Contrasts in the Hydrolysis of VOCI₃ and VO(NO₃)₃: A Multinuclear Magnetic Resonance Study[†]

Richard C. Hibbert* and Norman Logan

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD Oliver W. Howarth Department of Chemistry, University of Warwick, Coventry CV4 7AL

Controlled hydrolysis of VO(NO₃)₃ in CH₃CN or CH₃NO₂ first gives the dimer V₂O₃(NO₃)₄, then a complex mixture of polymeric species. In contrast, the hydrolysis of VOCl₃ in CH₃CN gives $[VO_2Cl_2]^-$, together with some $[VOCl_4]^-$. The ion $[VO_2Cl_2]^-$ has also been prepared independently, and then converted into $[VO_2Cl(NO_3)]^-$ and $[VO_2(NO_3)_2]^-$. Species have been characterised by ⁵¹V, ¹⁷O, ¹⁵N, and ¹⁴N n.m.r. spectroscopy, and by stoicheiometry. The ⁵¹V and ¹⁷O chemical shifts are consistent with the anticipated bonding.

Although the aqueous chemistry of vanadium(v) has been extensively studied,¹ notably by ⁵¹V n.m.r. spectroscopy,² very little has been reported until recently concerning species existing under highly acidic conditions. The ion $[VO_2(OH_2)_n]^+$ is the only species observed in aqueous acid, although Begun and coworkers ³ have presented evidence for dimeric species in very concentrated aqueous H_2SO_4 and $HCIO_4$. They proposed a structure based on either $[V_2O_3]^{4+}$ or $[V_2O_4]^{2+}$, and preferred the former. A qualitative ⁵¹V n.m.r. study has also been made⁴ of the alcoholysis products of VOCl₃. The present study uses not only VOCl₃ in various solvents,

The present study uses not only VOCl₃ in various solvents, but also VO(NO₃)₃, which can be prepared as a pure liquid ⁵ in anhydrous form. Controlled hydrolysis of these reactive compounds is a plausible route to novel vanadium(v) species, some of which can be prepared independently to assist characterisation. The reactions investigated here are outlined in the Scheme.

Experimental

N.m.r. spectra were obtained in the Fourier-transform mode on either a Bruker WM250 instrument operating at 65.79 MHz (⁵¹V) and 18.07 MHz (¹⁴N) or a Bruker WH400 operating at 105.12 MHz (⁵¹V), 54.24 MHz (¹⁷O), 40.56 MHz (¹⁵N), and 28.91 MHz (¹⁴N). Vanadium, oxygen, and nitrogen shifts were referred to external VOCl₃, water, and the nitrate resonance of 5 mol dm⁻³ NH₄NO₃ in 2 mol dm⁻³ HNO₃ respectively. The ⁵¹V shifts were reproducible to within 2 p.p.m., ¹⁷O shifts to 5 p.p.m., and nitrogen shifts to 1 p.p.m. The ⁵¹V n.m.r. spectra required 4 000-16 000 transients, ¹⁴N spectra 40-400 transients, and ¹⁵N spectra 100-1000 transients. At 54.22 MHz it was impossible to stimulate the nitrate and vanadyl oxygens of VO(NO₃)₃ equally and simultaneously and so the ¹⁷O n.m.r. spectra of the two different types of oxygen were observed separately.

Infrared spectra between 4 000 and 400 cm^{-1} were recorded in a solution cell with silver chloride windows using a Perkin-Elmer 577 spectrometer.

The compound VO(NO₃)₃ was prepared by reaction of V₂O₅ with N₂O₅⁵ and isolated *in vacuo* (10⁻² Torr) at 60 °C; 5%¹⁵Nenriched VO(NO₃)₃ was prepared from enriched N₂O₅. The enriched N₂O₅ was prepared by dehydration of 100% HNO₃ with P₄O₁₀. The enriched 100% HNO₃ had previously been prepared by vacuum distillation (10⁻² Torr) of a mixture of 5% ¹⁵N-enriched KNO₃ (Amersham International) and 98% H_2SO_4 . The salt NEt₄Cl (Fluka) was dehydrated *in vacuo* (10⁻⁴ Torr) at 60 °C until it sublimed. Vanadyl trichloride (Aldrich) and 20 atom %¹⁷O-enriched water (Amersham International) were used as supplied. Acetonitrile was dried over molecular sieves (type 4A), refluxed with CaH₂, and fractionated before use. Nitromethane and dichloromethane were dried over molecular sieves (type 4A) and fractionated before use.

