g}, 18.8 \%), 1,1,2-(3)(0.008 \mathrm{~g}, 6.2 \%)$, and $1,2,3-(3)(0.009 \mathrm{~g}, 7.0 \%)$.

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ (6) with Dimethylphenyl-phosphine.-A similar reaction using compound (6) (0.113 g) and $\mathrm{PMe}_{2} \mathrm{Ph}\left(0.051 \mathrm{~g}, 3 \mathrm{~mol}\right.$ per mol Os_{3}) in dichloromethane ($15 \mathrm{~cm}^{3}$), reacting for 48 h , gave (1) $(0.013 \mathrm{~g}, 10.6 \%$) \{possibly derived from some $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]$ impurity in compound (6) $\}, 1,1-(2)(0.007 \mathrm{~g}, 5.1 \%), 1,2-(2)(0.083 \mathrm{~g}, 60.6 \%), 1,1,2-(3)(0.010$ $\mathrm{g}, 6.7 \%$), and $1,2,3-(3)(0.004 \mathrm{~g}, 2.7 \%)$.

Reaction of Compound 1,1-(2) with Dimethylphenylphos-phine.-A solution of $\mathrm{PMe}_{2} \mathrm{Ph}(0.0025 \mathrm{~g})$ and $1,1-(2)(0.019 \mathrm{~g})$ in dichloromethane ($8 \mathrm{~cm}^{3}$) was allowed to stand at room temperature in the dark for 48 h . Chromatographic work-up as described above gave a single band, identified as starting material, 1,1-(2). A similar treatment of 1,2-(2) with $\mathrm{PMe}_{2} \mathrm{Ph}$ gave only unchanged starting material.

Thermolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$, Isomer $1,1-(\mathbf{2})$.-A solution of $1,1-(2)(0.163 \mathrm{~g})$ in toluene $\left(15 \mathrm{~cm}^{3}\right)$ was refluxed under argon for 2 h . Removal of the solvent under vacuum and separation of the residue [t.1.c. $\left(\mathrm{SiO}_{2}\right)$; eluant, light petroleum (b.p. $30-40^{\circ} \mathrm{C}$)-dichloromethane $\left.(10: 3 \mathrm{v} / \mathrm{v})\right]$ gave in order of elution: (1) $(0.033 \mathrm{~g}, 23 \%), 1,1-(2)(0.004 \mathrm{~g}, 3 \%), 1,2-(2)(0.032 \mathrm{~g}$, 20%), $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{Me}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}-o\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]$ (7) (0.047 g , 30% (Found: $\mathrm{C}, 26.9 ; \mathrm{H}, 1.9 . \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{P}_{2}$ requires $\mathrm{C}, 27.3$; $\mathrm{H}, 2.0 \%$), and $1,2,3-(3)(0.018 \mathrm{~g}, 10 \%)$.

Thermolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$, Isomer $1,2-(\mathbf{2})$ - -A similar treatment of this isomer, but refluxing under nitrogen for 5 h , gave a solution containing only the starting material (i.r. evidence). Thermolysis at higher temperatures $\left(125^{\circ} \mathrm{C}\right)$ has been shown to give $\left[\mathrm{Os}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{2}\right)_{2}\right]$ among other compounds. ${ }^{1}$

Acknowledgements

We thank the S.E.R.C. for support, the Association of Commonwealth Universities for a studentship (to S. E. K.), and Johnson-Matthey for a generous loan of osmium tetraoxide.

References

1 A. J. Deeming, B. F. G. Johnson, and J. Lewis, J. Chem. Soc. A, 1970, 897; A. J. Deeming, R. E. Kimber, and M. Underhill, J. Chem. Soc., Dalton Trans., 1973, 2589.
2 M. Tachikawa and J. R. Shapley, J. Organomet. Chem., 1977, 124, C19.
3 B. F. G. Johnson, J. Lewis, B. E. Reichert, and K. T. Schorpp, J. Chem. Soc., Dalton Trans., 1976, 1403.
4 M. Tachikawa, J. R. Shapley, R. C. Haltiwanger, and C. G. Pierpont, J. Am. Chem. Soc., 1976, 98, 4651; C. G. Pierpont, Inorg. Chem., 1978, 17, 1976.

5 C. H. Wei and L. F. Dahl, J. Am. Chem. Soc., 1969, 91, 1351; F. A. Cotton and J. M. Troup, ibid., 1974, 96, 4155.
6 A. A. Koridze, O. A. Kizas, N. M. Astakhova, P. V. Petrovskii, and Yu. K. Grishin, J. Chem. Soc., Chem. Commun., 1981, 853.
7 J. A. Clucas, D. F. Foster, M. M. Harding, and A. K. Smith, J. Chem. Soc., Chem. Commun., 1984, 949.

8 C. W. Bradford and R. S. Nyholm, J. Chem. Soc., Dalton Trans., 1973, 529 and refs. therein.
9 B. F. G. Johnson, J. Lewis, and D. A. Pippard, J. Chem. Soc., Dalton Trans., 1981, 407.

