Synthesis and Characterisation of Tungsten and Rhenium Aluminopolyhydrides: X-Ray Crystal Structures of $(Me_3P)_3H_3W(\mu-H)_2AI(H)(\mu-OBu^{\circ})_2AI(H)(\mu-H)_2-WH_3(PMe_3)_3$ and $(Me_3P)_3H_3W(\mu-H)_2AI(H)(\mu-H)_2WH_3(PMe_3)_3^{\dagger}$

Andrew R. Barron, David Lyons, and Geoffrey Wilkinson* Department of Chemistry, Imperial College, London SW7 2AY Majid Motevalli, Andrew J. Howes, and Michael B. Hursthouse* Department of Chemistry, Queen Mary College, London E1 4NS

The reaction of WCl₄(PMe₃)₃ with LiAlH₄ in refluxing tetrahydrofuran leads to the aluminopolyhydride, (Me₃P)₃H₃W(μ -H)₂Al(H)(μ -OBuⁿ)₂Al(H)(μ -H)₂WH₃(PMe₃)₃(1), whereas in diethyl ether the product is (Me₃P)₃H₃W(μ -H)₂Al(H)(μ -H)₂Al(H)(μ -H)₂WH₃(PMe₃)₃(2). Addition of *NNN'N'*tetramethylethylenediamine to a toluene solution of (2) results in the formation of (Me₃P)₃H₃W(μ -H)₂Al(H)(μ -H)₂WH₃(PMe₃)₃(3). The rhenium analogues of (1) and (2), namely compounds (Me₂PhP)₃H₂Re(μ -H)₂Al(H)(μ -OBuⁿ)₂Al(H)(μ -H)₂ReH₂(PMe₂Ph)₃(4) and (Me₂PhP)₃H₂Re(μ -H)₂Al(H)(μ -H)₂Al(H)(μ -H)₂ReH₂(PMe₂Ph)₃(5) have been obtained from ReCl₃(PMe₂Ph)₃. The heavy-atom structures of (1) and (3) have been confirmed by X-ray crystallography. Hydrogen-1, ³¹P, and ²⁷Al n.m.r. spectra are reported and the fluxional behaviour of the compounds discussed.

Transition metal aluminohydrides containing the AlH₄⁻ group are rare in contrast to the large number of borohydrides that are known.¹ Titanium,^{2a} zirconium,^{2b} and niobium ^{2c} compounds of stoicheiometry (η^5 -C₅H₅)₂MAlH₄, believed to be monomers, containing the η^2 -AlH₄ group have long been known. The first transition metal compound containing a μ - η^2 -AlH₂ moiety to be crystallographically characterised ³ was (dmpe)₂Ta(μ -H)₂-Al(OC₂H₄OMe)(μ -OC₂H₄OMe)₂Al(OC₂H₄OMe)(μ -H)₂Ta-(dmpe)₂ [dmpe = 1,2-bis(dimethylphosphino)ethane], which had both terminal (on Al) and bridging alkoxo as well as bridging Ta(μ -H)₂Al groups. The first transition metal μ - η^2 -AlH₄ complex to be structurally determined ⁴ was [(dmpe)₂Mn-AlH₄]₂.

Russian workers have recently reported the structure of the complex formulated as $\{[(\eta-C_5H_5)_2Y(\mu_3-H)](\mu-HAIH_2)\}_2$ and some solvent adducts thereof,^{6a} while a different type,^{6b} ($\eta^5-C_5H_5)_2Ti(\mu-H)_2AI(H)_2(Me_2NCH_2CH_2NMe_2)AI(H)_2(\mu-H)_2-Ti(\eta^5-C_5H_5)_2$, has tetramethylethylenediamine bridging and coordinated to two aluminium atoms.

Results and Discussion

Tungsten Aluminopolyhydrides.—The interaction of WCl_4 -(PMe₃)₃⁷ with LiAlH₄ in refluxing tetrahydrofuran (thf) followed by crystallisation from toluene affords a moderate

yield of the yellow $(Me_3P)_3H_3W(\mu-H)_2Al(H)(\mu-OBu^n)_2-Al(H)(\mu-H)_2WH_3(PMe_3)_3$ (1). However, if the reaction is carried out in diethyl ether at room temperature the product is $(Me_3P)_3H_3W(\mu-H)_2Al(H)(\mu-H)_2Al(H)(\mu-H)_2WH_3(PMe_3)_3$ (2) in high yield.

The molecular structure of the butoxo compound (1), which has crystallographic C_2 symmetry, is shown in Figure 1; selected bond lengths and angles are given in Table 1. Although the number of metal-bonded hydrogens in the structure is known with some confidence, their location in the X-ray structure was difficult. Peaks occurred in the difference synthesis at suitably distant positions but attempts to refine hydrogen atoms at these sites were generally unsuccessful. Accordingly, for the final refinement, no metal-bonded hydrogens were included.

Nevertheless, the indications were quite strong that the aluminium atom was bridged to tunsten by two hydrogens and was bonded to a third, terminal hydrogen, giving, together with the two oxygen atoms, five-co-ordination. This would be analogous to the structure found for the complex $[(dmpe)_2Mn-AlH_4]_2$,⁴ although in the present compound the implied Al co-

 $[\]ddagger$ 2,3; 2,3-Di- μ -n-butoxo-1,2; 1,2; 3,4; 3,4-tetra- μ -hydrido-1,1,1,2,3,4,4,4-octahydrido-1,1,1,4,4,4-hexakis(trimethylphosphine)-2,3-dialuminium-1,4-ditungsten(IV) and 1,2; 1,2; 2,3; 2,3-tetra- μ -hydrido-1,1,1,2,3,3,3-heptahydrido-1,1,1,3,3,3-hexakis(trimethylphosphine)-2-aluminium-1,3-ditungsten(IV).

Supplementary data available (No. SUP 56432, 6 pp.): H-atom coordinates, thermal parameters. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii—xx. Structure factors are available from the editorial office.

Figure 1. The molecular structure of $(Me_3P)_3H_3W(\mu-H)_2Al(H)(\mu-OBu^n)_2Al(H)(\mu-H)_2WH_3(PMe_3)_3$ (1)

ordination was not definable as either of the two idealised fiveco-ordinate geometries. It is also possible that the difficulties in locating hydrogens in this compound are due, in part, to the fluxional nature of the structure indicated by the n.m.r. data (see below) and it is not improbable that intermediate interactions of the kind found in $ReH_4AlMe_2(PPh_2Me)_3^8$ are present. The tungsten geometry is difficult to define, in view of the uncertainties in the hydrogen positions, but the co-ordination number is most likely to be eight. The three W-P distances appear to fall into two groups with one [W-P(2) 2.409(6) Å] slightly shorter than the other two [2.420(6), 2.425(6) Å]. Detailed analysis of the P-W-P angles and the likely positions of the hydrogens did not suggest that the structure might correspond to either of the two standard eight-co-ordination geometries, dodecahedral or square antiprismatic, although the arrangement of the phosphines alone is consistent with their positioning at three of the four B sites of a dodecahedral structure [i.e., with P(1) and P(3) belonging to the same trapezium].

