A New Reaction of Nitrosyl Complexes; One-electron Reduction of trans- $[MX(NO)L_4]^{2+}$ [M = Ru or Fe, X = Cl or Br, L = Pyridine or o-Phenylenebis(dimethylarsine)] with Hydroxylamine

Kimitake Aoyagi,* Masao Mukaida, Hidetake Kakihana, and Kunio Shimizu Department of Chemistry, Faculty of Science and Technology, Sophia University, 7–1, Kioicho, Chiyoda-ku, Tokyo, Japan 102

The complexes *trans*- $[MX(NO)L_4]^{2+}$ [M = Ru or Fe, X = Cl or Br, L = pyridine or *o*-phenylenebis-(dimethylarsine)] react with hydroxylamine to afford the corresponding one-electron reduced species. The reaction appears to be the first to produce a $(M-NO)^{2+}$ group.

Recent investigations of the nitrosyl ligand (NO⁺) co-ordinated to transition metals have revealed a variety of interesting reactions.¹ The reaction between nitrosyl and hydroxylamine to give dinitrogen monoxide as ligand is one such reaction.² According to the proposed mechanism ^{1c,2} the reaction involves an intermediate (A) formed by nucleophilic attack of the hydroxylamine on the nitrosyl nitrogen [equation (1)]. This

$$Ru-NO^{+} + NH_{2}OH \xrightarrow{-H^{+}} Ru-N \underbrace{\langle O \\ NHOH } (A)$$
(1)

$$(\mathbf{A}) \longrightarrow \mathbf{Ru} - \mathbf{N} \underbrace{\bigvee_{\mathbf{NOH}}^{\mathbf{OH}} \mathbf{H}_{2\mathbf{O}}^{-\mathbf{H}_{2\mathbf{O}}} \mathbf{Ru} - \mathbf{N}_{2}\mathbf{O}}_{\mathbf{O}}$$
(2a)

$$(\mathbf{A}) \xrightarrow{-(\frac{1}{2}N_2 + H_2 \underline{O})} \mathbf{R} \mathbf{u} - \mathbf{N} \xrightarrow{\mathbf{O}}$$
(2b)

intermediate is then rearranged and converted into a complex containing a dinitrogen monoxide ligand [equation (2a)]. However, another possible reaction [equation (2b)], which would give a one-electron reduced species, probably via the intermediate (A), is possible because (i) hydroxylamine can serve as a reducing agent and (ii) the reactivity of the coordinating nitrosyl toward nucleophiles is not always the same for the $[MX(NO)L_4]^{2+}$ type of complex, as has been observed in the reaction with azide.³⁻⁵

We report here that the one-electron reduction occurs for both *trans*-[RuX(NO)(py)₄]²⁺ (X = Cl or Br, py = pyridine) and *trans*-[FeCl(NO)(pdma)₂]²⁺ [pdma = o-phenylenebis-(dimethylarsine)], of the {MNO}⁶ type of complex,† under moderate conditions. No evidence for the formation of a dinitrogen monoxide ligand could be obtained. The reaction appears to be the first to give the six-co-ordinated {MNO}⁷ type of nitrosyl complex,⁶ instead of a complex with dinitrogen monoxide as ligand. The reaction is also valuable as a synthetic route to the six-co-ordinated {MNO}⁷ type of complex, of which very few examples have been isolated.^{8,9}

The reactions between *trans*- $[MX(NO)L_4]^{2+}$ and hydroxylamine were carried out in the dark, as described later. Product identity was established by comparing properties with those of known similar complexes (Table).^{8,9} All {MNO}⁷ type complexes, products (1)--(3), and the known complexes, (4) and (5), exhibited a characteristic v(NO) absorption band near 1 600 cm⁻¹, while the corresponding absorption band due to coordinated NO⁺ near 1 900 cm⁻¹ disappeared. The drastic shift in the v(NO) absorption bands to lower frequency can be interpreted in terms of a reduction in the nitric oxide bond order upon addition of a single electron to the lowest unoccupied $\pi^*(NO)$ orbital.⁹ The effective magnetic moment was comparable to the value expected for the one-electron reduction of the original diamagnetic complexes.

The electrochemical properties of complex (1) were studied by d.c. polarography and cyclic voltammetry using a hanging mercury electrode. The original nitrosyl complex, (6), $\{RuNO\}^6$, in acetonitrile solution underwent an electrochemically reversible one-electron reduction (first wave) at 0.25 V and an irreversible one-electron reduction (second wave) at -0.58 V, whereas (1) showed a one-electron oxidation and reduction waves with $E_{\frac{1}{2}}$ corresponding to the potentials of the first and second waves of (6), respectively. Similar observations were made for the redox system $[Fe(CN)_5(NO)]^2 - [Fe(CN)_5^-(NO)]^{3-}$;¹⁰ this supports the identification of (1) as a $\{RuNO\}^7$ type of complex.

Experimental

Microanalyses were by the Sophia University microanalytical service. Infrared spectra were obtained for KBr discs. D.c. polarographic and cyclic voltammetric experiments were performed in CH₃CN solution using a hanging mercury electrode with tetraethylammonium perchlorate as supporting electrolyte. The measurements were made vs. a saturated potassium chloride calomel electrode (s.c.e.) at 25 °C.

