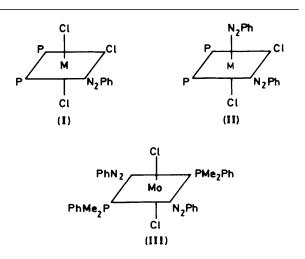
Hapipah Mohd. Ali and G. Jeffery Leigh*

A.F.R.C. Unit of Nitrogen Fixation and School of Molecular Sciences, University of Sussex, Brighton BN1 9RQ

The reaction of $[MCl_4(Ph_2PCH_2CH_2PPh_2)]$ with phenylhydrazine produces the complexes $[MCl_3(N_2Ph)(Ph_2PCH_2CH_2PPh_2)]$ (M = Mo or W). Similar derivatives containing $Et_2PCH_2CH_2PEt_2$ and PMe₂Ph have also been isolated. The structures have been assigned by n.m.r. spectroscopy. An improved synthesis of $[ReCl_2(N_2Ph)(NH_3)(PMe_2Ph)_2]$ is reported. The diazenido-ligand can be quaternised with methyl iodide.

It has been known for some time that diazenido-complexes of transition elements can be synthesised by reaction of an appropriate transition-metal compound with a hydrazine derivative. Examples include the formation of $[Mo(N_2Ph)_2-(S_2CNEt_2)_2]$ from $[MoO_2(S_2CNEt_2)_2]$ and phenylhydrazine,¹ and of $[ReCl_2(N_2Ph)(PMe_2Ph)_3]$ and $[ReCl_2(N_2Ph)(NH_3)-(PMe_2Ph)_3]$ from $[ReCl_3(PMe_2Ph)_3]$ and phenylhydrazine.² The detailed mechanisms, including in particular the fate of the 'excess' of hydrogen atoms, is not known, although it is clear that in the former reaction both $[Mo(N_2Ph)(NHNHPh)-(S_2CNEt_2)_2]$ and aerial dioxygen are involved.¹ We here present some additional information regarding such complexes and their mode of formation.

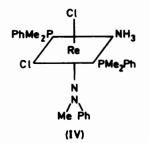
Results and Discussion


The complexes $[MCl_3(N_2Ph)(dppe)] [M = Mo \text{ or } W, dppe = 1,2-bis(diphenylphosphino)ethane] were obtained from the reaction of <math>[MCl_4(dppe)]$ with $(Me_3Si)NHNHPh$ (*ca.* 1:1) in benzene at room temperature. The reaction of $[MCl_4(depe)]$ [depe = 1,2-bis(diethylphosphino)ethane, M = Mo or W] is analogous. The reaction of $[MoCl_4(dppe)]$ with a six-fold excess of phenylhydrazine in ethanol yields $[MoCl_2(N_2Ph)_2-(dppe)]$ as a purple solid, and the analogous reaction of $[MoCl_3(PMe_2Ph)_3]$ generates $[MoCl_2(N_2Ph)_2(PMe_2Ph)_2]$. Reaction of the latter with Na(S₂CNEt₂)-3H₂O gives the known compound $[Mo(N_2Ph)_2(S_2CNEt_2)_2]$.

These diazenido-complexes have a band in the i.r. spectra in the range 1 480–1 530 cm⁻¹ characteristic of v(N=N). The ³¹P- $\{^{1}H\}$ n.m.r. spectra of all the diphosphine complexes display a doublet of doublets (AB pattern) consistent with non-equivalent phosphorus nuclei, the only feasible structures being those of (I) and (II).

The complex $[MoCl_2(N_2Ph)_2(PMe_2Ph)_2]$ shows a singlet in the ³¹P-{¹H} n.m.r. spectrum. In the ¹H n.m.r. spectrum, the methyl groups give rise to one triplet (due to virtual coupling), and this also indicates a plane of symmetry containing the linear P-Mo-P system.³ The structure is shown by (III). The alternative arrangement with *trans* phosphorus should give rise to two triplets.