We were unable to obtain crystals of the aluminohydride (2) suitable for X-ray study due to twinning.

The i.r. spectra of (1) and (2) are similar both having broad bands in the range 1 800—1 600 cm⁻¹ due to terminal and bridging hydrides. No definitive assignment of these bands has been possible due to the poorly resolved nature of the hydride region. The synthesis of the deuteriated analogue of (2) does not help in their assignment. The remaining bands can be assigned to co-ordinated ligand vibrations.

At room temperature, n.m.r. spectra indicate that both (1) and (2) are non-rigid in solution. The ¹H spectrum has a broad quartet [for (1), $\delta - 5.28$ p.p.m., J(P-H) = 27.1 Hz; for (2), $\delta - 5.26$ p.p.m., J(P-H) = 25.4 Hz] due to terminal W-H and bridging W(µ-H)₂Al hydrides, and a very broad singlet (*ca*. δ 5.0 p.p.m.) due to bridging Al(µ-H)₂Al hydrides [in (2)] and terminal Al-H hydrides [in (1) and (2)]. The ³¹P-{¹H} n.m.r. spectra are singlets with tungsten satellites [for (1), $\delta - 23.56$ p.p.m., J(P-W) = 195.0 Hz; for (2), $\delta - 23.19$ p.p.m., J(P-W) =199.4 Hz] which split into binomial sextets when the phosphine CH₃ groups are selectively decoupled. The appearance of a sextet in the selectively decoupled ³¹P spectrum indicates that rapid exchange is taking place between terminal W-H and bridging W(µ-H)₂Al hydrides.

The bridging n-butoxide groups in (1) evidently arise from the well known^{9a} cleavage of thf by aluminium hydride (above).

The complex (2) can be converted into (1) on refluxing for a few hours in thf; this implies that (2) is an intermediate in the formation of (1) in thf solution.

P(3)-W(1)-P(1)

C(12)-P(1)-W(1)

C(13)-P(1)-W(1)

C(13)-P(1)-C(12)

C(22)-P(2)-W(1)

C(23)-P(2)-W(1)

C(23) = P(2) = C(22)

141.3(1)

120.4(6)

116.8(8)

100.8(8)

116.8(6)

119.0(9)

101.7(11)

Table 1. Bond lengths (Å) and angles (°) for (1)* P(1)-W(1)2.420(6) P(2)-W(1)2.409(6) P(3)-W(1)2.425(6) Al(1)-W(1) 2.662(7) C(11)-P(1) 1.821(16) C(12) - P(1)1.820(16) C(13) - P(1)1.874(18)C(21)-P(2) 1.840(19) C(22) - P(2)1.877(19) C(23) - P(2)1.831(19) C(31)-P(3) 1.871(19) C(32)-P(3) 1.869(17) C(33) - P(3)1.778(18)O(1) - Al(1)1.843(12) Al(1)-Al(1a)2.864(11) Al(1)-O(1a)1.854(12)C(1)-O(1)1.423(17) C(2)-C(1)1.524(25) C(3)-C(2)1.384(26)

1.380(27)

102.8(2)

95.8(2)

116.6(6)

97.9(9)

100.8(9)

115.7(8)

99.1(11)

101.5(12)

C(4)-C(3)

P(2)-W(1)-P(1)

P(3)-W(1)-P(2)

C(11)-P(1)-W(1)

C(12)-P(1)-C(11)

C(13)-P(1)-C(11)

C(21)-P(2)-W(1)

C(22)-P(2)-C(21)

C(23)-P(2)-C(21)

C(31) - P(3) - W(1)	115.8(8)	C(32)-P(3)-W(1) C(32) = P(3) = W(1)	115.2(7)
C(32)-P(3)-C(31) C(33)-P(3)-C(31)	99.0(10)	C(33)-P(3)-C(32)	100.5(10)
O(1)-Al(1)-O(1a)	78.21(4)		
Al(1)-O(1)-Al(1a) C(2)-C(1)-O(1)	101.5(4) 106.5(16)	C(1)-O(1)-Al(1) C(3)-C(2)-C(1)	128.6(10) 109.3(21)
C(4) - C(3) - C(2)	114.0(26)		

* Key to symmetry operations relating designated atoms to reference atoms at (x, y, z): (a) -x, -y, z.

Both tungsten aluminopolyhydride complexes are moisture sensitive and are rapidly converted to $WH_6(PMe_3)_3^{10}$ by addition of H₂O or MeOH to an Et₂O solution. If D₂O is used the product obtained on work-up is entirely $WH_4D_2(PMe_3)_3$. This suggests that the $W(\mu$ -H)₂Al unit is cleaved symmetrically on hydrolysis to leave one of the bridging hydrides on each metal centre. This is in contrast to the asymmetric cleavage observed ^{2c} in the hydrolysis of $(\eta$ -C₅H₅)₂NbAlH₄ by D₂O.

The original synthesis¹⁰ of $WH_6(PMe_3)_3$ involved the interaction of $WCl_4(PMe_3)_3$ with $LiAlH_4$ in diethyl ether at room temperature followed by work-up with methanol at -78 °C. It now seems certain that (2) is the species present in solution before methanolysis.

Reaction of WCl₄ with LiAlH₄ results in an insoluble dark red product, this could not be isolated and addition of PMe₃ did not afford complex (2). If excess PMe₃ is present when WCl₄(PMe₃)₃ is reacted with LiAlH₄ then the major product is the polyhydride WH₄(PMe₃)₄.¹¹

Treatment of complex (2) with NNN'N'-tetramethylethylenediamine (tmen) in toluene followed by extraction and crystallisation from hexane yields the bright yellow crystalline complex $(Me_3P)_3H_3W(\mu-H)_2Al(H)(\mu-H)_2WH_3(PMe_3)_3$ (3). A white precipitate of AlH₃-tmen is also formed and the amine

C(52)-P(5)-C(51)

C(53)-P(5)-C(51)

C(61)-P(6)-W(2)

C(62)-P(6)-C(61)

C(63)-P(6)-C(61)

Al(1)-H(11)-W(1)

Al(1)-H(21)-W(2)

 $H_{2}WH_{3}(PMe_{3})_{3}$ (3)

therefore removes AIH, from the bridged species (2). The cleavage of the Al(μ -H)₂Al unit with tmen has been reported for simple alanes.^{9b} No reaction was observed between compound (2) and NEt₁.

The structure of a molecule of (3), which has no crystallographic symmetry, is shown in Figure 2. Selected bond lengths and angles are given in Table 2. For this compound, the hydrogen atoms attached to the aluminium (both terminal and bridging) were located and acceptably refined without much difficulty, but the terminal hydrogens attached to the tungsten atoms were again difficult to identify and none was included.

