1665

Kinetics and Mechanism of the Reductions of Tris(oxalato)cobaltate(III) lon by Ruthenium(II) Species in Aqueous Solution

Josephine O. Ehighaokhuo, J. Folorunso Ojo, and Olusegun Olubuyide* Department of Chemistry, University of Ife, Ile-Ife, Nigeria

The kinetics and mechanism of the reductions of $[Co(C_2O_4)_3]^{3-}$ by the ruthenium(11) species $[Ru(NH_3)_8]^{2+}$, $[Ru(en)_3]^{2+}$ (en = ethylenediamine), and $[Ru(NH_3)_5(H_2O)]^{2+}$ in aqueous solution have been investigated at l = 0.20 mol dm⁻³(LiCl). The reductions are acid-independent in the range $[H^+] = 0.01$ —0.10 mol dm⁻³, and the second-order rate constants for the reductions at 25 °C are $(17.8 \pm 1.6) \times 10^{-2}$, $(5.5 \pm 0.3) \times 10^{-2}$, and $(3.3 \pm 0.3) \times 10^{-2}$ dm³ mol⁻¹ s⁻¹ respectively. The activation parameters for the reductions by $[Ru(NH_3)_8]^{2+}$ and $[Ru(NH_3)_5(H_2O)]^{2+}$ are

 $\Delta H^{\ddagger} = 45.4 \pm 6.9$ kJ mol⁻¹, $\Delta S^{\ddagger} = -(107.6 \pm 22.9)$ J K⁻¹ mol⁻¹ and $\Delta H^{\ddagger} = 98.4 \pm 7.6$ kJ mol⁻¹, $\Delta S^{\ddagger} = +(56.5 \pm 4.2)$ J K⁻¹ mol⁻¹ respectively. The reductions by [Ru(NH₃)₆]²⁺ and [Ru(en)₃]²⁺ occur by an outer-sphere mechanism, while that by [Ru(NH₃)₅(H₂O)]²⁺ occurs by a substitution-controlled inner-sphere mechanism.

The electron-mediating efficiency of the oxalate ligand between two transition-metal-ion centres in a transition state has been frequently used to demonstrate the existence of an inner-sphere mechanism in the reduction of oxalato-complexes of cobalt-(III)¹⁻⁴ and ruthenium(III)⁵ by the aqua-ions $[Fe(H_2O)_6]^{2^+}$, $[V(H_2O)_6]^{2^+}$, $[Cr(H_2O)_6]^{2^+}$, and $[Ti(H_2O)_6]^{3^+}$. While a direct product-identification criterion¹⁻³ has been used to establish this for the reductions by the first three reductants above, an indirect criterion^{4.5} based on substitution-controlled rates was used for the reductions by $[Ti(H_2O)_6]^{3^+}$.

Although $[Ru(NH_3)_5(H_2O)]^{2+}$ is a milder and less substitution-labile reductant than those above, its behaviour towards the oxalato-complexes of cobalt(III) and ruthenium(III) is worth investigating, taking into consideration the electron-mediating efficiency of oxalate ligand in its bidentate form. We earlier demonstrated⁶ that $[Co(NH_3)_5(C_2O_4)]^+$ and $[Co(NH_3)_4^ (C_2O_4)$]⁺ (in which the oxalate behaves as a uni- and bi-dentate ligand respectively) are reduced by $[Ru(NH_3)_5(H_2O)]^{2+}$ via an outer-sphere mechanism. The investigation reported here concerns $[Co(C_2O_4)_3]^{3-}$, a negative ion in which all the oxalate ligands are bidentate. Moreover, $[Ru(C_2O_4)_3]^{3-}$ is not reduced by $[Ru(NH_3)_5(H_2O)]^{2+} \{E \text{ for } [Ru(C_2O_4)_3]^{3-/4-} \text{ couple }^7 \text{ is }$ -0.80 V vs. normal hydrogen electrode (n.h.e.)}, but [Co- $(C_2O_4)_3]^{3-}$ is thermodynamically reducible by $[Ru(NH_3)_5-(H_2O)]^{2+}$ {E for $[Co(C_2O_4)_3]^{3-/4-}$ is +0.57 V vs. n.h.e.⁸}. In this investigation the standard reference inert and outer-sphere reductants $[Ru(NH_3)_6]^{2+}$ and $[Ru(en)_3]^{2+}$ (en = ethylenediamine) have been included for comparison, as usual.

