1673

Preparation and Vibrational Spectra of $[OsX_6]^{3-}$ (X = CI, Br, or I) and of Other Platinum-group Hexahalogeno-complexes[†]

Nicholas J. Campbell, Vivienne A. Davis, William P. Griffith,* and Timothy J. Townend Inorganic Chemistry Laboratories, Imperial College, London SW7 2AY

The preparation, Raman and infrared spectra of the new salts $[Co(NH_2CH_2CH_2NH_2)_3][OsX_6]$ (X = CI, Br, or I) are reported together with vibrational spectra of $Cs_2[RhCI_6]$, $[RuX_6]^{2^-}$ (X = CI or Br), and $[RuBr_6]^{3^-}$.

The only established osmium(III) hexahalogeno-complex is $K_3[OsBr_6]$, prepared by electrolytic reduction of $[OsBr_6]^{2^-}$;¹ electronic spectra of solutions made by reduction of $[OsX_6]^{2^-}$ with silver powder and believed to contain $[OsX_6]^{3^-}$ (X = Cl, Br, or I) have been measured.² We report here the isolation and characterisation of the new salts $[Co(en)_3][OsX_6]$ (X = Cl, Br, or I; en = NH₂CH₂CH₂NH₂), their Raman and i.r. spectra, and the Raman spectra of $[OsX_6]^{3^-}$ in acid (HX) solution. We also give Raman and i.r. data for those hexahalogeno-complexes of the platinum-group metals for which such data have not hitherto been reported or are incomplete.

Results and Discussion

Preparation and Spectra of $[OsX_6]^{3^-}$ (X = Cl, Br or I).— We find that addition of $[Co(en)_3]X_3$ to solutions obtained by adding silver powder to $[OsX_6]^{2^-}$ in concentrated HX under nitrogen gives brown microcrystalline precipitates of $[Co(en)_3]$ - $[OsX_6]$; the $[Co(en)_3]^{3^+}$ cation was used as it gives clean precipitates and its vibrational spectrum does not interfere with those of the $[OsX_6]^{3^-}$ ions. These new salts are paramagnetic $[\mu_{eff}$. 1.70 (Cl), 1.67 (Br), and 1.61 B.M. (I) at room temperature]. The electronic spectra of the solutions from which they were obtained are similar to those reported by Jørgensen² and ascribed by him to $[OsX_6]^{3^-}$.

ascribed by him to $[OsX_6]^{3^-}$. The Raman spectra of $[Co(en)_3][OsX_6]$, after subtraction of the few cation bands in the low-frequency region, show strong bands which we assign to the totally symmetric metal-halide stretch v_1 ; weaker bands we assign to the non-totally symmetric stretch v_2 and the deformation v_5 . The solutions of $[OsX_6]^{3^-}$ from which these salts were obtained show polarised bands close to the v_1 frequencies of the solids, but the depolarised v_2 and v_5 bands could not be observed for these solutions. Infrared spectra of solid $[Co(en)_3][OsX_6]$ provide the v_3 (asymmetric metal-halide stretch) and v_4 (asymmetric deformation) bands. For comparison in the Table we give the literature assignments for the corresponding modes of the appropriate $[OsX_6]^{2^-}$ salts; frequencies are slightly lower for $[OsX_6]^{3^-}$ than for $[OsX_6]^{2^-}$, as would be expected in view of the lower oxidation state.

Vibrational Spectra of other Platinum-group Hexahalogenocomplexes.—Vibrational data are now available for most such complexes^{3,4} but some gaps remain, and we give here data for some of the missing species.

 $[RhCl_6]^{2^-}$ and $[RuCl_6]^{2^-}$. Although i.r. data for Cs₂-[RhCl₆], the only well characterised salt of $[RhCl_6]^{2^-}$, are available ^{5.6} there are no Raman data. We find that the Raman spectrum of solid Cs₂[RhCl₆] has bands at 322, 260, and 177 cm⁻¹ which we assign to v₁, v₂, and v₅ respectively. Although it has been claimed that $[RhCl_6]^{2^-}$ is present in solutions of $[RhCl_6]^{3^-}$ treated with chlorine ⁷ we find that the electronic

† Non-S.I. unit employed: B.M. = $0.927 \times 10^{-23} \text{ A m}^2$.

and Raman spectra of solutions so treated show bands due to $[RhCl_6]^{3^-}$ only.