None of these complexes possesses an N₂Ph group basic enough to react with HBr in tetrahydrofuran (thf), neither do they react with MeI in benzene, even under reflux. They all would be expected to possess a singly bent NNPh structure, but the nitrogen lone pairs are presumably not easily available, either because they are involved in N-N-Ph π bonding or because of the influence of the high-oxidation-state metals.


The fate of the excess of hydrogens in these preparative reactions is not clear. It is likely that initial reaction of the metal halogeno-complexes with the hydrazine derivatives forms a reactive hydrazide(1-) complex. Other workers have shown that $[WCl_4(PMe_2Ph)_2]$ reacts with $(Me_3Si)NHNHPh$ to form

 $[WCl_3H(N_2HPh)(PMe_2Ph)_2]^4$ which loses the hydride hydrogen during slow crystallisation from CH_2Cl_2 , but it is not clear how. In addition, $[WCl_4(py)_2]$ (py = pyridine) reacts with $(Me_3Si)NHNHPh$ to form $[WCl_2(N_2Ph)_2(py)_2]$, but the reaction route has not been clarified.⁴ In the same reaction, $[WCl_3(NHNHPh)(py)_2]$ may also be formed, but it has not been adequately characterised.

The compound [ReCl₂(N₂Ph)(NH₃)(PMe₂Ph)₂] is obtained in high yield (>70%) by reaction of [ReCl₄(PMe₂Ph)₂] with PhNHNH₂ in ethanol. This reaction does not produce any [ReCl₂(N₂Ph)(PMe₂Ph)₃], which always accompanies the formation of the ammine from [ReCl₃(PMe₂Ph)₃].² It is tempting to ascribe the formation of the ammine to a series of intramolecular hydrogen shifts between hydrazide(1-) ligands in an intermediate species containing the grouping Re(NHNHPh)₂. The mechanisms of such shifts are unknown, but aniline was isolated from the reaction mixture and identified by both thin-layer chromatography and gas chromatography. Clearly such hydrogen shifts, whether they are inter- or intramolecular, are common features of the chemistry of hydrazidocomplexes.

It has already been reported that $[ReCl_2(N_2Ph)(NH_3)-(PMe_2Ph)_2]$ reacts with proton acids to generate $[ReCl_2(N_2HPh)(NH_3)(PMe_2Ph)_2]^+$, whereas $[ReCl_2(N_2Ph)(PMe_2Ph)_3]$ does not react with protons.² We have now found that the latter diazenido-complex does not react with MeI, whereas the former reacts with MeI in thf at reflux. The product is $[ReCl_2(N_2MePh)(NH_3)(PMe_2Ph)_2]I$. Its ³¹P-{¹H} n.m.r. spectrum shows a single phosphorus resonance, and the methyl groups appear in the H n.m.r. spectrum as a pair of triplets. This is consistent with equivalent *trans* phosphorus nuclei, but no plane of symmetry containing the P-Re-P axis.³ The structure is that shown by (IV), similar to that of the

phenylhydrazido(2 -)-complex which was determined by X-ray structure analysis.²

Alkylation of the phenyldiazenido-complex presumably is an S_N^2 reaction at the carbon of methyl iodide.⁵ In the ammine complex, the *exo* nitrogen of the phenyldiazenido-group seems basic (it also reacts with acids), presumably due to the presence of the donor ammonia rather than PMe₂Ph. The difference in basicity between the N₂Ph groups in [ReCl₂(N₂Ph)(PMe₂Ph)₃] and [ReCl₂(N₂Ph)(NH₃)(PMe₂Ph)₂] is unlikely to be correlated with the presence of straight or singly bent N₂Ph groups, since the formal electron counts are the same. Consequently, one might expect the NNC(phenyl) angle in both compounds to be between 120 and 150°. The factors affecting basicity and reactivity are probably more subtle than gross geometrical changes.