Experimental

Materials.—Commercial [Ru(NH₃)₆]Cl₃ (Johnson Matthey Ltd.) was recrystallised as described in the literature.⁹ The salt [Ru(NH₃)₅Cl]Cl₂ was prepared and purified⁹ from recrystallised [Ru(NH₃)₆]Cl₃, and [Ru(en)₃]³⁺ was prepared as its tetrachlorozincate salt.⁹ The ions [Ru(NH₃)₆]²⁺, [Ru(en)₃]²⁺, and [Ru(NH₃)₅(H₂O)]²⁺ were generated from the above ruthenium(III) complexes by zinc analgam reduction⁹ in an argon atmosphere. Tris(oxalato)cobaltate(III), [Co(C₂O₄)₃]³⁻, was prepared and purified⁴ as its potassium salt, the purity being confirmed by the u.v.–visible absorption spectrum (λ_{max} . = 605 nm, ε = 175 dm³ mol⁻¹ cm⁻¹).⁴ This cobalt(III) complex is light-sensitive and so the dark bottle-green needleshaped crystals of K₃[Co(C₂O₄)₃]·3H₂O were kept in a tube wrapped in aluminium foil, to avoid photolysis. Lithium chloride (Hopkins and Williams reagent grade) was recrystallised twice, and HCl was AnalaR grade.

Kinetics.—All the reactions were followed on a Pye-Unicam u.v.–visible spectrophotometer (SP500) equipped with a direct read-out absorbance recorder. Reductions by $[Ru(en)_3]^{2+}$ and $[Ru(NH_3)_6]^{2+}$ were followed at the peak absorbance wavelengths⁹ of the ruthenium(II) species, with cobalt(III) concentrations in at least 10-fold excess over the ruthenium(II) concentrations. The reductions by $[Ru(NH_3)_5(H_2O)]^{2+}$ were followed under pseudo-first-order conditions too, at either $\lambda = 605$ nm, the peak ⁴ absorbance wavelength for $[Co(C_2O_4)_3]^{3-}$ ($\varepsilon = 175$ dm³ mol⁻¹ cm⁻¹), or $\lambda = 300$ nm, the peak absorbance wavelength for $[Ru(NH_3)_5(H_2O)]^{2+}$ ($\varepsilon = 1.18 \times 10^3$ dm³ mol⁻¹ cm⁻¹).⁹ The rate constants measured were consistent and independent of wavelength. The cell compartment was thermostatted to the desired temperature within ± 0.1 °C.

Results

The stoicheiometry of each reaction was checked by measuring the ruthenium(II) consumed at its u.v. absorption peak under conditions of a two- to three-fold excess of the ruthenium(II) reductant over the cobalt(III) oxidant. All the results conform to the general equation (1). Pseudo-first-order rate plots were

$$Ru^{II} + Co^{III} \longrightarrow Ru^{III} + Co^{II}$$
(1)

obtained for more than four half-lives in all cases, and the second-order rate constants derived from these were consistent with the rate law (2).

$$-d[Co^{III}]/dt = -d[Ru^{II}]/dt = k_{obs}[Co^{III}][Ru^{II}]$$
(2)

All the reactions are acid-independent over the range $[H^+] = 0.01 - 0.10 \text{ mol } dm^{-3}$, and at 25 °C, $I = 0.20 \text{ mol } dm^{-3}(\text{LiCl})$ the observed second-order rate constants k_2 are $(17.8 \pm 1.6) \times 10^{-2}, (5.5 \pm 0.3) \times 10^{-2}, \text{and } (3.3 \pm 0.3) \times 10^{-2} dm^3 \text{ mol}^{-1} \text{ s}^{-1}$ for reductions by $[\text{Ru}(\text{NH}_3)_6]^{2+}$, $[\text{Ru}(\text{en})_3]^{2+}$, and $[\text{Ru}(\text{NH}_3)_5(\text{H}_2\text{O})]^{2+}$ respectively (Table 1). From the variation of the second-order constants with temperature (Table 2), the activation parameters were calculated using the least-squares method; for the reductions by $[\text{Ru}(\text{NH}_3)_6]^{2+}$ and $[\text{Ru}(\text{NH}_3)_5(\text{H}_2\text{O})]^{2+}$ the values are $\Delta H^{\frac{1}{2}} = 45.4 \pm 6.9 \text{ kJ}$