Quantitative hydrolysis experiments were carried out by adding known weights of a solution of known water content to a solution containing a known amount of VOX₃ ($X = NO_3$ or Cl). Quantitative experiments involving AgNO₃ were carried out by taking known weights of AgNO₃ and [NBu₄][VO₂Cl₂], dissolving them separately (in either MeCN or CH₂Cl₂), and then mixing the two solutions.

The previously unreported tetrabutylammonium salt of dichlorodioxovanadate(v), $[NBu_4][VO_2Cl_2]$, was obtained by a method analogous to the literature preparation⁶ of $[MPh_4]-[VO_2Cl_2]$ (M = As or P) (Found: C, 48.4; H, 9.2; N, 3.5. $C_{16}H_{36}Cl_2NO_2V$ requires C, 48.5; H, 9.2; N, 3.5%). The salts $[AsPh_4][VO_2Cl_2]$ and $[AsPh_4][VO_2F_2]$ were prepared by literature methods.⁶ Solutions of $[VOCl_4]^-$ were generated by the addition of NEt_4Cl to solutions of $VOCl_3$ in MeCN.⁷

Results and Discussion

The Table summarises the species obtained, together with their chemical shifts where measurable. Many of these shifts represent the first reported example of their chemical kind. Some ¹⁷O shifts for the hydrolysis products may be obscured by the resonance at δ ca. 450 due to HNO₃; unfortunately, this cannot be avoided by addition of H₂¹⁷O, because of chemical exchange. Separate ¹⁵N resonances for HNO₃ and V₂O₃(NO₃)₄ were observed only at -20 °C, which indicates a fairly rapid exchange of the nitrato-ligands with HNO₃. In contrast, no such exchange was observed with VO(NO₃)₃.

Nitrato-species.—The results of the initial hydrolysis are shown in Figures 1 and 2. Integration of the resonances, together with the measured stoicheiometry, are entirely and solely consistent with the reaction (1) proceeding to up to

$$2\text{VO}(\text{NO}_3)_3 + \text{H}_2\text{O} \xrightarrow{\text{MeCN or } \text{MeNO}_2} V_2\text{O}_3(\text{NO}_3)_4 + 2\text{HNO}_3 \quad (1)$$

ca. 60% removal of VO(NO₃)₃ in MeNO₃. Beyond, this, further species appear, in exchange with each other. These cannot at present be readily identified except to note that the

[†] Non-S.I. unit employed: Torr \approx 134 Pa.

Scheme. (i) Water (0.5 mol); (ii) water; (iii) Cl⁻; (iv) AgNO₃

Figure 1. N.m.r. spectra at 294 K of the VO(NO₃)₃-water (mole ratio 1:0.3) system in MeNO₂: (a) ⁵¹V and (b) ¹⁷O

dependence of their formation upon concentration suggests that they are polymeric. Here we concur with Begun and coworkers³ in their conclusions regarding sulphuric acid media. However, our unequivocal observation of $\delta_v = -710$ for $V_2O_3(NO_3)_4$, together with other more extensively hydrolysed products at higher δ_v , tilts the balance of the argument strongly towards an underlying $[V_2O_4]^{2+}$ formulation for the species observed by Begun and co-workers³ at $\delta_v = -640$ in 13 mol dm⁻³ H₂SO₄

On the basis of i.r. spectra we propose that $V_2O_3(NO_3)_4$ is an oxygen-bridged species, even though the spectra are complicated by many bands due to $VO(NO_3)_3$, HNO_3 , and acetonitrile or nitromethane. In the latter solvent, bands attributed only to $V_2O_3(NO_3)_4$ were observed at 852 and 960 cm⁻¹ (a shoulder), and are tentatively assigned to v(O-V-O) and v(V-O-V) respectively.³ The appearance of this latter band indicates that the V-O-V bridge is not linear. Similar bands, together with those of co-ordinated nitrate, were observed in more extensively hydrolysed solutions containing only polymeric species. The chemical shift of $[VO_2(NO_3)_2]^-$ (-543) is very similar to that of VO_2^+ (aq) ($\delta_V = -546$),⁸ perhaps suggesting that here the nitrate moieties are not strongly co-ordinated. There is also a significant dependence of chemical shift upon solvent with most

Figure 2. Nitrogen-15 n.m.r. spectrum, at 250 K, of the $VO(NO_3)_3$ -water (mole ratio 1:0.07) system in MeNO₂

of the nitrato-species, entirely consistent with the known ability of acetonitrile to enter the first co-ordination sphere in $VO(NO_3)_3$.⁹

