Crown-shaped Tetrametallic Imidoyl Complexes of Palladium. X-Ray Crystal Structure of $\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{MeCO}_{2}\right)\right\}_{2}\right]^{*}$

Rafael Uson, Juan Fornies, Pablo Espinet, Elena Lalinde, and Augustin Garcia
Departamento de Química Inorganica, Universidad de Zaragoza, 50009 Zaragoza, Spain
Peter G. Jones, Karen Meyer-Base, and George M. Sheldrick
Institut fur Anorganische Chemie der Universitat, Tammannstrasse 4, D-3400 Gottingen, Federal Republic of Germany

The complexes $\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right\}_{2}\right]\left(\mu-\mathrm{X}^{1}\right)\left(\mu-\mathrm{X}^{2}\right)\right\}_{n}\right]\left(\mathrm{R}^{1}=\mathrm{Me}\right.$ or p-tolyl; $\left.\mathrm{X}^{1}=\mathrm{X}^{2}=\mathrm{Cl}\right)$ and their derivatives ($\mathrm{X}^{1}=\mathrm{Cl}, \mathrm{X}^{2}=\mathrm{MeCO}_{2}$ or $\mathrm{CF}_{3} \mathrm{CO}_{2} ; \mathrm{X}^{1}=\mathrm{X}^{2}=\mathrm{MeCO}_{2}$ or $\mathrm{CF}_{3} \mathrm{CO}_{2}$), obtained by metathetical reactions with the corresponding silver salts, are shown to be tetrametallic ($n=2$) by molecularweight determinations. Their structures are discussed on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ n.m.r. data. The crystal structure of the title complex has been solved by X-ray diffraction methods [space group $P 2_{1} / n, a=14.380(4), b=19.980(4), c=15.976$ (4) $\AA, \beta=103.51(3)^{\circ}, Z=4, R^{\prime}=0.046$ for 5428 unique observed reflections]. The tetrametallic molecule is crown-shaped. The bond lengths at palladium reflect the strong trans influence of the imidoyl- C atom; the $\mathrm{Pd}-\mathrm{Cl}$ bonds trans to C are amongst the longest known.

In previous papers ${ }^{1-3}$ we have described several types of dimeric imidoyl-bridged complexes that contain the moiety $\mathrm{Pd}_{2}\left\{\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right\}_{2}\left(\mathrm{R}^{1}=\mathrm{Me}\right.$ or p-tolyl). The nature of the imidoyl bridges is such that the dipalladacycle displays a boat conformation (I), and the dihedral angle θ between the two square planes around the palladium atoms is $c a .70-90^{\circ}$. The precursors of these dimeric complexes have chloro-bridges in addition to the imidoyl double bridge, and we have formulated ${ }^{1.2}$ them previously as the polynuclear complexes $\left.{ }^{\prime}\left[\left\{\mathrm{Pd}_{2}(\mu-\mathrm{Cl})_{2}\left[\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right]_{2}\right\}_{n}\right]\right]^{\prime}\left(\mathbf{1 a}, \mathrm{R}^{1}=\mathrm{Me} ; \mathbf{1 b}, \mathbf{R}^{1}=p-\right.$ tolyl).

Chloro-bridges usually lead in palladium chemistry to a planar disposition of the $\mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}$ moiety, as observed in the simple chain structure of $\alpha-\mathrm{PdCl}_{2}{ }^{4}$ and in many dimeric complexes, but a few compounds contain non-planar chlorobridges, and the dihedral angle φ defined by the two square planes around both palladium atoms, see (II), ranges from 150^{5} to $121^{\circ} .{ }^{6}$ Regardless of the geometry of the chloro-bridges, complexes (1a) and (1b) could form as polymeric angled ribbons; there is, however, also the possibility of forming a closed, crown-shaped structure.

Although the low solubility of the first complex prepared, (1a), precluded structural investigations, the preparation of the more soluble complex (1b) and other soluble derivatives has enabled us to elucidate the structure of these complexes.

Results and Discussion

Complex (1a) ${ }^{1}$ was too insoluble to carry out molecular-weight determinations but the more soluble (1b) ${ }^{2}$ displayed a molecular weight of 1795 in CHCl_{3}, Table 1, close to the value (1704.2) calculated for $n=2$, indicating that the molecule has a closed structure containing four palladium atoms linked by imidoyl and chloro-bridges. Since the reaction with neutral

[^0]
ligands $L^{1,2}$ leads to dimeric complexes $\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\right.\right.$ $\left.\mathrm{NR}^{1}\right\}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}$] containing an imidoyl double bridge, it seems reasonable to postulate the closed structure as consisting of two units of (I) linked together by chloro-bridges, discounting structures where two neighbouring palladium atoms are bridged by one imidoyl and one chloro-group. This leads to structures (III) and (IV) ($\left.\mathrm{X}^{1}=\mathrm{X}^{2}=\mathrm{X}^{3}=\mathrm{X}^{4}=\mathrm{Cl}\right)$, which are both consistent with the observation of only one type of $\mathrm{C}_{6} \mathrm{~F}_{5}$ and R^{1} group in the ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ n.m.r. spectra respectively (Tables 2 and 3). We will show later that (IV) can be ruled out.

At this point it seemed worthwhile to replace the chloroligands by other angled bridging groups; $\mathrm{MeCO}_{2}^{-}, \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$, PhS^{-}, and $\mathrm{Ph}_{2} \mathrm{P}^{-}$were chosen for this study. The replacement of Cl^{-}by $\mathrm{Ph}_{2} \mathrm{P}^{-}$led to unexpected products and has been reported elsewhere; ${ }^{7}$ the other reactions are discussed below.