Table 1. Second-order rate constants* for the reductions of [Co- $(C_2O_4)_3$]³⁻ by ruthenium(II) species at 25 °C and I = 0.20 mol dm⁻³(LiCl)

(a) $[Ru(en)_3]^2$ { $[Co^{III}] = (1.0)$	+ 	1 = 1.0 × 10 ⁻⁴ mol dm ⁻³ }
(L] ([H ⁺]/mol dm ⁻³	$10^2 k_2/dm^3 mol^{-1} s^{-1}$
	0.10	5.5
	0.05	5.4
	0.03	5.2
	0.02	5.8
(b) [Ru(NH ₃) ₆ {[Co ^{III}] = (1.0]²+)—3.5) × 10 ⁻³ , [Ru [#]	$[] = (1.0-2.0) \times 10^{-4} \text{ mol dm}^{-3}$
	0.10	17.0
	0.05	18.2
	0.05	17.4
	0.02	18.7
(c) [Ru(NH ₃) ₅	$(H_2O)]^{2+}$	
$\{[Co^{m}] = (0.2)$.—4.4) × 10⁻³, [Ru"	$[] = (1.0-20.0) \times 10^{-4} \text{ mol dm}^{-3}$
	0.10	3.4
	0.05	3.8
	0.04	3.1
	0.02	3.2
	0.01	3.0

* k_2 at $[H^+] = 0.10$ mol dm⁻³ for each reductant is the average from at least five runs at various reductant and oxidant concentrations. At other acid concentrations k_2 is the average from two to three runs.

Table 2. Temperature dependence of the second-order rate constants * for the reductions of $[Co(C_2O_4)_3]^{3-}$ by ruthenium(II) species, I = 0.20 mol dm⁻³ (LiCl)

(a) $[Ru(NH_3)_6]$	2+	
${[Co^{III}] = (1.0-$	$-2.8) \times 10^{-3}$, [1	Ru^{II}] = (1.0–2.5) × 10 ⁻⁴ mol dm ⁻³ }
	$\theta_c/^{\circ}C$	$10^{2}k_{2}/dm^{3} mol^{-1} s^{-1}$
	20.0	11.4
	25.0	17.8
	32.0	23.0
	35.0	32.5
(b) [Ru(NH ₃) ₅ ($[H_2O)]^{2+}$	
$\{[Co^{III}] = (0.2 -$	-4.4) × 10 ⁻³ , [1	$Ru^{[I]} = (1.0-20.0) \times 10^{-4} \text{ mol } dm^{-3}$
	20.0	1.7
	25.0	3.3
	30.0	6.1
	35.0	15.0

* k_2 at 25 °C for each reductant is the average of values from Table 1. At other temperatures, k_2 is the average from at least three runs for each temperature.

 mol^{-1} , $\Delta S^{\ddagger} = -(107.6 \pm 22.9)$ J K⁻¹ mol⁻¹ and 98.4 \pm 7.6 kJ mol⁻¹, +(56.5 \pm 4.2) J K⁻¹ mol⁻¹ respectively.

Discussion

Tris(oxalato)cobaltate(III) is reduced by $[Ru(NH_3)_6]^{2+}$ and $[Ru(en)_3]^{2+}$ by an outer-sphere mechanism, since the reductants lack co-ordination sites for inner-sphere complex formation. All the three oxalate ligands in $[Co(C_2O_4)_3]^{3-}$ are bidentate, with the two negative oxygen ends on each oxalate co-ordinated to cobalt(III), so that in the acid concentration range used in this study (0.01–0.10 mol dm⁻³) protonation of $[Co(C_2O_4)_3]^{3-}$ is not expected to occur. Earlier studies using this oxidant at even higher $[H^+]$ gave no indication of extensive

Table 3. Exchange rat	e constants f	or some cot	alt complexes
-----------------------	---------------	-------------	---------------