Chloro-species.--Vanadyl trichloride in acetonitrile gives a single peak at $\delta_v = -117$, ascribed elsewhere¹⁰ to VOCl₃(NCCH₃)₂. Gradual addition of water at room temperature shifts this resonance progressively towards a limiting value of -365, identical to that found for $[VO_2Cl_2]^$ prepared independently (see Experimental section) and dissolved in acetonitrile. Both solutions also showed i.r. absorptions at 965 $[v_{asym}(VO_2)]$, 957 $[v_{sym}(VO_2)]$, and 452 cm⁻¹ [v(V-Cl)]. The ion $[VOCl_4]^-$, the ⁵¹V shift of which has recently been reported,⁷ gave the same hydrolysis product. However, in this case exchange was slower, with separate resonances for $[VOCl_4]^-$ and $[VO_2Cl_2]^-$ observable in all stages of hydrolysis. Thus, no evidence exists in the chlorosystem for polymeric or even dimeric species other than the formation of a darkly coloured precipitate on hydrolysis of VOCl₃ solutions of high concentration. Oxygen-17 chemical shift values were obtained (see Table), for the first time, by using 20% $H_2^{17}O$ in the hydrolysis. The values for $[VO_2Cl_2]^-$ and $[VO_2F_2]^-$ are of especial interest because ${}^{17}O$ n.m.r.

Table. Chemical shifts of species described, together with those of some related species

Species	δ(⁵¹ V)	δ(¹⁷ O)	δ(¹⁵ N)	δ(¹⁴ N)	Ref.
VO(NO ₃) ₃	- 745 <i>ª</i>	1 399, 449 4		- 16.8 ª	Ь
	– 746°	1 398 °	-18.0°	-20.0°	b
	-749 <i>ª</i>	1 3954	-18.9^{d}	- 18.1 ^d	b
V ₂ O ₃ (NO ₃) ₄	- 724 °	1 384 °	-11.0°		b
	-710^{d}	1 3654	-16.7^{d}		b
[VO,(NO,),] ⁻	- 543 ^{c.e}			- 10.8 °	b
[VO,CI(NO,)]-	-472 ^{c,e}			-13.6°	b
[vo,cl,]-	- 365 ^{c.e}	1 182			b, 7
VOČI,	$0^{a} - 117^{c}$	1 327 "			b
[VOCÍ]] ⁻	42.5°	1 272 °			<i>b</i> , 7
VOF,	– 793 °				b
[VO,F,]-	- 593 °	1 109°			<i>b</i> , 7
$VO_{2}^{+}(aq)$	- 546	ſ			8
Polymeric nitrato-species	ca 700	ca. 1 320°		ſ	Ь
	to -610°				
HNO ₃		444 ^{с.4}	- 38.4 ^d	-40.0^{d}	b

^a Pure liquid. ^b This work. ^c In acetonitrile. ^d In nitromethane. ^e In dichloromethane. ^f Not observed, probably due to exchange with solvent.

measurements on aqueous VO_2^+ have not been reported, presumably because of rapid oxygen exchange with solvent.

Addition of solid AgNO₃ to a solution of $M[VO_2Cl_2] (M = AsPh_4^+ of NBu_4^+)$ in MeCN or $CH_2Cl_2 (\delta_V = -543)$ caused immediate precipitation of AgCl. New ⁵¹V peaks appear at $\delta -472$ and -543. The latter peak alone remained when the mole ratio AgNO₃: $M[VO_2Cl_2]$ exceeded 2.0:1. The use of very small amounts of AgNO₃ resulted in the formation of the resonances at $\delta_V -472$ without that at $\delta_V -543$. We assign the resonances at $\delta_V -472$ to $M[VO_2Cl(NO_3)]$ and that at $\delta_V -543$ to $M[VO_2(NO_3)_2]$ as noted above. Integrations of the resonances in the ¹⁴N spectra when $M = NBu_4^+$ were fully consistent with the production of $[VO_2(NO_3)_2]^-$ and $[VO_2(NO_3)_2]^-$. Both $[VO_2Cl(NO_3)]^-$ and $[VO_2(NO_3)_2]^-$ give rise to ¹⁴N resonances in positions characteristic of covalent nitrate ¹¹ (see Table).