Experimental

All reactions were carried out under dry dinitrogen. I.r. spectra were recorded in KBr discs using a Perkin-Elmer 577 spectrometer. N.m.r. spectra were recorded using a JEOL FX-90Q spectrometer, with tetramethylsilane and trimethyl phosphite as external standards for ¹H and ³¹P n.m.r. spectra, respectively. Conductivities were obtained using a Portland Electronics conductivity bridge. Melting points were obtained in sealed tubes *in vacuo* and using an Electrochemical melting point apparatus. Analyses were carried out by Mrs. G. Olney (University of Sussex) and Mr. C. Macdonald (A.F.R.C., Unit of Nitrogen Fixation).

The complexes $[MCl_4(dppe)]$ (M = Mo or W),⁶ $[ReCl_4-(PMe_2Ph_2)]$,⁷ $[MoCl_3(PMe_2Ph_3)]$,⁸ $[WCl_4(MeCN)_2]$,⁹ and $(Me_3Si)NHNHPh$,¹⁰ were obtained by literature methods.

[1,2-Bis(diethylphosphino)ethane]tetrachloromolyb-

denum(1v).—To a suspension of $[MoCl_4(thf)_2]^{8'}$ (2.0 g, 0.53 mmol) in tetrahydrofuran (thf) (120 cm³) was added depe (1.2 g, 5.8 mmol). The suspension changed to brick red, in a greenbrown solution. The mixture was reduced to 5 cm³, diethyl ether (30 cm³) added, and the red-brown *solid* filtered off and dried *in vacuo*. Yield: *ca*. 65% (Found: C, 28.0; H, 5.3. C₁₀H₂₄Cl₄MoP₂ requires C, 27.0; H, 5.4%).

Since this complex and the related tungsten material (see below) were required only as intermediates, they were not further purified.

[1,2-Bis(diethylphosphino)ethane]tetrachlorotungsten(IV)-

Acetonitrile (1/1).—A mixture of $[WCl_4(MeCN)_2]$ (0.60 g, 1.47 mmol) and depe (0.5 g, 2.4 mmol) in toluene (20 cm³) was heated under reflux for 1.5 h, yielding a brown solution and suspension. The suspension was filtered off and the residue washed with diethyl ether (30 cm³) and dried *in vacuo*. Yield: *ca*. 75% (Found:

Table. Analytical and physical data for the complexes								
		v	eld —	Analysis	s*	I		
Complex	Colour	M.p./°C (н	N	I.r./cm ⁻¹ (KBr) ^b	Solvent	${}^{1}H(\delta)^{c}$ ${}^{31}P-\{{}^{1}H\}/p.p.m.^{d}$
[WCl ₃ (N ₂ Ph)(dppe)]	Brown	162 5	0 48.7 (48.4	3.1 (3.70)	4.3 (3.55)	1 494s, 1 310m	C ₆ D ₆	8.60-6.50 $-101.48, -101.83$ (m, 25 H, Ph)(12.7) $4.50-3.10$ $-129.63, -129.68$ (m, 4 H, CH ₂)(12.7)
[MoCl ₃ (N ₂ Ph)(dppe)]	Red- purple	169	0 55.6 (54.5	4.6) (4.75)	4.4 (3.95)	1 530br,s	C ₆ D ₆	$\begin{array}{cccc} (11, (12, 7)) & (12, 7) \\ 8.49-6.69 & -102.32 & -102.53 \\ (m, 25 \text{ H}, \text{ Ph}) & (7.6) \\ 4.31-1.50 & -124.87 & -125.08 \\ (m, 4 \text{ H}, \text{ CH}_2) & (7.6) \end{array}$
[WCl ₃ (N ₂ Ph)(depe)]	Brown	94	5 33.6 (33.7	5.2) (5.65)		1 480s, 1 310s	C ₆ D ₆	9.00-7.30 $-94.89, -95.38(m, 5 H, Ph) (17.8)3.0-1.5$ $-110.44, -110.93(br, m, 24 H, CH3 + CH2) (17.8)$
[MoCl ₃ (N ₂ Ph)(depe)]	Red- brown	79 3	5 40.9 (41.4	6.3) (5.65)		1 520br,s	C ₆ D ₆	7.40-6.60 $-95.73, -96.08$ (m, 5 H, Ph) (12.7) 2.8-0.4 $-115.20, -115.55$ (br, m, 24 H, CH ₁ + CH ₂) (13.0)
[MoCl ₂ (N ₂ Ph) ₂ (dppe)]	Purple	185 4	0 58.2 (58.9	4.6) (4.40)		1 515br,s	C ₆ D ₆	$\begin{array}{c} \textbf{(a)} $
$[MoCl_2(N_2Ph)_2-(PMe_2Ph)_2]$	Purple	185 0	0 51.3 (51.5	5.2) (4.95)	8.9 (8.60)	1 515br,s, 1 470s	C ₆ D ₆	(12-7.12) (m, 15 H, Ph) 2.40-2.30 -144.34 (t, 12 H, CH ₃)
[ReCl ₂ (N ₂ MePh)(NH ₃)- (PMe ₂ Ph) ₂]I ^e	Pink	197 4	0 34.6 (34.6	4.2) (4.5)	5.3 (5.25)	1 332m	CH ₂ Cl ₂	7.30–7.10 (m, 15 H, Ph) -171.92 5.24 (s, br, 3 H, NH ₃) -171.92 3.58 (s, br, 3 H, NMe) 2.03–1.75 (d of t, 12 H, Me)