Recent work has suggested that $[RuCl_6]^{2^-}$ has only a fugitive existence in HCl solution and so its fundamental frequencies in solution have not been reported.⁸ We find that $[RuCl_6]^{2^-}$ in 6 mol dm⁻³ HCl saturated with chlorine exhibits bands at 337 and 256 cm⁻¹, which are assigned to v_1 and v_2 of $[RuCl_6]^{2^-}$. In a paper which appeared during the course of this work the resonance-Raman spectrum of solid [PPh₄]₂[RuCl₆]⁹ gave v_1 326, v_2 270, and v_5 at 173 cm⁻¹, in agreement with our data from the ion in acid solution.

 $[RuBr_6]^{2^-}$ and $[RuBr_6]^{3^-}$. Recent resonance-Raman data for solid $[NBu^n_4]_2[RuBr_6]$ give v_1 200, v_2 160, and v_5 106 cm^{-1.9} This compares reasonably well with our Raman and i.r. data for solid K₂[RuBr₆].

No vibrational data have hitherto been reported for $[RuBr_6]^{3-}$. It has been shown by X-ray studies that the anilinium salt ' $[NH_3Ph]_6[RuBr_9]$ ' is in fact $[NH_3Ph]_3$ - $[RuBr_6]^{-3}[NH_3Ph]Br^{10}$ and so contains the $[RuBr_6]^{3-}$ ion. We report the Raman and i.r. spectra of this solid in the Table having subtracted bands due to the cation; again v_1 and v_3 are lower for this ruthenium(III) complex than for $[RuBr_6]^{2-}$. The values for the fundamentals are quite close to those for $[RhBr_6]^{3-11,12}$ and $[OsI_6]^{3-}$.

Iodo-complexes. The only fully established hexaiodo-complexes of the platinum metals are $[OsI_6]^{2-}$ and $[PtI_6]^{2-}$. Raman data are available for the latter; ⁵ for the former, v_1 is reported to lie at 128 cm⁻¹ for $[OsI_6]^{2-}$ in a KI-HClO₄ solution.¹³ However, we find a strong, polarised band at 152 cm^{-1} for Na₂[OsI₆] in concentrated HI and prefer this value for v_1 ; it agrees well with the v_1 of 152 cm⁻¹ reported for the resonance-Raman spectra of solid $[NBu^n_4]_2[OsI_6]$.¹⁴ Both $K_2[IrI_6]^{15}$ and 'potassium iodorhodite',¹⁶ presumably K_3 -[RhI₆], make brief appearances in the literature but the salts have never been characterised, although there is a report of Raman and i.r. data for a 'commercial' sample of $K_2[IrI_6]^{17}$ We find that both IrCl₃.nH₂O and RhCl₃.nH₂O dissolve in excess concentrated hydriodic acid and in aqueous potassium iodide respectively to give deep red solutions; caesium and potassium salts can be isolated from these but give variable analyses. Raman spectra of the iridium solution show a polarised band at 152 cm⁻¹ and depolarised bands at 141 and 103 cm⁻¹, close to those reported ¹⁷ for commercial $K_2[IrI_6]$; we suggest that they could arise for v_1 , v_2 , and v_5 of $[IrI_6]^{3-}$ [it is likely that iodide would be too reducing a ligand for iridium(IV), but $[IrI_6]^{3-}$ should exist]. Likewise the rhodium solution has a polarised Raman band at 148 cm⁻¹ and a depolarised one at 130 cm⁻¹, which we tentatively assign to v_1 and v_2 of $[RhI_6]^{3-}$.

Experimental

L'Apermientai			
Tris(ethylenediamine)cobalt(111)	Hexachloro-osmate(III),		
$[Co(en)_3][OsCl_6]$.—Sodium	hexachloro-osmate,	Na ₂ -	

Complex	Spectrum	$v_1(A_{1g})$	$v_2(E_g)$	$v_3(F_{1\mu})$	$v_4(F_{1u})$	$v_5(F_{2g})$
$[Co(en)_3][OsCl_6]$	R*, i.r."	313(10)		297vs, 290vs	185s	
[OsCl ₆] ³⁻	R ª	310 (p)				
$K_2[OsCl_6]$	R, ^b i.r. ^c	345.3	245.2	326	176	160
$[Co(en)_3][OsBr_6]$	R*, i.r."	201(10)	180(4)	200vs	116w	94(5)
$[OsBr_6]^{3-}$	R "	189 (p)				
$K_2[OsBr_6]$	R,* i.r.'	210.6	169.2	227	122	100
$[Co(en)_3][OsI_6]$	R*, i.r.ª	144(10)	113(3)	140s	111w	
[OsI ₆] ³⁻	R "	140 (p)				
Na ₂ [OsI ₆]	R "	152 (p)				
$[NBu_4]_2[OsI_6]$	R ª, i.r. ª	152(10) (p)	121(2) (dp)	170	91	80(2) (dp)
Cs ₂ [RhCl ₆]	R*, i.r.ª	322(10)	260(4)	330s	184m	177(6)
$Cs_2[RuCl_6]$	R* , i.r. 	328(10)	253(5)	327vs	183m	
[RuCl ₆] ²⁻	R 4	337(10) (p)	256(4) (dp)			
K ₂ [RuBr ₆]	R*, i.r.ª	209(10)	178(5)	248s	123w	
[NH ₃ Ph] ₃ [RuBr ₆]·3[NH ₃ Ph]Br	R*, i.r.ª	184		240s, 232s	141w	