The co-ordination geometry at the aluminium atom approximates quite well to trigonal bipyramidal, with H(12) and H(22)defining the axial sites, and H(1), H(11), and H(21) the equator. The bridging to each tungsten then involves one axial and one equatorial hydrogen. Although the differences are hardly significant, it is intriguing to note that the axial Al-H bond lengths are the longest [av. 1.98(6) Å] the two bridging equatorial distances intermediate [av. 1.82(7) Å] and the one terminal distance shortest [1.57(6) Å]. Trigonal bipyramidal AlH, geometry was also reliably found $\frac{4}{1}$ in [(dmpe)₂MnAlH₄]₂. The tungsten geometry is more difficult to define, partly because of the uncertainties in the hydrogen positions, and partly because of inconsistencies in the W-P distances. Whereas the three bonds to W(1) show one long [W(1)-P(1) 2.448(4) Å] and two short [W(1)-P(2) 2.408(4), W(1)-P(3), 2.400(4) Å], the bonds around W(2) are closer together at 2.410(4) [to P(4)], 2.422(4) [to P(5)], and 2.428(4) Å [to P(6)]. Nevertheless, the geometries at each tungsten as defined by the three phosphines and two bridging hydrogens, probably the most reliable set of ligand atoms, are quite similar, as can be seen in Figure 3(a) and (b), which shows views down the two Al-W vectors, and in the spread of P-W-P angles (Table 2). It is noteworthy that very similar P-W-P angles were found for the butoxo complex described above (although in that compound the three W-P bonds separate into one short and two long), and the tungsten geometry may be very similar to that found in compound (1).

Rhenium Aluminopolyhydrides.-Interaction of ReCl₃(PMe₂-Ph) $_{3}^{12}$ with LiAlH₄ in refluxing thf followed by crystallisation from toluene affords a moderate yield of the pale yellow $(Me_2PhP)_3H_2Re(\mu-H)_2Al(H)(\mu-OBu^n)_2Al(H)(\mu-H)_2ReH_2$ $(PMe_2Ph)_3$ (4). Unlike the tungsten case the use of diethyl ether leads to little reaction and no aluminohydride complex could be isolated; however, if the reaction is carried out in thf at ambient temperature the product is the pale yellow

Table 2. Bond lengths (Å) and angles (°) for (3)						
AI(1)-W(1)	2.694(5)	P(1)-W(1)	2.448(4)			
P(2)-W(1)	2.408(4)	P(3) - W(1)	2.400(4)			
H(1) - W(1)	1.653(82)	H(12)-W(1)	1.771(61)			
Al(1) - W(2)	2.692(5)	P(4) - W(2)	2.410(4)			
P(5) - W(2)	2.072(3)	P(6) - W(2)	2.428(4)			
H(21) - W(2)	1.785(64)	H(22) - W(2)	1.761(61)			
$\Pi(21)^{-1}$ $\Pi(2)$	1.705(01)	11(22) ((2)				
H(11)–Al(1)	1.802(80)	H(12)-AI(1)	2.020(61)			
H(21) - Al(1)	1.848(67)	H(22) - AI(1)	1.937(62)			
$\mathbf{H}(1) - \mathbf{AI}(1)$	1.573(60)					
C(1) - P(1)	1.837(11)	C(12) - P(1)	1.837(10)			
C(13) - P(1)	1.826(10)	C(21) - P(2)	1.826(11)			
C(22) - P(2)	1.832(12)	C(23) - P(2)	1.828(13)			
C(31) - P(3)	1.823(10)	C(32) - P(3)	1.845(10)			
C(33) - P(3)	1.831(13)	C(41) - P(4)	1.815(12)			
C(42) - P(4)	1.801(12)	C(43) - P(4)	1.849(13)			
C(51) - P(5)	1.801(12)	C(52) - P(5)	1 798(12)			
C(53) - P(5)	1.841(15)	C(61) - P(6)	1.843(12)			
C(5) - P(6)	1.041(12) 1.831(12)	C(63) - P(6)	1.820(11)			
C(02) = I(0)	1.051(12)	C(05) $C(05)$	1.020(11)			
P(2)-W(1)-P(1)	143.7(1)	P(3)-W(1)-P(1)	101.5(2)			
P(3)-W(1)-P(2)	97.0(2)	H(11)-W(1)-P(1)	91.6(27)			
H(11)-W(1)-P(2)	83.7(27)	H(11)-W(1)-P(3)	155.7(28)			
H(12)-W(1)-P(1)	79.2(20)	H(12)-W(1)-P(2)	136.4(19)			
H(12)-W(1)-P(3)	73.4(20)	H(12)-W(1)-H(11)	89.2(34)			
P(5)-W(2)-P(4)	100.2(2)	P(6)-W(2)-P(4)	100.3(2)			
P(6)-W(2)-P(5)	139.2(1)	H(21)-W(2)-P(4)	151.4(19)			
H(21)-W(2)-P(5)	78.3(21)	H(21)-W(2)-P(6)	98.9(19)			
H(22)-W(2)-P(4)	76.3(20)	H(22)-W(2)-P(5)	145.5(18)			
H(22)-W(2)-P(6)	74.0(18)	H(22)-W(2)-H(21)	88.9(29)			
H(12) = AI(1) = H(11)	778(32)	H(21) = A(1) = H(11)	137 5(30)			
H(21) = A(1) = H(12)	89 2(27)	H(22) = A(1) = H(11)	95 1(32)			
H(22) = AI(1) = H(12) H(22) = AI(1) = H(12)	157.9(22)	H(22) - A(1) - H(21)	82 0(27)			
$H(1) = A_1(1) = H(12)$	110 7(36)	H(1) = A(1) = H(12)	105 5(30)			
H(1) - A(1) - H(21)	111.8(31)	H(1) - A(1) - H(22)	96.6(29)			
	(51)		,(_,)			
C(11)-P(1)-W(1)	116.4(4)	C(12)-P(1)-W(1)	120.3(4)			
C(12)-P(1)-C(11)	101.0(6)	C(13)-P(1)-W(1)	114.9(4)			
C(13)-P(1)-C(11)	100.5(6)	C(13)-P(1)-C(12)	100.6(5)			
C(21)-P(2)-W(1)	118.9(4)	C(22)-P(2)-W(1)	119.9(5)			
C(22) - P(2) - C(21)	101.2(6)	C(23)-P(2)-W(1)	113.4(5)			
C(23)-P(2)-C(21)	100.9(7)	C(23)-P(2)-C(22)	99.2(8)			
C(31) - P(3) - W(1)	118.9(4)	C(32) - P(3) - W(1)	120.0(5)			
C(32) - P(3) - C(31)	98.4(6)	C(33) - P(3) - W(1)	116.2(5)			
C(33) - P(3) - C(31)	99.1(7)	C(33) - P(3) - C(32)	100.4(6)			
C(41) - P(4) - W(2)	119.7(5)	C(42) - P(4) - W(2)	119.9(5)			
C(42) - P(4) - C(41)	100.5(7)	C(43) - P(4) - W(2)	116.2(5)			
C(43)-P(4)-C(41)	98.4(8)	C(43) - P(4) - C(42)	97.9(7)			
C(51)-P(5)-W(2)	119.2(5)	C(52)-P(5)-W(2)	118.6(5)			
			· · · · · · · · · · · · · · · · · ·			

complex $(Me_2PhP)_3H_2Re(\mu-H)_2Al(H)(\mu-H)_2Al(H)(\mu-H)_2Re$ $H_2(\bar{P}Me_2Ph)_3$ (5).