^a Calculated values in parentheses. ^b s = Strong, m = medium, br = broad; region of nitrogen-nitrogen stretching frequency. ^c m = Multiplet, s = singlet, d = doublet, t = triplet, br = broad. ^d All signals singlets, J in parentheses in Hz, shifts with respect to external P(OMe)₃. ^e $\Lambda_{M} = 83$ ohm⁻¹ cm² mol⁻¹ in solution in MeNO₂.

C, 26.4; H, 4.7; N, 2.7. $C_{12}H_{27}Cl_4NP_2W$ requires C, 25.1; H, 4.7; N, 2.4%).

[1,2-Bis(diphenylphosphino)ethane]trichloro(phenyl-

diazenido)molybdenum(iv).—To [MoCl₄(dppe)] (0,64 g, 1 mmol) in benzene (30 cm³) was added (Me₃SiNHNHPh (0.2 g, 1.1 mmol) and the solution stirred at 20 °C for 20 h. The resultant red-purple solution was reduced *in vacuo* to 2 cm³ and diethyl ether (20 cm³) added to precipitate the *product* as a red-purple solid. The analysis in the Table could not be improved by crystallisation. Indeed, it seems likely that the mono(diazenido)-complex disproportionates in some way in solution to yield the bis(diazenido)-complex. This was not pursued.

Similar procedures were used to prepare [1,2-bis(diphenylphosphino)ethane]trichloro(phenyldiazenido)tungsten(1v). The same method was also used to prepare [1,2-bis(diethylphosphino)ethane]trichloro(phenyldiazenido)-molybdenum(1v) and -tungsten(1v).

[1,2-Bis(diphenylphosphino)ethane]dichlorobis(phenyldiazenido)-molybdenum(1v).—To [MoCl₄(dppe)] (0.95 g, 1.5 mmol) dissolved in ethanol (30 cm^3) was added phenylhydrazine (1.05 cm³, 10.7 mmol) and the mixture heated to 55 °C for 2 h. The red-purple precipitate was filtered off, and recrystallised from benzene-diethyl ether as purple crystals.

Dichlorobis(dimethylphenylphosphine)bis(phenyldiazenido)molybdenum(iv).—To a solution of $[MoCl_3(PMe_2Ph)_3]$ (0.80 g, 1.3 mmol) in ethanol (60 cm³) was added phenylhydrazine (0.83 cm³, 8.4 mmol) and the mixture heated to 75 °C for 0.75 h, during which time it changed from a yellow suspension to a deep red solution. The solvent was removed *in vacuo* yielding an oil. This was dissolved in methanol (30 cm³) and stirred to yield a purple solid which was recrystallised from benzenepentane as deep purple *crystals*.