Table. Vibrational spectra (cm⁻¹) of hexahalogeno-complexes

Raman data on solutions in 6 mol dm⁻³ HX or as indicated with a asterisk in solid state (v_1, v_2, v_5) ; all i.r. data on solids (v_3, v_4) ; dp = depolarised, p = polarised; relative intensities given in parentheses. ^a This work. ^b Ref. 3. ^c Ref. 17. ^d Ref. 14.

 $[OsCl_6] \cdot nH_2O(1.0 g)$ was dissolved in 6 mol dm⁻³ HCl (20 cm³) and shaken with powdered silver under nitrogen gas until the electronic spectrum agreed with that reported ² for $[OsCl_6]^{3-}$. The yellow-green solution was filtered under nitrogen and transferred to a solution of $[Co(en)_3]$ Cl₃ in dilute HCl (stoicheiometric quantity in 100 cm³) which was well stirred. A brownish precipitate formed which was filtered off under nitrogen and washed with degassed water, ethanol, and diethyl ether and dried *in vacuo* (Found: C, 11.1; H, 3.6; Cl, 32.5; N, 12.4. Calc. for C₆H₂₄Cl₆CoN₆Os: C, 11.2; H, 3.8; Cl, 33.1; N, 13.1%). Magnetic moment: $\mu_{eff.} = 1.70$ B.M. at 298 K.

Tris(ethylenediamine)cobalt(III) Hexabromo-osmate(III), [Co(en)₃][OsBr₆].—This was prepared in a similar fashion to that above using concentrated HBr. To obtain a pure product it was found necessary to use [Co(en)₃]Br₃ and then redissolve it in dilute HBr (Found: C, 7.9; H, 3.0; Br, 49.2; N, 9.2. Calc. for $C_6H_{24}Br_6CoN_6Os: C, 7.9; H, 2.6; Br, 52.8; N, 9.2%)$. Magnetic moment: $\mu_{eff.} = 1.67$ B.M. at 298 K.

Tris(ethylenediamine)cobalt(III)Hexaiodo-osmate(III), $[Co(en)_3][OsI_6]$.—This was prepared in a similar fashion tothat above using concentrated HI. As with $[Co(en)_3][OsBr_6]$ itwas found necessary to prepare $[Co(en)_3]I_3$ and then redissolveit in dilute HI (Found: C, 6.1; H, 1.9; N, 6.9. Calc. for $C_6H_{24}CoI_6N_6Os: C, 6.05; H, 2.0; N, 7.1\%$). Magnetic moment: $\mu_{eff.}$ 1.61 B.M. at 298 K.

Tris(ethylenediamine)cobalt(III) Tribromide and Tri-iodide, [Co(en)₃]Br₃ and [Co(en)₃]I₃.—The addition of the respective dilute halogenic acid to a dilute solution of [Co(en)₃]Cl₃ in water resulted in the precipitation of [Co(en)₃]Br₃ and [Co(en)₃]I₃. These were washed with ethanol and air-dried.

Potassium and Caesium Hexachlororuthenate(iv), $K_2[RuCl_6]$ and $Cs_2[RuCl_6]\cdot 2H_2O$.—Ruthenium trichloride, $RuCl_3\cdot nH_2O$, (0.7 g) was added to concentrated HCl (30 cm³) and the mixture refluxed for 1 h. This solution was filtered and cooled in an icebath. Chlorine was bubbled through the cooled solution for 10 min, the ice removed, and chlorine bubbled through for a further 15 min. An excess of MCl (M = K or Cs) dissolved in a minimum of concentrated HCl and saturated with chlorine gas was then added and the solution cooled for several hours. A black powder of $K_2[RuCl_6]$ (or red-brown powder of Cs_2 -[RuCl₆]) formed and was separated out by centrifugation, washed with a little ice-cold water, and dried *in vacuo* (Found: Cl, 54.3; K, 19.9. Calc. for Cl_6K_2Ru : Cl, 54.3; K, 19.9%. Found: Cl, 34.4; Cs, 43.0. Calc. for $H_4Cl_6Cs_2O_2Ru$: Cl, 34.6; Cs, 43.2%).