C(53)-P(5)-W(2)

C(53)-P(5)-C(52)

C(62)-P(6)-W(2)

C(63)-P(6)-W(2)

C(63)-P(6)-C(62)

Al(1)-H(12)-W(1)

Al(1)-H(22)-W(2)

114.9(5)

98.2(8)

119.2(5)

117.6(4)

99.0(6)

90.3(27)

93.3(28)

102.7(8)

99.6(9)

116.2(4)

101.4(7)

100.1(6)

102.4(43)

95.6(30)

The i.r. spectra of the complexes have broad bands between 1 925 and 1 740 cm⁻¹ due to terminal and bridging hydrides. Like the tungsten compounds they are non-rigid in solution at room temperature. The ¹H n.m.r. spectra have a broad quartet $f(4), \delta - 8.68 \text{ p.p.m.}, J(P-H) = 17.8 \text{ Hz}; (5), \delta - 8.67 \text{ p.p.m.}, J(P-H) = 17.8 \text{ Hz}; J(P-H) = 17.8 \text{ Hz};$ H) = 16.5 Hz] due to terminal Re-H and bridging $Re(\mu-H)_2AI$ hydrides, together with a very broad singlet (ca. δ 5 p.p.m.) due to the bridging $Al(\mu-H)_2Al$, in (5), and terminal Al-H, in (4) and

Figure 3. The partial co-ordination spheres of atoms W(1) and W(2) in compound (3), viewed down the W-Al vector

(5). The ³¹P-{¹H} n.m.r. spectra are singlets [(4), $\delta - 11.65$; (5), $\delta - 11.60$]; attempts selectively to decouple the phosphine (CH₃ and C₆H₅) protons were unsuccessful. The structures were deduced from the integration of the hydrides in the ¹H n.m.r., the variable-temperature n.m.r. (see below) and by comparison with the tungsten species.

The rhenium compounds (4) and (5) are also moisture sensitive, being converted to $\text{ReH}_5(\text{PMe}_2\text{Ph})_3^{13}$ by the addition of H₂O or MeOH. Deuteriation studies indicate that as in the tungsten compounds the $\text{Re}(\mu-\text{H})_2\text{Al}$ unit is cleaved symmetrically, resulting in the formation of $\text{ReH}_3\text{D}_2(\text{PMe}_2-\text{Ph})_3$.

Variable-temperature and ²⁷Al Nuclear Magnetic Resonance Studies.—The hydride region of the ¹H n.m.r. spectrum of (1) from -10 to -70 °C is shown in Figure 4. The quartet at -10 °C is unchanged on warming to room temperature; the broadness (observed in all complexes) can be attributed to the effect of the ²⁷Al quadrupole moment. This quartet is due to terminal W-H and bridging $W(\mu-H)_2Al$ hydrides which are exchanging rapidly on the n.m.r. time-scale. This exchange is slowed on cooling and between -10 and -40 °C the resonance broadens and the phosphorus coupling is lost. Cooling to -50 °C causes further broadening and between -50 and -60° C the signals de-coalesce. Further cooling to -70° C stops the exchange between terminal and bridging hydrides and two resonances are observed, a quartet [δ -3.2 p.p.m., J(P-H) = 36.1 Hz, terminal W-H] and a broad singlet [$\delta - 7.2$ p.p.m., bridging $W(\mu-H)_2Al$].

Compounds (2), (4), and (5) show similar n.m.r. behaviour. The hydride signal for complex (2) de-coalesces between -50and -55 °C; further cooling to -80 °C results in a broad quartet $[\delta - 3.0 \text{ p.p.m.}, J(P-H) = 30.4 \text{ Hz}]$ and a broad singlet $(\delta - 7.1 \text{ p.p.m.})$. An interesting feature is that at room temperature there are two distinct and separate exchange processes taking place: (a) the exchange between (see structure III for labelling) terminal W-H_a and bridging W(μ -H_b)₂Al hydrides, and (b) the exchange between terminal $Al-H_c$ and bridging $Al(\mu-H_d)_2Al$ hydrides. Thus H_a and H_b exchange with each other, but not with H_c or H_d ; H_c and H_d exchange with each other. The signal due to H_c and H_d in the ¹H n.m.r. spectrum is a broad singlet at room temperature (ca. δ 5 p.p.m.) but on cooling to -20 °C it splits into two quite sharp singlets (δ 5.2 p.p.m. and δ 4.8 p.p.m.), indicating that exchange between the two has been stopped.

The hydride signals for compounds (4) and (5) de-coalesce between -60 and -70 °C and further cooling to -90 °C results in two very broad resonances (*ca.* $\delta - 8.0$ and $\delta - 10.5$ p.p.m.). The exchange between the terminal Al–H and bridging Al(μ -H)₂Al hydrides in (5) is similar to that in complex (2).

From the n.m.r. data the activation energies, ΔG^{\ddagger} , of these exchange processes can be calculated ¹⁴ (Table 3). The exchange

Figure 4. Variable-temperature (°C) ¹H n.m.r. spectra for compound (1) over the region 0 to -10 p.p.m. vs. SiMe₄ in [²H₈]toluene solvent

between terminal Al-H and bridging Al(μ -H)₂Al hydrides in complexes (2) and (5) has a similar activation energy to that in other aluminohydride complexes ^{5,15} {such as [(R₃P)₃(H)-M(AlH₄)]₂ (M = Ru or Os, R = Me or Ph)} implying that the exchange is essentially independent of the environment around the transition metal. Exchanges between terminal M-H and bridging M(μ -H)₂Al hydrides have a lower energy barrier and again are independent of other exchange processes present, but

in this case are dependent on the environment around the metal centre.¹⁴

Exchange between Re-H and Re(μ -H)₂Al hydrogens has also been observed recently⁸ in the complex ReH₄AlMe₂(PMe₂Ph)₃ which has been proposed to have a Re(μ -H)₃Al bridge and a five-co-ordinate aluminium in a H₃AlMe₂²⁻ unit. Aluminium-27 n.m.r. spectra¹⁶ have been mainly used for