The nitrosyl complexes *trans*-[RuX(NO)(py)₄][ClO₄]₂ (X = Cl or Br) were prepared as described previously.⁵ The salt *trans*-[FeCl(NO)(pdma)₂][ClO₄]₂ was prepared by the literature method.¹¹

Isolation of Chloronitrosyltetrakis(pyridine)ruthenium Hexafluorophosphate Monohydrate, $[RuCl(NO)(py)_4]PF_6 H_2O$ (1).—A deaerated aqueous solution of trans- $[RuCl(NO)(py)_4]$ - $[ClO_4]_2$ (100 mg, 0.16 mol) was cooled in ice to 7 °C. To this solution was added an aqueous solution (2 cm³) of NH₂OH·HCl (40 mg) (which had been adjusted to pH 6.5 by NaHCO₃). The mixed solution was kept at 7 °C for 1—2 min, and then NH₄PF₆ (30 mg) was added. The pale green precipitate which was obtained was filtered off, washed with water, and then air-dried. Yield 40% (Found: C, 37.6; H, 3.3; Cl, 5.8; N, 11.0. Calc. for C₂₀H₂₂ClN₅O₂Ru: C, 37.7; H, 3.3; Cl, 5.7; N, 11.1%).

Analogous products $[RuBr(NO)(py)_4]PF_6 \cdot H_2O$ (2) and $[FeCl(NO)(pdma)_2]PF_6$ (3), were obtained using the same procedure from the corresponding $\{MNO\}^6$ complexes $\{Found: C, 34.6; H, 3.1; N, 9.9. Calc. for <math>[RuBr(NO)(py)_4]$ -

[†] Nitrosyl complexes with formal oxidation states of $(Ru^{II}-NO^+)^{3+}$ and $(Ru^{II}-NO)^{2+}$ are abbreviated as $\{RuNO\}^6$ and $\{RuNO\}^7$ using the nomenclature proposed by Enemark and Feltham.⁶ The formal oxidation state of $(Ru^{II}-NO^+)^{3+}$ in *trans*-[RuCl(NO)(py)₄]²⁺ could be deduced from the linear structure of the mean RuNO moiety [174.8(9)°].⁷

Table. Properties of the reaction products and related complexes

Complex	ṽ(NO) ^a /cm ⁻¹		$E_{\frac{1}{2}}^{b}/V$		
		$\mu_{eff.}/B.M.$	ox.	red.	Ref.
(1) $[RuCl(NO)(py)_4]PF_6$	1 617(1 582)	2.29	0.25	-0.58	с
(2) $[RuBr(NO)(py)_4]PF_6$	1 610	2.30			с
(3) $[FeCl(NO)(pdma)_2]PF_6$	1 622				с
(4) $[RuCl(NO)(bipy)_{2}]I^{d}$	1 640(1 611)				9
(5) $[FeCl(NO)(pdma)_2]ClO_4$	1 625	1.80			8
(6) $[RuCl(NO)(py)_4][ClO_4]_2$	1 908(1 877)	е		0.25, -0.58	5
(7) $[RuCl(NO)(bipy)_2][PF_6]_2^d$	1 940(1 925)	е		0.20, -0.60	9
(8) $[FeCl(NO)(pdma)_2][ClO_4]_2$	1 865	е			8

^a As KBr pellets. The figures in parentheses refer to $v(^{15}NO)$. ^b vs. s.c.e. D.c. polarograms were taken in 0.1 mol dm⁻³ tetraethylammonium perchlorate-acetonitrile solution (25 °C). ^c This work. ^d bipy = 2,2'-Bipyridyl. ^e Diamagnetic.

PF₆•H₂O: C, 34.8; H, 3.2; N, 10.1. Found: C, 28.9; H, 3.9; N, 1.7. Calc. for [FeCl(NO)(pdma)₂]PF₆: C, 28.7; H, 3.8; N, 1.7%].

Acknowledgements

We thank Dr. F. Scott Howell, Sophia University, for correcting the manuscript, and Mr. Takehiko Hirota for technical assistance. The present work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- (a) J. H. Swinehart, Coord. Chem. Rev., 1967, 2, 385; (b) F. Bottomley, Acc. Chem. Res., 1978, 11, 158; (c) J. A. McCleverty, Chem. Rev., 1979, 79, 53.
- 2 F. Bottomley and J. R. Crawford, J. Am. Chem. Soc., 1972, 94, 9092.
- 3 S. K. Wolfe, C. Andrade, and J. H. Swinehart, *Inorg. Chem.*, 1974, 13, 2567.

- 4 F. G. Douglas and R. D. Feltham, J. Am. Chem. Soc., 1972, 94, 5254.
- 5 F. Bottomley and M. Mukaida, J. Chem. Soc., Dalton Trans., 1982, 1933.
- 6 J. Enemark and R. D. Feltham, Coord. Chem. Rev., 1974, 13, 339.
- 7 T. Kimura, T. Sakurai, M. Shima, T. Togano, M. Mukaida, and T. Nomura, *Inorg. Chim. Acta*, 1983, **69**, 135.
- 8 W. Silverthorn and R. D. Feltham, Inorg. Chem., 1976, 6, 1662.
- 9 R. W. Callahan and T. J. Meyer, *Inorg. Chem.*, 1977, 16, 574; R. W. Callahan, G. M. Brown, and T. J. Meyer, *J. Am. Chem. Soc.*, 1975, 97, 894.
- 10 J. Masek and E. Maslova, Collect. Czech. Chem. Commun., 1974, 39, 2141.
- 11 T. E. Nappier, R. D. Feltham, J. H. Enemark, A. Kruse, and M. Cooke, Inorg. Chem., 1975, 14, 806.

Received 9th November 1984; Paper 4/1911