Bis(NN-diethyldithiocarbamato)bis(phenyldiazenido)molybdenum(1v).¹—To a solution of $[MoCl_2(N_2Ph)_2(PMe_2Ph)_2]$ (0.03 g, 0.04 mmol) in methanol (30 cm³) was added Na(S₂CNEt₂)·3H₂O (0.024 g, 0.11 mmol) and the mixture stirred at 20 °C for 3 d. Reduction in volume yielded black crystals (20%), m.p. 99 °C (lit.,¹ 103 °C) (Found: C, 43.8; H, 5.5; N, 13.3. C₂₂H₃₀MoN₆S₄ requires C, 43.8; H, 5.00; N, 13.9%). Amminedichlorobis(dimethylphenylphosphine)(phenyldiazenido)rhenium(III).²—To a solution of $[ReCl_4(PMe_2Ph)_2]$ (0.23 g, 0.38 mmol) in ethanol (50 cm³) was added phenylhydrazine (0.24 cm³, 2.3 mmol). The mixture was heated to 60 °C for 0.5 h, and the brown solution reduced *in vacuo* to 10 cm³. Addition of hexane (30 cm³) produced a yellow solid, which was filtered off and dried *in vacuo*, yield 70%, m.p. 160—164 °C (decomp.) [lit.,² 164—171 °C (decomp.)] (Found: C, 34.6; H, 4.3; N, 5.3. C₂₂H₃₀Cl₂N₃P₂Re requires C, 34.6; H, 4.15; N, 5.25%).

Amminedichlorobis(dimethylphenylphosphine)[N,N-methylphenylhydrazido(2-)-N']rhenium(V) Iodide.—A mixture of [ReCl₂(N₂Ph)(NH₃)(PMe₂Ph)₃] (0.50 g, 0.63 mmol) and methyl iodide (2 cm³, 32 mmol) in thf (100 cm³) was heated under reflux for 5 h. The volume was reduced to *ca*. 5 cm³ *in vacuo*, and pentane (5 cm³) added, giving a pink-brown solid, which was recrystallised from thf-pentane.

Acknowledgements

We acknowledge financial assistance from the University of Malaysia (to H. M. A.).

References

- 1 M. W. Bishop, G. Butler, J. Chatt, J. R. Dilworth, and G. J. Leigh, J. Chem. Soc., Dalton Trans., 1979, 1843.
- 2 P. G. Douglas, A. R. Galbraith, and B. L. Shaw, Transition Met. Chem., 1975/76, 1, 17.
- 3 J. M. Jenkins and B. L. Shaw, J. Chem. Soc. A, 1966, 770.
- 4 J. Chatt, M. E. Fakley, P. B. Hitchcock, R. L. Richards, and N. Tûyet Luong-Thi, J. Chem. Soc., Dalton Trans., 1982, 345.
- 5 J. Chatt, W. Hussain, G. J. Leigh, H. Neukomm, C. J. Pickett, and D. A. Rankin, J. Chem. Soc., Chem. Commun., 1980, 1024.
- 6 P. M. Boorman, N. N. Greenwood, and M. A. Hilden, J. Chem. Soc. A, 1968, 2466; A. V. Butcher and J. Chatt, *ibid.*, 1970, 2652.
- 7 J. Chatt, G. J. Leigh, D. M. P. Mingos, and R. J. Paske, J. Chem. Soc. A, 1968, 2636.
- 8 M. W. Anker, J. Chatt, G. J. Leigh, and A. G. Wedd, J. Chem. Soc., Dalton Trans., 1975, 2639.
- 9 E. A. Allen, B. J. Brisdon, and G. W. A. Fowles, J. Chem. Soc., 1963, 4649.
- 10 U. Wannagat and W. Liehr, Angew. Chem., 1957, 69, 783.

Received 30th October 1984; Paper 4/1852