We had previously ${ }^{1}$ carried out the exchange of Cl^{-}for $\mathrm{MeCO}_{2}{ }^{-}$in complex (1a) but we cursorily formulated the resulting complex as a dimer. However, molecular-weight determinations of this and the other carboxylate products described here $[(2 a),(2 b),(3 a)$, and (3b)] showed that they too possess a closed structure (III) or (IV). In the course of the exchange reactions we observed that the red colour of the starting chloro-complex [(1a) or (1b)] disappeared before all the silver carboxylate had reacted; the reaction could be conducted stepwise to obtain either the half-substituted or the fully-exchanged complex [equation (1)].

$$
\begin{aligned}
& {\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right\}_{2}\right](\mu-\mathrm{Cl})_{2}\right\}_{2}\right] \xrightarrow[-2 \mathrm{AgCl}]{\left.2 \mathrm{~A}_{\mathrm{B}\left(\mathrm{O}_{2} \mathrm{CR}\right.}{ }^{2}\right)}} \\
& \text { (1a), (1b) } \\
& {\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{R}^{2} \mathrm{CO}_{2}\right)\right\}_{2}\right] \xrightarrow[-2 \mathrm{AgCl}]{2 \mathrm{Ag}\left(\mathrm{O}_{2} \mathrm{CR}^{2}\right)}} \\
& \text { (4a), (4b), (5a), (5b) } \\
& {\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right\}_{2}\right]\left(\mu-\mathrm{R}^{2} \mathrm{CO}_{2}\right)_{2}\right\}_{2}\right]} \\
& \text { (2a), (2b), (3a), (3b) }
\end{aligned}
$$

Table 1. Analytical results, molecular weights, yields, and colours of the complexes

Complex

(la) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}_{\}_{2}}\right](\mu-\mathrm{Cl})_{2}\right\}_{2}\right]\right.$
(1b) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right\}_{2}\right](\mu-\mathrm{Cl})_{2}\right\}_{2}\right]$
(2a) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right]\left(\mu-\mathrm{MeCO}_{2}\right)_{2}\right\}_{2}\right]$
(2b) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right\}_{2}\right]\left(\mu-\mathrm{MeCO}_{2}\right)_{2}\right\}_{2}\right]$
(3a) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right]\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right\}_{2}\right]$
(3b) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right\}_{2}\right]\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}\right\}_{2}\right]$
(4a) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{MeCO}_{2}\right)\right\}_{2}\right]$
(4b) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{MeCO}_{2}\right)\right\}_{2}\right]$
(5a) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\right\}_{2}\right]$
(5b) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\right\}_{2}\right]$
(6a) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right](\mu-\mathrm{Cl})(\mu-\mathrm{SPh})\right\}_{n}\right]$
(6b) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right\}_{2}\right](\mu-\mathrm{Cl})(\mu-\mathrm{SPh})\right\}_{n}\right]$
(7a) $\quad\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right](\mu-\mathrm{SPh})_{2}\right\}_{2}\right]$
${ }^{a}$ Caiculated values in parentheses. ${ }^{b}$ In CHCl_{3}.

Table 2. ${ }^{19} \mathrm{~F}$ N.m.r. resonances $\left[\delta\right.$, reference CFCl_{3}, in CDCl_{3}; (1a) in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$

Complex	CF_{3}	\mathbf{F}^{2}	$\mathbf{F}^{\mathbf{6}}$	\mathbf{F}^{4}	$\mathrm{~F}^{\mathbf{3}}$	F^{5}
(1a)	-	-136.2	-141.6	-152.7	-161.0	-161.4
(1b)	-	-133.4	-141.3	-152.4	-160.4	-161.7
(2a)	-	-142.2	-143.6	-155.4	-161.4	-164.2
(2b)	-	-136.1	-142.3	-155.6	-162.6	-165.3
(3a)	-76.2	-142.4	-143.6	-152.2	-160.4	-161.6
(3b)	-76.0	-136.9	-142.5	-152.6	-160.9	-162.5
(4a)	-	$-137.0,-139.6$	$-143.5,-143.9$	$-153.7,-153.9$	-161.2^{a}	$a,-163.5$
(4b)	-	$-132.3,-136.3$	-141.1^{b}	$-153.4,-154.4$	-162.0^{a}	$a,-164.3$
(5a)	-76.4	$-137.2,-139.5$	$-143.2,-143.8$	$-152.2,-152.3$	-160.7^{b}	$-161.0,-162.1$
(5b)	-76.2	$-132.9,-136.4$	$-140.7,-141.8$	$-152.1,-153.0$	-161.5^{b}	$-161.9,-162.4$

${ }^{a}$ Overlap of the signals of the two inequivalent F^{3} and one of the two F^{5} occurs. ${ }^{b}$ Overlap of the signals of the two inequivalent F^{3} (or F^{6}) occurs.

Table 3. ${ }^{1} \mathrm{H}$ N.m.r. resonances [δ, reference SiMe_{4}, in CDCl_{3}; (1a) in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$] and some i.r.* absorptions (cm^{-1})

Complex	Me (imid)	$\mathrm{C}_{6} \mathrm{H}_{4}$	Me (acetate)	$v(\mathrm{C}=\mathrm{O})$ and $v(\mathrm{C}=\mathrm{N})$
(1a)	3.46 (s)	-	-	1608,1596
(1b)	2.27 (s, 3 H)	7.03 (s, 4 H)	--	1578,1560
(2a)	3.30 (s, 3 H)	-	1.73 (s, 3 H$)$	1600,1570
(2b)	2.24 (s, 3 H)	6.5-7.7 (m, 4 H)	1.32 (s, 3 H$)$	1600,1560
(3a)	3.34 (s, 3 H$)$	- ${ }^{\text {- }}$	-	1700,1600
(3b)	2.27 (s, 3 H)	6.8-7.2 (m, 4 H)	-	1680, 1560
(4a)	3.44 (s, 3 H$), 3.31$ (s, 3 H)	-	1.85 (s, 3 H$)$	1610, 1570
(4b)	2.30 (s, 3 H$), 2.28$ (s, 3 H)	7.05 (s, 8 H)	1.79 (s, 3 H)	1600,1575
(5a)	3.45 (s, 3 H$), 3.36$ (s, 3 H$)$	--	-	1665, 1605
(5b)	2.30 (s, 3 H), 2.27 (s, 3 H)	7.05 (s, 8 H)	-	$1650,1605,1580,1560$

${ }^{*}$ For all the complexes bands are observed at ca. $1650,1515,1495,1130,1020,990$, and $950 \mathrm{~cm}^{-1}$; in addition, for $\mathbf{R}^{1}=$ Me two bands near 830 and $820 \mathrm{~cm}^{-1}$ and for $\mathrm{R}^{1}=p$-tolyl one band near $890 \mathrm{~cm}^{-1}$ are detected.