the study of the co-ordination (four or six) of aluminium complexes in aqueous solution and their pH dependence. The present hydride species are rare in having five-co-ordinate aluminium. The only reasonable analogous five-co-ordinate compounds for which ²⁷Al n.m.r. spectra are available¹⁷ are various organo species such as [Me₂AlO(CH₂)₂(OMe)]₂ that have broad bands and δ values in the region 112-121 p.p.m. Both the present OBuⁿ-bridged species show a single peak at ca. δ 120 p.p.m. with a linewidth of 1 740 Hz for (1) and 1 800 Hz for (4). The AlH₄ complexes give much broader peaks at δ ca. 70 p.p.m., $w_{\pm} = 5 400$ Hz for (2), 5 700 Hz for (3), and 5 850 Hz for (5), comparable to those of other AlH_4 compounds [e.g., $(dmpe)_2 Mn(\mu-H)_2 Al(H)(\mu-H)_2 Al(H)(\mu-H)_2 Mn(dmpe)_2$, $\delta 65$ p.p.m., $w_{\frac{1}{2}}$ 4 888 Hz]. As the ²⁷Al n.m.r. signal of complex (3) is comparable to those of the dimeric aluminohydrides, it appears that there is no appreciable broadening of one Al signal by the quadrupole moment of the other Al atom. The large linewidths are hence a reflection of the low symmetry. Additional ²⁷Al n.m.r. data may in due course provide a useful probe in determining the structure of aluminohydride complexes.

Experimental

Microanalyses were by Pascher Laboratories, Bonn. Melting points were determined in sealed capillaries and are uncorrected. Infrared spectra were recorded in the region 4 000–200 cm⁻¹ on a Perkin-Elmer 683 grating spectrometer in Nujol mulls. N.m.r. spectra (in C_7D_8) were recorded on JEOL FX90Q or Bruker WM-250 spectrometers { δ in p.p.m. relative to SiMe₄ (¹H), 85% H₃PO₄ external (³¹P), and [Al(H₂O)₆]³⁺ external (²⁷Al)}. All manipulations were carried out under argon. Solvents were dried, distilled, and degassed before use.

Analytical data are given in Table 4.

2,3; 2,3-Di-µ-butoxo-1,2; 1,2; 3,4; 3,4-tetra-µ-hydrido-1,1,1,2,-3,4,4,4-octahydrido-1,1,1,4,4,4-hexakis(trimethylphosphine)-2,3dialuminium-1,4-ditungsten(IV), (1).-To a stirred suspension of $WCl_4(PMe_3)_3$ ⁷ (5 g, 9.03 mmol) in thf (80 cm³) was added LiAlH₄ (2.5 g, 65.87 mmol). The colour of the mixture quickly changed from red to orange-brown and gas was evolved. After stirring at room temperature for 10 min the mixture was heated and after refluxing for 48 h was allowed to cool to room temperature and the solvent removed under vacuum. The residue was extracted with boiling hexane $(4 \times 100 \text{ cm}^3)$, the yellow solution evaporated and the residue extracted again with toluene (2 \times 50 cm³). The extracts were reduced to ca. 20 cm³ and cooled to -20 °C affording several crops of bright yellow crystals. Yield: 1.5 g, 32%. I.r.: 1 770s, 1 700s, 1 610s, 1 450m, 1 435m, 1 420s, 1 300s, 1 280s, 1 240s, 1 130w, 1 110w, 1 090s, 1 040m, 1 010m, 950s, 865s, 820s, 775s, 740s, 730s, 715s, 685s, Table 3. Activation energies $(\Delta G^{\ddagger}/kJ \text{ mol}^{-1})$ for hydride exchange processes

		M-H = N		$AI-H \rightleftharpoons$ $AI(\mu-H)AI$	
	Compound	$T_{\rm c}^{\rm o}/^{\rm o}{\rm C}^{\rm a}$	ΔG^{*b}	$\dot{T}_{c}/^{\circ}C^{a}$	ΔG^{\dagger}
(1) (2) (3)	$[(Me_3P)_3H_3W(AIH_3OBu^n)]_2$ [(Me_3P)_3H_3W(AIH_4)]_2 [(Me_3P)_3H_3W]_2(AIH_5)	- 55 - 52 - 40	10.3, 11.1 10.1, 10.9 11.0, 11.9	-5	52.6
(4) (5)	$[(Me_2PhP)_3H_2Re(AlH_3OBu^n)]_2 [(Me_2PhP)_3H_2Re(AlH_4)]_2$	-65 -59	28.0 30.1	-6	51.3

^a Coalescence temperature. ^b Where there is an imbalance in the population of the hydride sites, *i.e.*, M-H/M(μ -H)Al \neq 1, two values for ΔG^{\ddagger} are given (see below).

 $M-H \stackrel{\Delta G_{A^{2}}}{\overleftarrow{\Delta G_{B^{2}}}} M(\mu-H)Al$

Table 4. Analytical data for new compounds

		Analysis (%) ^a		
	М.р.			
Compound	(°C)	С	Нb	Р
$[(Me_3P)_3H_3W(AlH_3OBu^n)]_2$	152	30.0	8.1	18.0
		(30.1)	(8.1)	(18.0)
$[(Me_3P)_3H_3W(AlH_4)]_2$	176	23.3	7.6	20.5
		(24.2)	(7.6)	(20.8)
$[(Me_3P)_3D_3W(A!D_4)]_7$	183	23.5	9.0	20.4
		(23.8)	(9.0)	(20.5)
$[(Me_3P)_3H_3W]_2(A H_5)$	118	25.0	7.7	21.4
		(25.0)	(7.5)	(21.6)
$(Me_3P)_3WH_4D_2$		25.8	8.0	22.1
		(25.7)	(8.3)	(22.1)
$[(Me_2PhP)_3H_2Re(AlH_3OBu^n)]_2$	156	47.7	6.8	12.7
		(47.7)	(6.7)	(13.2)
$[(Me_2PhP)_3H_2Re(AlH_4)]_2$	169	45.4	6.0	14.5
		(45.5)	(6.2)	(14.7)
$(Me_2PhP)_3ReH_3D_2$		47.0	6.5	15.0
		(47.5)	(6.6)	(15.3)

^a Required values are given in parentheses. ^b Deuterium was analysed as hydrogen.