Chemical Shifts.—The ⁵¹V shift of VO(NO₃)₃ is close to that for VOF₃, probably because either ligand forms only a weakly covalent bond with V, and so has little effect on its temperatureindependent paramagnetism (t.i.p.). Addition of a second oxoligand does contribute to t.i.p. at the vanadium centre, thus increasing δ_{v} . At the same time, the oxygens compete to some extent for the empty d orbitals on vanadium, despite the probability that they minimise such competition by adopting a cis configuration. This lowers δ_0 . According to a simple correlation,² $\delta_0 \approx 1400$ corresponds to a V–O bond order of 2.0, dropping to 1.8 for $[VO_2Cl_2]^-$ ($\delta_0 = 1.182$) and 1.7 for $[VO_2F_2]^-$ ($\delta_0 = 1$ 109). Vibrational spectroscopy suggests a bond order of 1.9 for the latter two ions.⁶ All these values are higher than the value of 1.5 suggested by a simple valence formalism with the negative charge solely on oxygen, but lower than that (2.0) with all the charge on the halogen. They are also a little higher than found in the corresponding diperoxocomplexes.12

The replacement of NO₃⁻ by Cl⁻ has only a small effect on δ_{0} , in a direction implying some Cl \rightarrow V charge transfer. However, it increases δ_{V} markedly, in approximate proportion to the number of bound chlorines, providing evidence of the much greater charge transfer in low-lying excited states.

Conclusions

The very different hydrolysis reactions of $VO(NO_3)_3$ and $VOCl_3$ demand explanation. Both these apparently four-co-

ordinate compounds are unusual in that vanadium(v) is normally five- or six-co-ordinate under acidic conditions: VO(NO₃)₃ in fact has three bidentate nitrato-ligands,¹³ and VOCl₃ shows its co-ordination unsaturation by readily forming [VOCl₄]⁻ and VOCl₃(NCCH₃)₂. Each V in V₂O₃(NO₃)₄ will have one terminal and one bridging O ligand, probably arranged mutually *cis* as argued above. Its remaining four coordination positions could then be occupied by two bidentate nitrates, one of which could become monodentate upon further polymerisation. The dimeric molecule is novel even for nitratocomplexes, for these are normally monomeric [*e.g.*, Ti(NO₃)₄¹⁴ and VO(NO₃)₃¹³] or extensively polymerised [*e.g.*, Cu(NO₃)₂¹⁵]. The only known nitrato-oligomer is tetrameric, Be₄O(NO₃)₆.¹⁶

Chloride, in contrast, cannot chelate. Also, most chlorocomplexes reported here carry negative charge, which will further inhibit polymerisation. It remains to be seen, however, whether polymeric chloro-complexes of vanadium(v) can be made when these two restraints are minimised.

Acknowledgements

We thank the S.E.R.C. for an allocation of high-field n.m.r. time (at Warwick University), the University of Nottingham for a teaching fellowship (to R. C. H.), and also Dr. E. Curzon (Warwick University) and Mr. I. Marshall (Nottingham University) for their help in recording the n.m.r. spectra.

References

- 1 M. T. Pope and B. W. Dale, Q. Rev. Chem. Soc., 1968, 22, 527.
- 2 E. Heath and O. W. Howarth, J. Chem. Soc., Dalton Trans., 1981, 1105.
- 3 C. Madic, G. M. Begun, R. L. Hahn, J. P. Launay, and W. E. Theissen, *Inorg. Chem.*, 1984, 23, 469.
- 4 A. A. Konovalova, S. V. Bainova, V. D. Kopanev, and Yu. A. Buslaev, Koord. Khim., 1982, 8, 1211.
- 5 M. Schmeisser, Angew. Chem., 1955, 67, 493.
- 6 E. Ahlborn, E. Diemann, and A. Muller, J. Chem. Soc., Chem. Commun., 1972, 378.
- 7 R. C. Hibbert, J. Chem. Soc., Chem. Commun., 1985, 317.
- 8 O. W. Howarth and R. E. Richards, J. Chem. Soc., 1965, 864.
- 9 F. W. B. Einstein, E. Enwell, D. M. Morris, and D. Sutton, *Inorg. Chem.*, 1971, 10, 678.
- 10 Yu. A. Buslaev, V. D. Kopanev, A. A. Konovalova, S. V. Bainova, and V. P. Tarasov, Dokl. Chem. (Eng. Transl), 1978, 243, 583.

- 11 K. F. Chew, M. A. Healy, M. I. Khalil, N. Logan, and W. Derbyshire, J. Chem. Soc., Dalton Trans., 1975, 1315.
- 12 A. T. Harrison and O. W. Howarth, J. Chem. Soc., Dalton Trans.,
- 1985, 1173. 13 C. C. Addison, D. W. Amos, D. Sutton, and W. H. Hoyle, J. Chem. Soc. A, 1967, 808.
- 14 C. D. Garner and S. C. Wallwork, J. Chem. Soc. A, 1966, 1496.
- 15 S. C. Wallwork, *Proc. Chem. Soc.*, 1959, 311.
 16 M. J. Haley, Ph.D. Thesis, Nottingham University, 1975.

Received 4th March 1985; Paper 5/356