The chloro-carboxylate complexes [(4a), (4b), (5a), and (5b)] also have structure (III) or (IV), based on their molecular weights. For (III) and (IV), three and four stereoisomers respectively [plus three enantiomers for (III)] are possible (see

Table 4), namely: one containing one chloro double-bridge and one carboxylato double-bridge; and two (three) containing mixed chloro-carboxylato double bridges, with the two identical groups either mutually cis or mutually trans relative to

Table 4. Number of non-equivalent groups (n.m.r. data) $\left(R^{2}=\mathrm{Me}\right.$ or CF_{3})

Isomer	Structure (III)	Structure (IV)
$X^{1}=X^{2}=X^{3}=X^{4}=\mathrm{Cl}^{2}$	$1 \mathrm{C}_{6} \mathrm{~F}_{5}, 1 \mathrm{R}^{1}$	$1 \mathrm{C}_{6} \mathrm{~F}_{5}, 1 \mathrm{R}^{1}$
$\mathrm{X}^{1}=\mathrm{X}^{2}=\mathrm{X}^{3}=\mathrm{X}^{4}=\mathrm{R}^{2} \mathrm{CO}_{2}$	$1 \mathrm{C}_{6} \mathrm{~F}_{5}, 1 \mathrm{R}^{1}, 1 \mathrm{R}^{2} \mathrm{CO}_{2}$	$1 \mathrm{C}_{6} \mathrm{~F}_{5}, 1 \mathrm{R}^{1}, 2 \mathrm{R}^{2} \mathrm{CO}_{2}$
$\mathrm{X}^{1}=\mathrm{X}^{2}=\mathrm{Cl} ; \mathrm{X}^{3}=\mathrm{X}^{4}=\mathrm{R}^{2} \mathrm{CO}_{2}(\mathrm{~A})$	$2 \mathrm{C}_{6} \mathrm{~F}_{5}, 2 \mathrm{R}^{1}, 1 \mathrm{R}^{2} \mathrm{CO}_{2}$	$2 \mathrm{C}_{6} \mathrm{~F}_{5}, 2 \mathrm{R}^{1}, 2 \mathrm{R}^{2} \mathrm{CO}_{2}$
$\mathrm{X}^{1}=\mathrm{X}^{4}=\mathrm{Cl} ; \mathrm{X}^{2}=\mathrm{X}^{3}=\mathrm{R}^{2} \mathrm{CO}_{2}(\mathbf{B})$	$2 \mathrm{C}_{6} \mathrm{~F}_{5}, 2 \mathrm{R}^{1}, 1 \mathrm{R}^{2} \mathrm{CO}_{2}$	$1 \mathrm{C}_{6} \mathrm{~F}_{5}, 1 \mathrm{R}^{1}, 1 \mathrm{R}^{2} \mathrm{CO}_{2}$
$\mathrm{X}^{1}=\mathrm{X}^{3}=\mathrm{Cl} ; \mathrm{X}^{2}=\mathrm{X}^{4}=\mathrm{R}^{2} \mathrm{CO}_{2}(\mathrm{C})$	$2 \mathrm{C}_{6} \mathrm{~F}_{5}, 2 \mathrm{R}^{1}, 1 \mathrm{R}^{2} \mathrm{CO}_{2}$	$2 \mathrm{C}_{6} \mathrm{~F}_{5}, 2 \mathrm{R}^{1}, 2 \mathrm{R}^{2} \mathrm{CO}_{2}$
$\mathrm{X}^{2}=\mathrm{X}^{3}=\mathrm{Cl} ; \mathrm{X}^{1}=\mathrm{X}^{4}=\mathrm{R}^{2} \mathrm{CO}_{2}(\mathrm{D})$		$1 \mathrm{C}_{6} \mathrm{~F}_{5}, 1 \mathrm{R}^{1}, 1 \mathrm{R}^{2} \mathrm{CO}_{2}$

(III)

(IV)
the plane containing the four palladium atoms. There are two different trans isomers $[(\mathbf{B})$ and (D)] of (IV). The observation in the ${ }^{19} \mathrm{~F}$ spectra of two types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ and R^{1} groups and only one type of $\mathrm{R}^{2} \mathrm{CO}_{2}$ group is consistent (see Table 4) with any of the three isomers for structure (III) but with none of the isomers for structure (IV). Thus, structure (IV) can be ruled out.
Since the three possible isomers of structure (III) are indistinguishable by i.r. or n.m.r. means, we tried to distinguish them on the basis of reactivity. Thus, it seems reasonable that, for isomer (A) where $\mathrm{X}^{1}=\mathrm{X}^{2}=\mathrm{Cl}$, there would be a chance of 'cutting' the molecule across the chloro-bridges in order to obtain a tetrametallic open structure. We attempted this by treating the chloro-carboxylate closed complexes with a neutral ligand ($\mathrm{Pd}: \mathrm{L}=2: 1$, in order selectively to cleave the chlorobridges) or with $\mathrm{Tl}(\mathrm{acac})$ (acac $=$ acetylacetonate) [$\mathrm{Pd}: \mathrm{Tl}-$ (acac) $=2: 1$, in order to substitute the chloro-bridges by two chelating acac groups] but we obtained in each case mixtures of the corresponding carboxylate tetramer and $\left[\mathrm{Pd}_{2}\{\mu\right.$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right\}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}\right] \quad\left(\mathrm{L}=\right.$ pyridine or PPh_{3}) or, respectively, $\quad\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NR}^{1}\right\}_{2}(\mathrm{acac})_{2}\right]$, previously reported ${ }^{1,2}$ [equations (2) and (3)].

