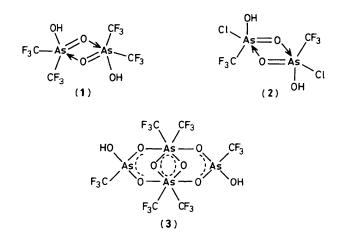
Letters

A disagreement on the explanation of short and long As–O bonds of the $(As-O)_4$ ring in As₄(CF₃)₆O₆(OH)₂ in terms of As^{III}–O and As^V–O bonds


Bohra *et al.*¹ have prepared the compounds $[As(CF_3)_2O(OH)]_2$ (1), $[As(CF_3)O(OH)Cl]_2$ (2), and $As_4(CF_3)_6O_6(OH)_2$ (3), and determined their molecular structures using single-crystal X-ray studies. The four-membered $(As-O)_2$ ring contains an asymmetric As-O-As bridge in (1) and (2) and a symmetric one in (3) while an $(As-O)_4$ ring present in (3) also contains an asymmetric As-O-As bridge. The stoicheiometries of all the three compounds suggest the presence of As^V alone but the short and long As-O bonds of the $(As-O)_4$ ring have been attributed to As^{III}-O and As^V-O bonds respectively. On the other hand, the asymmetric bridge in the $(As-O)_2$ ring present in (1) and (2) has been explained in terms of the 'contribution from an extreme resonance structure in which the short ring As-O bond is replaced by As=O and the long ring As-O bond deleted'.¹ I now attempt to rationalise the variation of As-O bond length in terms of the As^V-O bond order.

All the long ring As-O bonds, except that in compound (1), are equal to the As-O(H) bonds (Table) while the short ring As-O bonds are close to those reported for $Ph_3As=O \cdots H_2O$ (164.4 \pm 7 pm) and Ph₃As= $O \rightarrow HgCl_2(166 \pm 2 \text{ pm}).^2$ This observation suggests the short ring As-O bond order to be between one and two and that of the long ring As-O/As-O(H) bond to be one. The average of all the seven long As-O/As-O(H) bonds is 192.8 pm and those of the four short bonds, 170.3 pm. The arithmetic mean (181.6 pm) of the average long As-O and average short As-O bonds is very close to the observed As-O bond lengths of 183.1 and 183.3 pm in the symmetric $(As-O)_2$ ring of (3). These data can be fully understood if the bonding in compounds (1)—(3) is presented as shown. The presence of the four-co-ordinate arsenic as arsonate anion in (3) is consistent with the appearance of $v_{asym}(AsO_2)$ and $v_{sym}(AsO_2)$ at 828m and 819s cm⁻¹ respectively ^{3,4} which are missing in the spectra of (1) and (2).

The presence of the asymmetric $As=O \rightarrow As$ bridge in the $(As-O)_2$ ring of (1) and (2) may be explained in terms of the property of a doubly bonded oxygen which despite the high electronegativity seeks s-rich orbitals, because of the shortness and better overlap of the double bond, and occupies an equatorial position in a trigonal-bipyramidal structure.⁵ The apical position in (1) and (2) is occupied by the oxygen which is doubly bonded to the adjacent As^V in an equatorial position. The resonance of the type assumed to take place between As=O and As-O which is responsible for the symmetry in the $(As-O)_2$ ring in (3) is not possible in (1) and (2) since the doubly bonded oxygen slie in the same plane perpendicular to the O-As-O axis of the $(As-O)_4$ ring.

Table. Different types of As-O bond lengths (pm) in (1), (2), and (3)

Bond type	(1)	(2)	(3)	Average
As-O(H)	190.6	193.1	191.4	
Long As–O	200.3	193.7	190.1 >	192.8
			190.5	
Short As–O	171.3	171.8	169.3 \	170.3
			168.6 ∫	170.5
Symmetric ring As-O			183.1	183.2
			183.3 ∫	100.2

Finally, the reported ⁶ description of the polymeric structure of AsO_2 in terms of As^{V} and As^{III} would seem plausible due to the apparent presence of As^{IV} and it cannot be considered as a case similar to (3).

Swarn S. Parmar

Department of Chemistry, Guru Nanak Dev University, Amritsar-143 005, India

- 1 R. Bohra, H. W. Roesky, M. Noltemeyer, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 2011.
- 2 G. Ferguson and E. W. Macaulay, J. Chem. Soc. A, 1969, 1.
- 3 H. J. Emeleus, R. N. Haszeldine, and R. C. Paul, J. Chem. Soc., 1954, 881.
- 4 T. J. Bardos, N. Datta-Gupta, and P. Hebborn, J. Med. Chem., 1966, 9, 221.
- 5 J. E. Huheey, 'Inorganic Chemistry,' 3rd edn., Harper and Row, London, 1983, p. 205.
- 6 P. G. Jones, W. Beesk, G. M. Sheldrick, and E. Schwarzmann, Acta Crystallogr., Sect. B, 1980, 36, 439.

Received 9th April 1985; Paper 5/579