Table 5. Crystal data, details of intensity measurement and structure refinement for $[(Me_3P)_3H_3W(AlH_3OBu^n)]_2$ (1) and $[(Me_3P)_3H_3-W]_2(AlH_5)$ (3)

Complex	(1)	(3)
Formula	$C_{16}H_{84}Al_{1}O_{1}P_{6}W_{1}$	C18H65AlP6W,
М	1 036.52	862.30
Crystal system	Orthorhombic	Monoclinic
a/Å	21.995(5)	10.204(1)
b/Å	11.277(3)	21.523(5)
c/Å	9.617(2)	16.540(2)
β́/°		93.52(2)
$U/Å^3$	2 381.2	3 625.9
Space group	P2,2,2	$P2_1/n$
$D_c/g \mathrm{cm}^{-3}$	1.44	1.58
Z	2	4
μ/cm^{-1}	51.86	63.5
$\theta_{\rm min,max}/^{\circ}$	1.5, 25.0	1.5, 25.0
T/K	275	255
Total data	2 419	6 808
Total unique data	2 400	6 602
Total observed data	1 992	4 356
Significance test	$F_{o} > 3\sigma(F_{o})$	$F_{o} > 4\sigma(F_{o})$
No. parameters	209	336
Weighting scheme parameter		
$g \text{ in } w = 1/[\sigma(F_o)^2 + gF_o^2]$	0.000 01	0.000 01
Final R	0.0393	0.0288
Final R'	0.0338	0.0271

Atom	х	У	Z	Atom	x	У	Z
W(1)	1 383(.5)	1 265(1)	2 197(1)	C(23)	1 289(12)	2 975(19)	5 432(17)
P(1)	1 960(2)	2 274(3)	408(4)	C(31)	2 195(9)	83(20)	5 207(22)
P(2)	1 027(2)	2 876(4)	3 628(4)	C(32)	1 599(11)	-1721(12)	3 541(19)
P(3)	1 508(2)	-139(4)	4 085(4)	C(33)	949(9)	-291(17)	5 410(19)
Al(1)	596(2)	513(4)	284(4)	O(1)	-212(4)	948(8)	372(9)
C(11)	2 254(8)	1 359(15)	-1.001(15)	$\mathbf{C}(1)$	-470(8)	2 104(13)	293(20)
C(12)	1 604(7)	3 418(13)	-651(15)	C(2)	-537(10)	2 389(17)	-1249(22)
C(13)	2 671(7)	3 056(16)	974(22)	C(3)	-758(11)	3 531(21)	-1.397(22)
C(21)	196(8)	2 974(20)	3 849(24)	C(4)	-874(16)	3 851(28)	-2756(25)
C(22)	1 179(9)	4 418(14)	2 978(19)			()	_ / (((())

Table 6. Fractional atomic co-ordinates (\times 10⁴) for (1)

Table 7. Fractional atomic co-ordinates (\times 10⁴) for (3)

Atom	х	у	Ζ	Atom	x	у	Z
W (1)	6 975(0.5)	2 772(0.5)	9 183(0.5)	C(23)	8 994(12)	2 981(7)	7 528(7)
W(2)	5 759(0.5)	4 755(0.5)	7 826(0.5)	C(31)	6 768(9)	2 689(6)	11 375(5)
Al(1)	5 362(2)	3 622(1)	8 456(1)	C(32)	9 347(8)	2 598(6)	10 941(7)
P(1)	5 010(2)	2 147(1)	9 364(1)	C(33)	8 028(12)	3 752(5)	10 867(7)
P(2)	9 080(2)	2771(1)	8 600(2)	C(41)	8 657(9)	4 879(8)	6 633(8)
P(3)	7 770(2)	2 942(1)	10 561(1)	C(42)	6 413(12)	5 361(6)	5 824(6)
P(4)	6 885(2)	4 794(1)	6 588(1)	C(43)	6 747(12)	4 094(6)	5 939(7)
P(5)	7 194(2)	5 404(1)	8 686(2)	C(51)	7 471(15)	6 207(6)	8 393(10)
P(6)	3 493(2)	4 733(1)	7 283(1)	C(52)	8 827(10)	5 132(6)	8 962(10)
C(11)	5 275(8)	1 378(4)	9 828(7)	C(53)	6 647(14)	5 531(9)	9 713(8)
C(12)	3 687(7)	2 451(5)	9 958(6)	C(61)	2 895(9)	5 438(5)	6 746(8)
C(13)	4 081(9)	1 933(5)	8 427(6)	C(62)	2 971(10)	4 125(6)	6 558(7)
C(21)	10 007(9)	2 046(5)	8 583(7)	C(63)	2 221(7)	4 639(5)	7 998(6)
C(22)	10 357(9)	3 316(5)	8 973(9)				

600s cm⁻¹. N.m.r.: ¹H, 5.0 (2 H, br s, Al–H), 4.18 [4 H, t, J(H–H) = 6.7, Al–OCH₂], 1.65 [54 H, d, J(P–H) = 7.7, P–CH₃], 1.13 (8 H, m, Al–OCH₂CH₂CH₂), 0.98 [6 H, t, J(H–H) = 7.1, Al–OCH₂CH₂CH₂CH₃], -5.28 [10 H, br q, J(P–H) = 27.1 Hz, W–H and W–H–Al]; ³¹P-{¹H}, -23.56 [s, with ¹⁸³W satellites, J(P–W) = 195.0 Hz]; ²⁷Al-{¹H}, 120 ($w_{\frac{1}{2}}$ = 1740 Hz).

1,2; 1,2;2,3; 2,3;3,4; 3,4-Hexa-µ-hydrido-1,1,1,2,3,4,4,4-octahvdrido-1,1,1,4,4,4-hexakis(trimethylphosphine)-2,3-dialuminium-1,4-ditungsten(IV), (2).-To a stirred suspension of LiAlH₄ (1 g, 26.4 mmol) in Et₂O (60 cm³) was added WCl₄(PMe₃)₃ (3.6 g, 6.5 mmol). The colour of the mixture quickly changed from red to bright yellow and gas was evolved. After 2 h at room temperature the solution was orange and gas evolution had ceased. The mixture was evaporated and the residue extracted with boiling hexane $(4 \times 100 \text{ cm}^3)$. The resulting yellow solution was evaporated and the residue extracted with toluene (60 cm³). On reducing the volume of the solution and cooling to -20 °C several crops of bright yellow crystals were obtained. Yield: 2.5 g, 86%. I.r.: 1 785s, 1 765s, 1 700-1 650s, 1 600s, 1 415s, 1 405s, 1 360s, 1 350s, 1 295s, 1 290s, 1 275s, 1 190-1 100s, 940s, 830s, 715s, 665s, 625s, 600m, 565s, 510w, 450s, 425m cm⁻¹. N.m.r.: ¹H, 5.1 (4 H, br s, Al-H and Al-H-Al), 1.56 $[54 \text{ H}, d, J(P-H) = 7.9, P-CH_3], -5.26 [10 \text{ H}, \text{ br } q, J(P-H) = 25.4 \text{ Hz}, W-H \text{ and } W-H-AI]; {}^{31}P-{}^{1}H}, -23.19 [s \text{ with } {}^{183}W$ satellites J(P-W) = 199.4 Hz; ²⁷Al-{¹H}, 70 ($w_{\pm} = 5400 \text{ Hz}$).