Thus, the attempted selective cleavage of bridges leads to rearrangement, a result which can be easily understood for
isomers (B) and (C) but in no way rules out isomer (A). In order to elucidate this point, an X-ray diffraction study of complex $\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{MeCO}_{2}\right)\right\}_{2}\right](4 \mathrm{a})$ was carried out, which revealed that its structure corresponded to that of isomer (C).

The crown-shaped nature of (4a) is shown in the Figure. All the palladium atoms display the usual square-planar geometry [absolute deviations from ligand least-squares planes are 0.03 , $0.04,0.03,0.04 \AA$ for $\operatorname{Pd}(1)-\operatorname{Pd}(4)$ respectively]. The angles θ [see (I)] between neighbouring ligand planes are $\mathrm{Pd}(1)-\mathrm{Pd}(3)$ 87, $\mathrm{Pd}(2)-\mathrm{Pd}(3) 92, \mathrm{Pd}(1)-\mathrm{Pd}(4) 91$, and $\mathrm{Pd}(2)-\mathrm{Pd}(4) 88^{\circ}$; cf. 77° in $\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2} \mathrm{Cl}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]^{1}$ and 69° in $\left[\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) \mathrm{Pd}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}_{2} \mathrm{PdCl}_{2}\right]^{3}\right.$.

There are two types of metal co-ordination: $\mathrm{Pd}(1)$ and $\mathrm{Pd}(2)$ with acetate-O trans to imidoyl-C, imidoyl-N trans to Cl ; and $\mathrm{Pd}(3)$ and $\mathrm{Pd}(4)$ with O trans to N, C trans to Cl . This is reflected in the pattern of bond lengths; $\mathrm{Pd}(3)-\mathrm{Cl}(2)$ and $\mathrm{Pd}(4)-\mathrm{Cl}(1)$ are, at $2.423(3), 2.429(3) \AA$ respectively, amongst the longest $\mathrm{Pd}-\mathrm{Cl}$ bonds known and show the strong trans influence of the imidoyl-C atom even more markedly than the other systems we have studied [$\mathrm{Pd}-\mathrm{Cl} 2.376(2) ;{ }^{3}$ 2.373(2), 2.377(2) $\left.\AA^{1}\right]$. Consistent with this observation are the short $\operatorname{Pd}(3)-\mathrm{C}(37)$ and $\mathrm{Pd}(4)-\mathrm{C}(47)$ bonds [1.955(9), 1.953(9); cf.

$$
\begin{align*}
& 2\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-C\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=N R^{\prime}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-R^{2} \mathrm{CO}_{2}\right)\right\}_{2}\right]+4 L \longrightarrow {\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=N R^{\prime}\right\}_{2}\right]\left(\mu-R^{2} \mathrm{CO}_{2}\right)_{2}\right\}_{2}\right] } \\
&+ \\
& 2\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=N R^{\prime}\right\}_{2} \mathrm{Cl}_{2} L_{2}\right] \tag{2}
\end{align*}
$$

$\left.2\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{ClC}_{6} \mathrm{~F}_{5}\right)=N R^{\prime}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-R^{2} \mathrm{CO}_{2}\right)\right\}_{2}\right]+4 \mathrm{Tl}(\mathrm{aCaC}) \longrightarrow\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=N R^{\prime}\right\}_{2}\right]\left(\mu-R^{2} \mathrm{CO}_{2}\right)_{2}\right\}_{2}\right]$
$+$

2

Figure. Two approximately perpendicular views of the molecule of $\left[\left\{\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right](\mu-\mathrm{Cl})\left(\mu-\mathrm{MeCO}_{2}\right)\right\}_{2}\right]$ (4a), showing the atom numbering scheme of the Pd co-ordination spheres (H atoms omitted; radii arbitrary)

Table 5. Atomic co-ordinates ($\times 10^{4}$) for (4a)