Complexes	$k_{22}/dm^3 mol^{-1} s^{-1}$	Ref.
$[Co(en)_{3}]^{3+/2+}$	2.0×10^{-5}	14
$[Co(C_2O_4)_3]^{3-/4-}$	1.4×10^{-12}	This work
$[Co(NH_3)_6]^{3+/2+}$	≤1 × 10 ⁻⁹	14
$[Co(phen)_3]^{3+/2+}$	5.0	14
$[Co(bipy)_3]^{3+/2+}$	7.0	14

protonation.^{4,10} It is not surprising therefore that, in this study, no acid dependence of the rate constants was observed. This is in contrast to an earlier study⁶ using $[Co(NH_3)_5(C_2O_4)]^+$ (where the oxalate ligand is unidentate, with a free negative oxygen end) in which an acid dependence was observed.

An estimate^{4,11} of the exchange rate constants k_{22} for the couple $[Co(C_2O_4)_3]^{3-/4-}$ was made from the Marcus cross relation (3) using an iterative procedure, where k_{11} is the

$$k_{\text{obs.}} = k_{12} = (k_{11}k_{22}K_{12}f)^{\frac{1}{2}}$$
(3)

exchange rate constant for the reductant couple¹² [Ru- $(NH_3)_6$]^{2+/3+} ($k_{11} = 8.2 \times 10^2 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$), log $f = (\log K_{12})^2/4 \log (k_{11}k_{22}/Z^2)$, with $Z = 10^{11} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, and K_{12} was calculated from the known redox potentials^{8,13} for [Co- $(C_2O_4)_3$]^{3-/4-} and [Ru(NH₃)₆]^{2+/3+}. The result was $k_{22} = 1.4 \times 10^{-12} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. This is a reasonable estimate, considering the values that have been estimated for other cobalt(III) complexes¹⁴ of similar structure (Table 3), though the last two entries, [Co(phen)_3]^{3+/2+} (phen = 1,10-phenanthroline) and [Co(bipy)_3]^{3+/2+} (bipy = 2,2'-bipyridyl), are high, probably as a result of the π -delocalised electrons of the substituted aromatic ligands.

The rate constant for the reduction of $[Co(C_2O_4)_3]^{3-}$ by $[Ru(NH_3)_5(H_2O)]^{2+}$ at 25 °C, $(3.3 \pm 0.3) \times 10^{-2}$ dm³ mol⁻¹ s⁻¹, lies in the range $[(ca. 2.6-30.0) \times 10^{-2}$ mol⁻¹ s⁻¹] characteristic of $[Ru(NH_3)_5(H_2O)]^{2+}$ substitutions. We also recently measured the rate constant for the substitution ¹⁵ of oxalate ligand in $[Ru(NH_3)_5(H_2O)]^{2+}$ at 25 °C and I = 0.20 mol dm⁻³ (LiCl) as 3.0×10^{-2} dm³ mol⁻¹ s⁻¹.

We suggest therefore that the redox reaction between $[Co(C_2O_4)_3]^{3-}$ and $[Ru(NH_3)_5(H_2O)]^{2+}$ occurs by a substitution-controlled inner-sphere mechanism. By similar reasoning, the redox reactions between this reductant and each of $[Co(NH_3)_5F]^{2+}$ and $[Co(NH_3)_5Cl]^{2+}$ have recently been classified⁹ as inner-sphere. The negative charge on $[Co-(C_2O_4)_3]^{3-}$ {relative to the positive charge on each of $[Co(NH_3)_5(C_2O_4)]^+$ and $[Co(NH_3)_4(C_2O_4)]^+$, oxidants which are reduced by this reductant by an outer-sphere mechanism⁶} facilitates coulombic attraction towards $[Ru(NH_3)_5(H_2O)]^{2+}$, leading to effective orbital overlap and bridge formation. This is reinforced in the transition state by the presence of the effective 'lead-in' oxalate ligand.