The deuteriated analogue can be made by the above method using LiAlD₄. Yield 67%. I.r.: 1 417m, 1 292m, 1 280m, 1 278s, 1 270s, 1 260m, 1 232w, 1 193w, 1 150m, 1 096m, 1 016m, 995m, 940vs, 850w, 800m, 725m, 716s, 704m, 673s, 600s, 550w, 521w, 440m, 416m cm⁻¹. N.m.r.: ¹H, 1.52 [d, J(P-H) = 8.0 Hz, P-CH₃]; ³¹P-{¹H}, -23.56 [br m, J(P-D) not measurable, ¹⁸³W satellites, J(P-H) = 199.2 Hz]. 1,2; 1,2; 2,3; 2,3-*Tetra*- μ -*hydrido*-1,1,1,2,3,3,3-*heptahydrido*-1,1,1,3,3,3-*hexakis*(*trimethylphosphine*)-2-*aluminium*-1,3-*di*-*tungsten*(1v), (3).—To a toluene (50 cm³) solution of (2) (0.74 g, 0.83 mmol) was added tmen (0.2 cm³). After stirring for several hours the colour darkened slightly. Removal of the solvent followed by extraction into hexane (2 × 20 cm³), and cooling gave bright yellow crystals. Yield: 0.51 g, 70%. I.r.: 1 750s, 1 720m, 1 625br m, 1 550s, 1 410m, 1 290m, 1 270s, 1 260s, 1 090br s, 1 015s, 940vs, 855m, 800s, 770m, 720m, 670w cm⁻¹. N.m.r.: ¹H, 5.0 (1 H, br s, Al–H), 1.64 [54 H, d, *J*(P–H) = 7.0, P–CH₃], -4.08 [10 H, br q, *J*(P–H) = 27.0 Hz, W–H and W(μ -H)₂Al], ³¹P-{¹H}, -20.40 [s with ¹⁸³W satellites, *J*(W–P) = 194.0 Hz]; ²⁷Al-{¹H}, 70 ($w_{\pm} = 5$ 700 Hz).

2,3; 2,3-Di-µ-butoxo-1,1,1,4,4,4-hexakis(dimethylphenylphosphine)-1,2; 1,2; 3,4; 3,4-tetra-µ-hydrido-1,1,2,3,4,4-hexahydrido-2,3-dialuminium-1,4-dirhenium(III), (4).-To a stirred suspension of LiAlH₄ (1.5 g, 39.5 mmol) in thf (60 cm³) was added ReCl₃(PMe₂Ph)₃¹² (4 g, 5.7 mmol). The colour of the mixture slowly changed from orange to pale yellow and gas was evolved. After stirring for 30 min the mixture was heated and after refluxing for 48 h the mixture was allowed to cool to room temperature and the solvent removed. The pale yellow residue was evacuated for 48 h, then extracted with hexane and the extract evaporated. The residue was extracted with toluene $(2 \times 50 \text{ cm}^3)$, which was reduced in volume and cooled to -78 °C to give pale yellow crystals. Yield: 1.2 g, 30%. I.r.; 3 080m, 3 060s, 3 015m, 2 970s, 1 925m, 1 880m, 1 800s, 1 740s, 1 575m, 1 495m, 1 475s, 1 445s, 1 415m, 1 400m, 1 330m, 1 315m, 1 290s, 1 280s, 1 240w, 1 185w, 1 170w, 1 160w, 1 125m, 1 100s, 1 075s, 1 030m, 1 000s, 970m, 945s, 920s, 905s, 870s, 860m, 845s, 835m, 805w, 780s, 750s, 725s, 700s, 670s, 635s, 605s, 530s, 505s, 450s, 425s, 415s cm⁻¹. N.m.r.: ¹H, 7.65, 7.15, 7.08 (30 H, m, Ph), 5.0 (2 H, br s, Al-H), 4.13 [4 H, t, J(H-H) = 7.5,

Al-O-CH₂], 1.74 [36 H, d, J(P-H) = 7.1, P-CH₃], 1.35 (8 H, m, Al-O-CH₂CH₂CH₂), 1.01 [6 H, t, J(H-H) = 6.7, Al-O-CH₂CH₂CH₂CH₃], -8.68 [8 H, br q, J(P-H) = 17.8 Hz, Re-H and Re-H-Al]; ³¹P-{¹H}, -11.65 (s); ²⁷Al-{¹H}, 120 (w₁ = 1 800 Hz).

1,1,1,4,4,4-Hexakis(dimethylphenylphosphine)-1,2; 1,2; 2,3; 2,3; 3,4-hexa-µ-hydrido-1,1,2,3,4,4-hexahydrido-2,3-dialu-3,4; minium-1,4-dirhenium(III), (5).—To a stirred suspension of $LiAlH_4$ (1.0 g, 26.3 mmol) in thf (50 cm³) was added $\text{ReCl}_3(\text{PMe}_2\text{Ph})_3$ (3.6 g, 5.1 mmol) at -78 °C. On warming to room temperature the solution became lighter in colour and gas was evolved. After stirring at room temperature for 12 h the solvent was removed and the yellow residue extracted with toluene $(2 \times 20 \text{ cm}^3)$, reduction in volume and cooling to - 78 °C yielded a pale crystalline solid. Yield: 0.9 g, 30%. I.r.: 3 080m, 3 065s, 3 015m, 2 960s, 1 920m, 1 880m, 1 800s, 1 765m, 1 745s, 1 575m, 1 500m, 1 470m, 1 445m, 1 415m, 1 400m, 1 310m, 1 290s, 1 285s, 1 170w, 1 160w, 1 100s, 1 070s, 1 030m, 1 000s, 965m, 945m, 920s, 905s, 870s, 840s, 830m, 750s, 675s, 635s, 600s, 530m, 500m, 450m, 425s cm⁻¹. N.m.r.: ¹H, 7.65, 7.17, 7.08 (30 H, m, P-Ph), 5.0 [4 H, br s, Al-H and Al(µ-H)₂Al], 1.76 $[36 \text{ H}, \text{ d}, J(P-H) = 7.0, P-CH_3], -8.67 [8 \text{ H}, \text{ br } q,$ J(P-H) = 16.5 Hz, Re-H and Re(μ -H)₂Al]; ${}^{31}P-{}^{1}H$, -11.60(s); ²⁷Al-{¹H}, 60 ($w_{\pm} = 5\,850$ Hz).