Atom	X/a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
Pd(1)	2 993(1)	$3088(1)$	2331 (1)	C(2)	3 869(7)	$1404(4)$	$4129(5)$
Pd(2)	-42(1)	3 154(1)	2740 (1)	C(3)	-525(5)	$2002(3)$	$1455(5)$
Pd(3)	$2128(1)$	3 196(1)	3 983(1)	C(4)	-1092(7)	$1378(4)$	1 154(5)
Pd(4)	838(1)	$3028(1)$	$1099(1)$	C(11)	3 238(5)	$4382(4)$	$1527(5)$
$\mathrm{Cl}(1)$	-413(1)	3 724(1)	$1433(1)$	C(12)	3 216(6)	4 991(4)	1916 (5)
$\mathrm{Cl}(2)$	3 375(1)	$3804(1)$	3 516(1)	C(13)	3 921(7)	$5459(4)$	$1936(5)$
$\mathrm{O}(1)$	$2935(4)$	$2352(3)$	4250 (3)	C(14)	4 669(6)	$5336(4)$	1 573(6)
$\mathrm{O}(2)$	3 503(4)	2 248(3)	3 074(3)	C(15)	4 694(6)	4 724(5)	$1170(6)$
$\mathrm{O}(3)$	-630(4)	2 267(2)	$2145(3)$	C(16)	4 001(6)	$4258(4)$	$1160(5)$
$\mathrm{O}(4)$	23(4)	$2195(2)$	989(3)	C(17)	2 549(5)	3830 (3)	$1551(4)$
N(1)	$1704(4)$	3820 (3)	1 074(3)	C(18)	1340 (6)	$4358(4)$	442(5)
N(2)	$1276(4)$	$4003(3)$	$3848(3)$	C(21)	-257(5)	4 549(3)	3 217(4)
N(3)	275(4)	2 677(3)	3 894(3)	C(22)	-226(6)	5 054(4)	2 650(5)
N(4)	2 686(5)	2 467(3)	$1304(4)$	C(23)	-965(6)	$5489(4)$	2363 (5)
F(12)	2 492(4)	5140 (2)	2 270(3)	C(24)	-1773(6)	$5422(4)$	2 667(5)
F(13)	$3862(2)$	$6057(3)$	2 296(3)	C(25)	- 1 828(6)	4 951(4)	3 267(5)
F(14)	$5347(4)$	$5787(3)$	$1581(4)$	C(26)	-1075(6)	4 514(3)	3 524(5)
F(15)	5 427(4)	4 596(3)	790(4)	C(27)	428(5)	3 973(3)	3 361(4)
F(16)	$4066(4)$	3 674(3)	762(4)	C(28)	$1638(6)$	4 627(4)	$4318(5)$
F(22)	556(4)	$5119(2)$	$2330(3)$	C(31)	$1414(6)$	$2362(4)$	5 201(4)
F(23)	-906(4)	$5965(2)$	1 798(4)	C(32)	$1702(6)$	1 696(4)	5 309(5)
F(24)	- 2 524(4)	$5831(3)$	$2381(4)$	C(33)	$2077(6)$	$1423(4)$	$6091(5)$
F(25)	-2 619(4)	4 887(2)	3 575(4)	C(34)	2 188(6)	$1792(4)$	$6814(5)$
F(26)	-1160(3)	4 035(2)	4 102(3)	C(35)	$1923(6)$	$2451(4)$	$6760(5)$
F(32)	$1593(4)$	1310 (2)	4 607(3)	C(36)	$1539(6)$	$2731(4)$	$5967(5)$
F(33)	$2354(4)$	771(2)	$6157(3)$	C(37)	$1121(5)$	2700 (3)	$4351(4)$
F(34)	2 543(4)	1526 (3)	7 595(3)	C(38)	-521(6)	$2318(4)$	$4137(5)$
F(35)	2 019(4)	$2822(3)$	7 475(3)	C(41)	$1509(6)$	$1951(3)$	135(4)
F(36)	$1278(4)$	3 375(2)	5 918(3)	C(42)	1 168(6)	2141 (4)	-709(5)
F(42)	$1219(4)$	$2797(2)$	-902(3)	C(43)	790(6)	$1709(5)$	-1 373(5)
F(43)	486(4)	$1917(3)$	-2179(3)	C(44)	760(6)	$1043(4)$	-1157(5)
$\mathrm{F}(44)$	397(4)	603(3)	-1798(4)	C(45)	$1059(7)$	814(4)	-337(6)
F(45)	$1006(4)$	172(2)	-164(4)	C(46)	$1441(6)$	$1272(4)$	295(5)
F(46)	$1743(4)$	$1048(2)$	$1101(3)$	C(47)	$1835(6)$	2 454(4)	843(4)
C(1)	3 394(5)	$2056(4)$	3 782(5)	C(48)	$3455(6)$	$2028(4)$	$1163(5)$

$\left.1.960(5), 1.994(6) ;{ }^{3} 1.990(6), 1.982(5) \AA^{1}\right]$. Similarly, the $\mathrm{Pd}-\mathrm{O}$ bond lengths at $\mathrm{Pd}(1)$ and $\mathrm{Pd}(2)$ (trans to C) are appreciably longer than those at $\mathrm{Pd}(3)$ and $\mathrm{Pd}(4)$ (trans to N).

Finally, the exchange reactions of Cl^{-}by PhS^{-}were disappointing. Although the reactions could be conducted to give orange solids with analyses corresponding well to complexes (6a), (6b), and (7a), neither their molecular-weight data nor their ${ }^{19} \mathrm{~F}$ n.m.r. spectra were consistent with structure (III). The ${ }^{19} \mathrm{~F}$ n.m.r. spectra showed many signals of different
intensities in the range of the p-fluorine (which is the most easily observable), even more than one could expect considering the new possibility of isomerism introduced in structure (III) by the syn- or anti-conformation of the PhS^{-}ligand. ${ }^{8}$ Moreover, molecular-weight determinations of complexes (6a) and (7a) gave very high results. These data suggest that the products containing PhS are not homogeneous, at least from a structural point of view, and could correspond to open polymeric species with various degrees of polymerization.

Table 6. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for (4a)