The complex $[\bar{R}u(NH_3)_5(C_2O_4)]^+$ was detected and subsequently isolated as the ruthenium(III) product of the reduction of $[Co(C_2O_4)_3]^{3-}$ by $[Ru(NH_3)_5(H_2O)]^{2+}$. It was characterised by its u.v. absorption spectrum ($\lambda_{max.} = 288 \text{ nm}, \varepsilon = 2.98 \times 10^3 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$; lit.,⁵ $\lambda_{max.} = 288 \text{ nm}, \varepsilon = 3.09 \times 10^3 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$). This confirms an inner-sphere path for this reaction.

The enthalpy of activation for the reduction of $[Co-(C_2O_4)_3]^{3-}$ by $[Ru(NH_3)_5(H_2O)]^{2+}$, 98.4 \pm 7.6 kJ mol⁻¹, is of the same order of magnitude as those reported for substitutions on aquaruthenium(II) species.^{16,17} This also confirms that the reduction of $[Co(C_2O_4)_3]^{3-}$ by $[Ru(NH_3)_5(H_2O)]^{2+}$ occurs by a substitution-controlled process. Furthermore, the positive

entropy of activation, $+(56.5 \pm 4.2)$ J K⁻¹ mol⁻¹, is of the same order of magnitude as those reported for SCN⁻ and CH₃-CO₂⁻ substitutions on penta-ammineaquaruthenium(11).¹⁵

The ion $[\operatorname{Ru}(\operatorname{C}_2\operatorname{O}_4)_3]^{3-}$ is not reduced by $[\operatorname{Ru}(\operatorname{NH}_3)_5 (\operatorname{H}_2\operatorname{O})]^{2+}$ due to the unfavourable free-energy change. As pointed out previously,^{9,11} the energy barrier imposed on cobalt(III) to bring about the transition $t_{2g}^6 \longrightarrow t_{2g}^6 e^1$ is often partially overcome by the exothermic formation of a precursor complex and hence inner-sphere electron transfer. Such a barrier is not important in $\operatorname{Ru}^{III}(t_{2g}^5 \longrightarrow t_{2g}^6)$, and electron transfer easily occurs by an outer-sphere mechanism.

Acknowledgements

We acknowledge financial support from the University of Ife Research Grants Committee.

References

- 1 A. Haim and N. Sutin, J. Am. Chem. Soc., 1966, 88, 5343.
- 2 B. Grossman and A. Haim, J. Am. Chem. Soc., 1971, 93, 6490.
- 3 C. Hwang and A. Haim, Inorg. Chem., 1970, 9, 500.

- 4 N. Akinyugha, J. Ige, J. F. Ojo, O. Olubuyide, and R. Simoyi, *Inorg. Chem.*, 1978, 17, 218.
- 5 A. Adegite, J. E. Earley, and J. F. Ojo, Inorg. Chem., 1979, 18, 1535.
- 6 A. O. Ojudun, J. F. Ojo, and O. A. Olubuyide, J. Chem. Soc., Dalton Trans., 1982, 659.
- 7 D. Wagnerova, Collect. Czech. Chem. Commun., 1982, 27, 1130.
- 8 L. Hin-Fat and W. C. E. Higginson, J. Chem. Soc. A, 1967, 298.
- 9 G. Daramola, J. F. Ojo, O. Olubuyide, and F. Oriailo, J. Chem. Soc., Dalton Trans., 1982, 2137.
- 10 G. A. K. Thompson and A. G. Sykes, Inorg. Chem., 1976, 15, 638.
- 11 A. Adegite, J. F. Iyun, and J. F. Ojo, J. Chem. Soc., Dalton Trans., 1977, 115.
- 12 T. J. Meyer and H. Taube, Inorg. Chem., 1968, 7, 2369.
- 13 P. C. Ford, Co-ord. Chem. Rev., 1970, 5, 75.
- 14 T. J. Przystas and N. Sutin, J. Am. Chem. Soc., 1973, 95, 5545; J. F. Endicott, B. Durham, and K. Kumar, Inorg. Chem., 1982, 21, 2437.
- 15 J. F. Ojo, O. Olubuyide, and A. O. Oyetunji, *Inorg. Chem.*, submitted for publication.
- 16 R. E. Shepherd and H. Taube, Inorg. Chem., 1973, 12, 1392.
- 17 T. W. Kallen and J. E. Earley, Inorg. Chem., 1971, 10, 1149, 1152.

Received 15th October 1984; Paper 4/1770