Potassium Hexabromoruthenate(IV), $K_2[RuBr_6]$.—This was prepared in a similar way to that of $K_2[RuCl_6]$ using $RuCl_3 \cdot nH_2O$ (0.5 g), concentrated HBr (30 cm³), KBr (0.5 g), and saturating the solution with bromine vapour instead of chlorine gas (Found: Br, 72.1; K, 12.4. Calc. for Br_6K_2Ru : Br, 72.8; K, 11.8%).

Anilinium Hexabromoruthenate(III)-Tris(anilinium bromide), [NH₃Ph][RuBr₆]·3[NH₃Ph]Br.—This was prepared by the method of Drew *et al.*¹⁰ Ruthenium trichloride, RuCl₃·nH₂O, (0.5 g) was refluxed under nitrogen gas with HBr (60 cm³) for 72 h. (The RuCl₃·nH₂O had been previously shaken with mercury to effect reduction of Ru^{IV} to Ru^{III}.) The hot solution was then saturated with anilinium bromide. Crystals of the salt separated out on cooling and were filtered off and dried *in vacuo* (Found: C, 30.5; H, 3.4; Br, 52.0; N, 5.9. Calc. for C₃₆H₄₈Br₉N₆Ru: C, 31.2; H, 3.5; Br, 52.0; N, 6.1%).

Caesium Hexachlororhodate(Iv).—This was prepared by the literature procedure ¹⁸ (Found: H, 0.2; Cl, 34.6; Cs, 45.1. Calc. for $H_2Cl_6Cs_2RhO$: H, 0.33; Cl, 35.5; Cs, 44.1%).

Spectroscopy.—Raman spectra of solutions were measured in a spinning cell and of solids as pressed discs on KBr using a Spex Ramalog V instrument and a Coherent Radiation model 52 krypton-ion laser with excitation at 6 471, 5 682, or 5 309 Å. Infrared spectra (down to 250 cm⁻¹) were measured as Nujol mulls on a Perkin-Elmer 597 instrument, and far-i.r. spectra (60—250 cm⁻¹) on a Bruker 1FS 113V Fourier-transform instrument, the latter at University College, London.

Acknowledgements

We thank Johnson Matthey Ltd. for loan of platinum metals, and the University of London Intercollegiate Research Service and Mr. Nigel Okey for running the far-i.r. spectra.

References

1 W. R. Crowell, R. K. Brinton, and R. F. Evenson, J. Am. Chem. Soc., 1938, 60, 1105.

- 2 C. K. Jørgensen, Mol. Phys., 1959, 2, 309.
- 3 Y. M. Bosworth and R. J. H. Clark, J. Chem. Soc., Dalton Trans., 1974, 1749.
- 4 P. Labonville, J. R. Ferraro, M. C. Wall, and L. J. Basile, Coord. Chem. Rev., 1972, 7, 257.
- 5 M. Debeau, Spectrochim. Acta, Part A, 1969, 25, 1311.
- 6 P. J. Cresswell, J. E. Fergusson, B. R. Penfold, and D. E. Scaife, J. Chem. Soc., Dalton Trans., 1972, 254.
- 7 K. Watanabe, Nippon Kagaku Zasshi, 1957, 78, 1207.
- 8 J-P. Deloume, G. Duc, and G. Thomas-David, Bull Soc. Chim. Fr., 1981, I-129.
- 9 R. J. H. Clark and T. J. Dines, Mol. Phys., 1984, 52, 859.
- 10 M. Drew, D. Rice, and C. W. Timewell, Inorg. Nucl. Chem. Lett., 1971, 7, 59.

- 11 J. P. Spoonhower, J. Raman Spectrosc., 1981, 11, 180.
- 12 T. S. Kuan, *Inorg. Chem.*, 1974, **13**, 1256. 13 K. I. Ikeda and S. Maeda, *Inorg. Chem.*, 1973, **17**, 2698.
- 14 H. Homborg, Z. Anorg. Chem., 1982, 493, 104.
- 15 Th. Oppler, Dissertation Göttingen, 1857 (Gmelin Handbuch der Anorganischen Chemie 'Iridium,' 1939, 67, 106).
- 16 F. P. Dwyer and R. S. Nyholm, J. Proc. R. Soc. N.S.W., 1942, 76, 275. 17 G. L. Bottger and A. E. Salwin, Spectrochim. Acta, Part A, 1972, 28, 925.
- 18 I. Feldman, R. S. Nyholm, and E. Watton, J. Chem. Soc., 1965, 4724.

Received 24th October 1984; Paper 4/1819