$\mathrm{Cl}(1)-\mathrm{Pd}(2) \quad 2$.	2.329(3)	$\mathrm{Cl}(1)-\mathrm{Pd}(4)$	2.429(3)	$\mathrm{C}(24)-\mathrm{F}(24)$	1.347(11)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.358(13)
$\mathrm{Cl}(2)-\mathrm{Pd}(1) \quad 2$.	$2.333(3)$	$\mathrm{Cl}(2)-\mathrm{Pd}(3)$	2.423(3)	$\mathrm{C}(25)-\mathrm{F}(25)$	1.347(12)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.377(12)
$\mathrm{O}(1)-\mathrm{Pd}(3)$	2.034(6)	$\mathrm{O}(2)-\mathrm{Pd}(1)$	2.088(6)	$\mathrm{C}(26)-\mathrm{F}(26)$	1.356(10)	$\mathrm{C}(27)-\mathrm{Pd}(2)$	$1.950(8)$
$\mathrm{O}(3)-\mathrm{Pd}(2) \quad 2$.	2.094(6)	$\mathrm{O}(4)-\mathrm{Pd}(4)$	2.021(6)	$\mathrm{C}(27)-\mathrm{N}(2)$	1.286(10)	$\mathrm{C}(28)-\mathrm{N}(2)$	1.486(10)
$\mathrm{N}(1)-\mathrm{Pd}(4)$	2.019(7)	$\mathrm{N}(2)-\mathrm{Pd}(3)$	2.006(7)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.391(12)	$\mathrm{C}(31)-\mathrm{C}(36)$	1.403(11)
$\mathrm{N}(3)-\mathrm{Pd}(2) \quad 2$.	$2.030(6)$	$\mathrm{N}(4)-\mathrm{Pd}(1)$	2.023(7)	$\mathrm{C}(31)-\mathrm{C}(37)$	1.486(10)	$\mathrm{C}(32)-\mathrm{F}(32)$	1.339(10)
$\mathrm{C}(1)-\mathrm{O}(1) \quad 1$.	1.256(11)	$\mathrm{C}(1)-\mathrm{O}(2)$	1.238(11)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.355(12)	$\mathrm{C}(33)-\mathrm{F}(33)$	1.358(10)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.515(12)	$\mathrm{C}(3)-\mathrm{O}(3)$	1.262(10)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.347(12)	$\mathrm{C}(34)-\mathrm{F}(34)$	1.343(10)
$\mathrm{C}(3)-\mathrm{O}(4) \quad 1$.	1.264(11)	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.506(11)$	$\mathrm{C}(34)-\mathrm{C}(35)$	1.367(13)	$\mathrm{C}(35)-\mathrm{F}(35)$	1.342(10)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.371(12)	$\mathrm{C}(11)-\mathrm{C}(16)$	1.382(14)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.377(11)	C(36)-F(36)	1.338(10)
$\mathrm{C}(11)-\mathrm{C}(17) \quad 1.4$	1.488(12)	$\mathrm{C}(12)-\mathrm{F}(12)$	1.329(12)	$\mathrm{C}(37)-\mathrm{Pd}(3)$	$1.955(9)$	$\mathrm{C}(37)-\mathrm{N}(3)$	1.265(10)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.374(13)	$\mathrm{C}(13)-\mathrm{F}(13)$	1.338(11)	$\mathrm{C}(38)-\mathrm{N}(3)$	1.478(11)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.377(11)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.359(15)	$\mathrm{C}(14)-\mathrm{F}(14)$	1.325(11)	$\mathrm{C}(41)-\mathrm{C}(46)$	$1.388(12)$	$\mathrm{C}(41)-\mathrm{C}(47)$	1.503(11)
$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.3$	1.386 (14)	$\mathrm{C}(15)-\mathrm{F}(15)$	1.359(13)	$\mathrm{C}(42)-\mathrm{F}(42)$	1.352(10)	C(42)-C(43)	1.378(12)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.360(13)$	$\mathrm{C}(16)-\mathrm{F}(16)$	1.342(11)	$\mathrm{C}(43)-\mathrm{F}(43)$	1.326(10)	C(43)-C(44)	1.378(14)
$\mathrm{C}(17)-\mathrm{Pd}(1) \quad 1$.	1.946(8)	$\mathrm{C}(17)-\mathrm{N}(1)$	1.276(10)	$\mathrm{C}(44)-\mathrm{F}(44)$	1.358(11)	$\mathrm{C}(44)-\mathrm{C}(45)$	1.359(13)
$\mathrm{C}(18)-\mathrm{N}(1) \quad 1$.	1.484(10)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.363(11)	$\mathrm{C}(45)-\mathrm{F}(45)$	1.318(11)	$\mathrm{C}(45)-\mathrm{C}(46)$	1.378(13)
$\mathrm{C}(21)-\mathrm{C}(26) \quad 1.37$	1.378(13)	$\mathrm{C}(21)-\mathrm{C}(27)$	1.497(11)	$\mathrm{C}(46)-\mathrm{F}(46)$	1.335(10)	$\mathrm{C}(47)-\mathrm{Pd}(4)$	1.953(9)
$\mathrm{C}(22)-\mathrm{F}(22) \quad 1$.	$1.347(12)$	$\mathrm{C}(22)-\mathrm{C}(23)$	1.367(12)	$\mathrm{C}(47)-\mathrm{N}(4)$	1.273(10)	$\mathrm{C}(48)-\mathrm{N}(4)$	1.470(12)
$\mathrm{C}(23)-\mathrm{F}(23)$	1.326(11)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.367(15)				
$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{O}(2)$) 92.7(2)	$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{N}(4)$	179.0(3)	$\mathrm{Pd}(4)-\mathrm{N}(1)-\mathrm{C}(17)$	120.5(6)	$\mathrm{Pd}(4)-\mathrm{N}(1)-\mathrm{C}(18)$	117.4(6)
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{N}(4)$	87.0(3)	$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{C}(17)$	91.9(3)	$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(18)$	122.0(7)	$\mathrm{Pd}(3)-\mathrm{N}(2)-\mathrm{C}(27)$	119.8(6)
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{C}(17)$) 174.8(4)	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{C}(17)$	88.4(4)	$\mathrm{Pd}(3)-\mathrm{N}(2)-\mathrm{C}(28)$	119.2(6)	$\mathrm{C}(27)-\mathrm{N}(2)-\mathrm{C}(28)$	121.0(7)
$\mathrm{Cl}(1)-\mathrm{Pd}(2)-\mathrm{O}(3)$) 91.3(2)	$\mathrm{Cl}(1)-\mathrm{Pd}(2)-\mathrm{N}(3)$	178.6(3)	$\mathrm{Pd}(2)-\mathrm{N}(3)-\mathrm{C}(37)$	119.3(6)	$\mathrm{Pd}(2)-\mathrm{N}(3)-\mathrm{C}(38)$	116.3(5)
$\mathrm{O}(3)-\mathrm{Pd}(2)-\mathrm{N}(3)$	89.8(3)	$\mathrm{Cl}(1)-\mathrm{Pd}(2)-\mathrm{C}(27)$	91.5(3)	$\mathrm{C}(37)-\mathrm{N}(3)-\mathrm{C}(38)$	124.4(7)	Pd(1)-N(4)-C(47)	118.6(6)
$\mathrm{O}(3)-\mathrm{Pd}(2)-\mathrm{C}(27)$) $174.9(4)$	$\mathrm{N}(3)-\mathrm{Pd}(2)-\mathrm{C}(27)$	87.3(3)	$\mathrm{Pd}(1)-\mathrm{N}(4)-\mathrm{C}(48)$	117.5(5)	$\mathrm{C}(47)-\mathrm{N}(4)-\mathrm{C}(48)$	123.8(7)
$\mathrm{Cl}(2)-\mathrm{Pd}(3)-\mathrm{O}(1)$) 93.0(3)	$\mathrm{Cl}(2)-\mathrm{Pd}(3)-\mathrm{N}(2)$	92.3(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	126.5(8)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116.2(8)
$\mathrm{O}(1)-\mathrm{Pd}(3)-\mathrm{N}(2)$	173.1(3)	$\mathrm{Cl}(2)-\mathrm{Pd}(3)-\mathrm{C}(37)$	179.5(3)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	117.3(8)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{O}(4)$	$127.3(7)$
$\mathrm{O}(1)-\mathrm{Pd}(3)-\mathrm{C}(37)$) 86.8(4)	$\mathrm{N}(2)-\mathrm{Pd}(3)-\mathrm{C}(37)$	87.9(4)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	117.3(8)	$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(4)$	115.4(8)
$\mathrm{Cl}(1)-\mathrm{Pd}(4)-\mathrm{O}(4)$) 92.7(3)	$\mathrm{Cl}(1)-\mathrm{Pd}(4)-\mathrm{N}(1)$	92.8(3)	$\mathrm{Pd}(1)-\mathrm{C}(17)-\mathrm{C}(11)$	117.4(6)	$\mathrm{Pd}(3)-\mathrm{C}(37)-\mathrm{C}(31)$	115.7(6)
$\mathrm{O}(4)-\mathrm{Pd}(4)-\mathrm{N}(1)$	172.6(3)	$\mathrm{Cl}(1)-\mathrm{Pd}(4)-\mathrm{C}(47)$	178.8(3)	$\operatorname{Pd}(1)-\mathrm{C}(17)-\mathrm{N}(1)$	119.6(6)	$\mathrm{Pd}(3)-\mathrm{C}(37)-\mathrm{N}(3)$	121.6(6)
$\mathrm{O}(4)-\mathrm{Pd}(4)-\mathrm{C}(47)$) 86.3(4)	$\mathrm{N}(1)-\mathrm{Pd}(4)-\mathrm{C}(47)$	88.3(4)	$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(11)$	123.0(7)	$\mathrm{N}(3)-\mathrm{C}(37)-\mathrm{C}(31)$	122.7(8)
$\mathrm{Pd}(2)-\mathrm{Cl}(1)-\mathrm{Pd}(4)$	4) 83.7(2)	$\mathrm{Pd}(1)-\mathrm{Cl}(2)-\mathrm{Pd}(3)$	83.8(2)	$\mathrm{Pd}(2)-\mathrm{C}(27)-\mathrm{C}(21)$	$115.4(6)$	$\mathrm{Pd}(4)-\mathrm{C}(47)-\mathrm{C}(41)$	115.8(6)
$\mathrm{Pd}(3)-\mathrm{O}(1)-\mathrm{C}(1)$	128.3(6)	$\mathrm{Pd}(1)-\mathrm{O}(2)-\mathrm{C}(1)$	131.7(6)	$\mathrm{Pd}(2)-\mathrm{C}(27)-\mathrm{N}(2)$	120.9(6)	$\mathrm{Pd}(4)-\mathrm{C}(47)-\mathrm{N}(4)$	121.4(6)
$\mathrm{Pd}(2)-\mathrm{O}(3)-\mathrm{C}(3)$	129.2(6)	$\mathrm{Pd}(4)-\mathrm{O}(4)-\mathrm{C}(3)$	128.9(6)	$\mathrm{N}(2)-\mathrm{C}(27)-\mathrm{C}(21)$	123.7(7)	$\mathrm{N}(4)-\mathrm{C}(47)-\mathrm{C}(41)$	122.5(8)