Reaction of Aluminopolyhydrides with D₂O.—To an ether solution of either (1), (2), or (3) at -78 °C was added D₂O in excess. After warming to room temperature the solvent was removed and the orange solid extracted with hexane. The volume was reduced and on cooling (-20 °C) white crystals of WH₄D₂(PMe₃)₃ [cf. WH₆(PMe₃)₃⁹] were obtained. I.r.: 1 740br s, 1 420s, 1 300m, 1 280s, 1 260, 950vs, 860m, 725s, 680s cm⁻¹. N.m.r.: ¹H, 1.57 (27 H, br d, P-CH₃), -2.79 [6 H, q of quin, J(P-H) = 36.6, J(D-H) = 3.4, with ¹⁸³W satellites, J(W-H) = 26.8 Hz]; ³¹P-{¹H}, -18.25 [quin, J(P-D) = 5.7, with ¹⁸³W satellites, J(P-W) = 73 Hz].

Under the same conditions the reaction of (4) or (5) with D_2O on work-up yields white crystals of $\text{ReH}_3D_2(\text{PMe}_2\text{Ph})_3$ [cf. $\text{ReH}_5(\text{PMe}_2\text{Ph})_3^{13}$]. I.r.: 3 080w, 1 950w, 1 930w, 1 905m, 1 850m, 1 440s, 1 330w, 1 310m, 1 290w, 1 270s, 1 090vs, 1 075m, 1 030s, 850m, 800s, 750vs, 700vs, 600w, 535s, 510m, 450m cm⁻¹. N.m.r.: ¹H, 7.10 (15 H, br m, Ph), 1.67 [18 H, d, J(P-H) = 7.0, P-CH₃], -6.20 [3 H, q, J(P-H) = 19.0 Hz, Re-H]; ³¹P-{¹H}, -5.60 (br m).

Crystallography.—Crystals of both compounds were mounted under argon in glass capillaries. Unit-cell parameters and intensity data were obtained by following previously detailed procedures,¹⁸ using a CAD4 diffractometer operating in the ω -2 θ scan mode with graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.710$ 69 Å). Semi-empirical absorption corrections using azimuthal scan data for three reflections in each case. Further experimental data are given in Table 5.

The structures were solved via routine heavy-atom procedures and refined by full-matrix least-squares methods. Non-hydrogen atoms were all assigned anisotropic thermal parameters. Location and attempted refinement of the hydrogen atoms caused some difficulties in both structures, but especially for compound (1). In this case a number of peaks occurred in the difference map which gave reasonable W–H and Al–H distances, and which refined acceptably in terms of isotropic thermal parameters, but which were very unstable in positioning. Various choices could be made to satisfy the required number of hydrogens giving either five-co-ordination (both trigonal bipyramidal and square pyramidal) and $(\mu-H)_2$ bridging, or very distorted six-cordination and $(\mu-H)_3$ bridging, for the aluminium atom. However, in view of the uncertainties in the H positions in this structure we have not included any of the metal-bonded hydrogens in the final refinement. For compound (3), it was possible to identify and successfully refine (*i.e.* with sensible U_{iso} parameters and reasonable bond distances) five hydrogens attached to the central aluminium, one terminal and two in each of the two Al ··· W bridges. Difficulties were again met in defining hydrogens terminal to tungsten and none was included in the final refinement. In both structures, methyl hydrogens were included in idealised positions and the CH₃ groups subjected to constrained refinement (AFIX 35 in SHELX 76¹⁹). Details of the refinements are given in Table 5. Final atomic co-ordinates are given in Tables 6 and 7. Atomic scattering factors and anomalous scattering parameters are as given in ref. 18.

Acknowledgements

We thank the S.E.R.C. for studentships (to D. L. and A. R. B.) and for the provision of diffractometer and computing facilities. We are indebted to Ms. Sue Johnson and Mr. R. N. Sheppard for assistance with ²⁷Al n.m.r. measurements.

References

- 1 T. J. Marks and J. R. Kolb, Chem. Rev., 1977, 77, 263; A. Hajos, 'Complex Hydrides,' Elsevier, New York, 1979.
- 2 (a) P. C. Wailes and H. Weigold, J. Organomet. Chem., 1970, 24, 405; (b) J. G. Kenworthy, J. Myatt, and M. C. R. Symons, J. Chem. Soc. A, 1971, 1020; (c) J. A. Labinger and K. S. Wong, J. Organomet. Chem., 1979, 170, 373.
- 3 T. J. McNeese, S. S. Wreford, and B. M. Foxman, J. Chem. Soc., Chem. Commun., 1978, 500.
- 4 G. S. Girolami, G. Wilkinson, M. Thornton-Pett, and M. B. Hursthouse, J. Am. Chem. Soc., 1983, 105, 6752; C. G. Howard, G. S. Girolami, G. Wilkinson, M. Thornton-Pett, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1985, 921.
- 5 A. R. Barron, M. Motevalli, M. B. Hursthouse, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1985, 664.
- 6 (a) E. B. Lobkovskii, G. L. Soloveychik, A. I. Svisov, B. M. Bulychev,
 A. I. Gusev, and N. I. Kirillova, J. Organomet. Chem., 1984, 265, 167;
 (b) V. Belsky, A. B. Erofeev, B. M. Bulychev, and G. L. Solovechik, ibid., p. 123; ibid., 268, 107.
- 7 R. P. Sharp and R. R. Schrock, J. Am. Chem. Soc., 1980, 102, 1436.
- 8 W. A. Skupiński, J. C. Huffman, J. W. Bruno, and K. G. Caulton, J. Am. Chem. Soc., 1984, 106, 8128.
- 9 E. Wiberg and E. Amberger, 'Hydrides of the Main Groups I-IV,' Elsevier, New York, 1971, (a) p. 403, (b) p. 406.
- 10 M. B. Hursthouse, D. Lyons, M. Thornton-Pett, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1983, 476; D. Lyons and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1985, 587.
- 11 K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and K. M. Abdul-Malik, J. Chem. Soc., Dalton Trans., 1981, 1204.
- 12 J. Chatt, G. J. Leigh, D. M. P. Mingos, and R. J. Paske, J. Chem. Soc. A, 1968, 2636.
- 13 P. G. Douglas and B. L. Shaw, Inorg. Synth., 1977, 17, 64.
- 14 (a) J. A. Pople, W. G. Schneider, and H. J. Bernstein, 'Highresolution Nuclear Magnetic Resonance,' McGraw-Hill, New York, 1959, p. 223; (b) H. Shanan-Atidi and K. H. BarEli, J. Phys. Chem., 1970, 74, 961.
- 15 A. R. Barron and G. Wilkinson, following paper.
- 16 R. K. Harris and B. E. Mann, 'N.m.r. and the Periodic Table,' Academic Press, London, 1978.
- 17 R. Benn, A. Rufinska, H. Lehmkuhl, E. Janssen, and C. Kruger, Angew. Chem., Int. Ed. Engl., 1983, 22, 779.
- 18 R. A. Jones, K. M. A. Malik, M. B. Hursthouse, and G. Wilkinson, J. Am. Chem. Soc., 1979, 101, 4128.
- 19 SHELX 76, G. M. Sheldrick, University of Cambridge, 1976.

Received 26th March 1985; Paper 5/503