Experimental

The C, H, and N analyses were carried out with a Perkin-Elmer 240-B microanalyser. I.r. spectra were recorded on a PerkinElmer 599 spectrophotometer using Nujol mulls between polyethylene plates. ${ }^{1} \mathrm{H}$ N.m.r. and ${ }^{19} \mathrm{~F}$ n.m.r. spectra were recorded on a Varian XL-200 instrument (200 MHz for ${ }^{1} \mathrm{H}$). Molecular weights were determined in CHCl_{3} solution on a Perkin-Elmer 115 apparatus. Complexes (1a) and (1b) were prepared as described earlier. ${ }^{1,2}$

Preparation of Complexes (2)-(5)--A typical preparation was as follows. To a red solution of (1a) ($206.3 \mathrm{mg}, 0.147 \mathrm{mmol}$) in acetone ($40 \mathrm{~cm}^{3}$) was added silver acetate ($295 \mathrm{mg}, 1.768$ $\mathrm{mmol} ; \mathrm{Pd}: \mathrm{Ag}=1: 3$) and the mixture, protected from the light, was stirred at room temperature for 48 h , evaporated to dryness and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ to give a yellow solution and a precipitate of silver salts which was filtered off. The solution was evaporated to $1 \mathrm{~cm}^{3}$. Upon addition of ethanol ($10 \mathrm{~cm}^{3}$) and cooling in the freezer (2a) was obtained as a yellow solid. Complex (2b) was obtained similarly from (1b).

For (3a) and (3b) the procedure was the same but a $\mathrm{Pd}: \mathrm{Ag}$ ratio of $1: 1$ was used; the reaction times were 12 and 7.5 h respectively, and the products were precipitated by adding cyclohexane to the $1-\mathrm{cm}^{3}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

For (4a), (4b), (5a), and (5b) a $\mathrm{Pd}: \mathrm{Ag}$ ratio of $1: 0.5$ and reaction times of $0.5,20,0.5$, and 5.5 h respectively were used. Otherwise the procedure was the same as described for (2a).

Preparation of Complexes (6a) and (7a).--To a stirred solution of (1a) ($208.4 \mathrm{mg}, 0.149 \mathrm{mmol}$) in acetone $\left(40 \mathrm{~cm}^{3}\right)$ was
added a solution containing $32.8 \mathrm{mg}(0.298 \mathrm{mmol})$ of PhSH in acetone ($2 \mathrm{~cm}^{3}$), whereupon the solution turned orange. After stirring for $5 \mathrm{~min} 3.2 \mathrm{~cm}^{3}$ of a $0.093 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of KOH in $\mathrm{MeOH}(16.7 \mathrm{mg}, 0.298 \mathrm{mmol}$ of KOH) were added, giving rise to the slow formation of a white precipitate. After stirring at room temperature for 1 h the solvent was evaporated and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$. The insoluble solid was filtered off and the orange solution dried with MgSO_{4} and evaporated to a small volume. Addition of ethanol $\left(5 \mathrm{~cm}^{3}\right)$ and evaporation of the remaining $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave ($6 \mathbf{a}$).

Complex (7a) was obtained similarly but using twice as much PhSH and KOH .

Preparation of Complex ($\mathbf{6 b}$).-To a stirred suspension of ($\mathbf{1 b}$) ($301.2 \mathrm{mg}, 0.177 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right.$) was added a solution containing $38.94 \mathrm{mg}(0.353 \mathrm{mmol})$ of PhSH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mathrm{~cm}^{3}$) and then $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{mg}, 0.217 \mathrm{mmol}$). The mixture was stirred for 72 h at room temperature and the insoluble material filtered off. The resulting orange solution was evaporated to $2 \mathrm{~cm}^{3}$ and n -hexane ($20 \mathrm{~cm}^{3}$) added to give an orange precipitate which was filtered off, washed with n -hexane, and dried. This solid was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ at reflux and undissolved material filtered off. The resulting orange solution was evaporated to a small volume and n-hexane added to give ($\mathbf{6 b}$).

X-Ray Crystal Structure of Complex (4a).-Crystal data. $\mathrm{C}_{36} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~F}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Pd}_{4}, M=1447$, monoclinic, space group $P 2_{1 / n, ~}=14.380(4), b=19.980(4), c=15.976(4) \AA, \beta=$ $103.51(3)^{c}, U=4463 \AA^{3}$ (refined from 2θ values of 40 strong
reflections in the range $20-23^{\circ}$), Mo- K_{α} radiation ($\lambda=$ $0.71069 \AA$), $Z=4, D_{\mathrm{c}}=2.15 \mathrm{~g} \mathrm{~cm}^{-3}$. Yellow, air-stable prisms. Crystal dimensions $0.42 \times 0.15 \times 0.15 \mathrm{~mm}, \mu=0.18$ mm^{-1}.

Data collection and processing. Stoe-Siemens four-circle diffractometer, monochromated $\mathrm{Mo}-K_{q}$ radiation, 8508 profilefitted intensities ${ }^{9}\left(2 \theta_{\max } .50^{\circ}\right), 7826$ unique, 5428 with $F>$ $4 \sigma(F)$ used for all calculations (program system SHELXTL). Absorption correction based on ψ-scans; transmissions 0.76 0.81 . No crystal decay.

Structure solution and refinement. Pd atoms from Patterson function, other non-H atoms from difference synthesis. Leastsquares refinement on F to $R 0.061, R^{\prime} 0.046$ [non-H atoms anisotropic, rigid methyl groups with $\mathrm{C}-\mathrm{H} 0.96 \AA, \mathrm{H}-\mathrm{C}-\mathrm{H}$ $109.5^{\circ}, U(\mathbf{H})=1.2 U_{\text {iso }}(\mathrm{C})$; weighting scheme $w^{-1}=\sigma^{2}(F)+$ $\left.0.00015 F^{2}\right]$. Final atomic co-ordinates and derived parameters are given in Tables 5 and 6.

References

1 R. Uson, J. Fornies, P. Espinet, E. Lalinde, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1982, 2389.

2 R. Uson, J. Fornies, P. Espinet, and E. Lalinde, J. Organomet. Chem., 1983, 254, 371.
3 R. Uson, J. Fornies, P. Espinet, E. Lalinde, P. G. Jones, and G. M. Sheldrick, J. Organomet. Chem., 1983, 253, C47.
4 A. F. Wells, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 1938, 100, 189.
5 G. R. Davies, R. H. B. Mais, S. O'Brien, and P. G. Owston, Chem. Commun., 1967, 1151.
6 A. G. Constable, W. S. McDonald, L. S. Sawbins, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1980, 1992.
7 R. Uson, J. Fornies, P. Espinet, A. Garcia, M. Tomas, C. Foces-Foces, and F. H. Cano, J. Organomet. Chem., 1985, 282, C35.
8 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 4th edn., Wiley-Interscience, New York, 1980, p. 178.
9 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.

[^0]: * 1,2;3,4-Di- μ-(acetato- O, O^{\prime})-1,2;3,4-di- μ-chloro-1,4;1,4;2,3;2,3-tetra- μ -(pentafluoro- N-methylbenzimidoyl- C, N)-tetrapalladium(11).
 Additional crystallographic material (complete bond lengths and angles, structure factors, thermal factors, H -atom co-ordinates) can be ordered from the Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, Federal Republic of Germany. Please quote reference no. CSD/51431 and the names of the authors and the title of the paper.

