Reactions of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right.$] with Diphosphines; Synthesis, Reactivity, and the X-Ray Crystal Structure of [$\left.\left.\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}_{\{ } \mathrm{Ph}_{2} \mathbf{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right\}\right] \dagger$

Brian F. G. Johnson, Jack Lewis,* Paul R. Raithby, Maria J. Rosales, and Dorothy A. Welch University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

The reaction of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ with 1,2-bis(diphenylphosphino) ethane (dppe) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux affords the addition product [$\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}($ dppe $\left.)\right]$ (1). An X-ray crystal structure shows that the Os_{s} square-pyramidal geometry of the parent carbide has opened up to give a 'wingtip-bridged butterfly' arrangement with the carbido-carbon atom lying at the centre of the metal framework. The diphosphine ligand co-ordinates in a unidentate fashion to the Os atom bridging the 'wingtips' of the 'butterfly' leaving the second phosphorus atom pendant. Reaction of complex (1) with further $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ gives a complex which has been tentatively assigned as the adduct
$\left[\left\{\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right\}_{2}\right.$ (dppe)] (2).

The chemistry of the carbido-clusters [$\left.\mathrm{M}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ ($\mathrm{M}=\mathrm{Ru}$ or Os) with nucleophilic reagents has been extensively studied. ${ }^{1}$ These reactions generally involve the formation of an adduct $\left[\mathrm{M}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{L})\right]\left(\mathrm{L}=\mathrm{MeCN},{ }^{2} \mathrm{I}^{-},{ }^{3}\right.$ pyridine, ${ }^{4} \mathrm{CO},{ }^{5}$ or $\mathrm{PR}_{3}{ }^{2}$) which adopts an open, carbide-centred, 'wingtip-bridged butterfly' metal geometry and may subsequently lose CO to form a substituted product $\left[\mathrm{M}_{5}(\mathrm{CO})_{14} \mathrm{C}(\mathrm{L})\right]$ in which the metal framework has re-closed to give the square-based pyramidal geometry. A difference between the reactivity of the ruthenium and osmium systems has been observed and this has been attributed to the greater kinetic lability of the former species. ${ }^{5}$
The reaction of $\left[R u_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ with phosphines leads only to the isolation of substitution products ${ }^{2}\left[R u_{5}(\mathrm{CO})_{15-n} \mathrm{C}\left(\mathrm{PR}_{3}\right)_{n}\right]$ ($n=1-4$; for bulky phosphine ligands, n is small) and with diphosphines $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}(n=1-4)$ the product is $\left[\mathrm{Ru}_{5}(\mathrm{CO})_{13} \mathrm{C}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}\right]$; for $n=2$ the diphosphine ligand bridges two adjacent ruthenium atoms, ${ }^{6}$ for $n=4$ two opposite Ru atoms in the square base are bridged. ${ }^{7}$

We now report the result of the reaction between $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ and the diphosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}$ (dppe). This particular system was chosen because it was hoped that the relatively kinetically inert osmium cluster would allow the isolation of the intermediate addition product.

Results and Discussion

The complex [$\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}$] reacts with 1,2 -bis(diphenylphosphino)ethane (dppe) in a $1: 1$ molar ratio, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, under reflux to give the addition product $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{dppe})\right]$ (1) in 95% yield after 24 h . The proton-decoupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum of (1) consists of two doublets, with one of these resonances unshifted from the free ligand [-154.2 p.p.m. relative to $\mathrm{P}(\mathrm{OMe})_{3}$ which corresponds to -13.2 p.p.m. relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$] while the other resonance occurs upfield at -158.9 p.p.m. (-17.9 p.p.m. relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$). The phosphorusphosphorus coupling, ${ }^{3} J(\mathrm{PP})$, of 35 Hz is typical of a monocoordinated diphosphine and is consistent with the potentially

[^0]

Figure. ORTEP plot of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\right.$ dppe $\left.)\right]$ (1). Phenyl rings have been omitted for clarity
bidentate ligand co-ordinating to the metal framework through only one P atom.

In order to confirm the pendant bonding mode of the dppe ligand to establish the geometry of the metal framework, a single-crystal X-ray analysis was undertaken. The molecular structure of complex (1) is shown in the Figure together with the atom numbering scheme adopted. The final atomic co-ordinates are presented in Table 1 while selected bond length and angle data are in Table 2. The cluster geometry resembles that in $\left[\mathrm{Os}_{5}(\mathrm{CO})_{16} \mathrm{C}\right]^{5}$ and $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{I})\right]^{-,}{ }^{3}$ and may be described as a 'wingtip-bridged butterfly,' the 'butterfly' being defined by the atoms $\mathrm{Os}(1), \mathrm{Os}(3), \mathrm{Os}(4)$, and $\mathrm{Os}(5)$. The variation in metal-metal distances in complex (1) follows those in $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{I})\right]^{-3}$ and $\left[\mathrm{Os}_{5}(\mathrm{CO})_{16} \mathrm{C}\right]^{5}$ in that the $\mathrm{Os}(3)-$ $\mathrm{Os}(5)$ 'hinge' bond distance is the shortest. In all three clusters the Os (wingtip)-Os(hinge) distances are shorter than the

Table 1. Fractional co-ordinates of atoms with standard deviations in parentheses for [$\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{dppe})$] (1)

Atom	x	y	z	Atom	x	y	z
Os(1)	0.55820 (7)	0.283 73(4)	$-0.00321(3)$	C(51)	0.663 2(20)	0.318 4(12)	-0.1714(8)
Os(2)	0.782 98(7)	0.178 50(4)	0.025 76(2)	O(51)	0.691 4(20)	0.356 1(11)	-0.206 4(6)
Os(3)	0.740 09(7)	0.384 66(4)	-0.051 08(3)	C(52)	0.438(3)	0.293 5(14)	-0.125 8(9)
Os(4)	0.881 29(7)	0.240 47(4)	-0.070 00(3)	O(52)	0.325 8(20)	0.303 6(11)	-0.1387(7)
Os(5)	$0.61350(8)$	0.267 40(4)	-0.110 32(3)	C(53)	$0.5907(24)$	0.158 5(14)	-0.1359(9)
C(1)	0.7178 (15)	0.2611 (8)	-0.037 1(5)	O(53)	0.576 3(21)	$0.1024(8)$	-0.153 2(7)
P(1)	0.329 O(5)	0.094 3(3)	0.163 27(19)	C(301)	0.510 4(17)	0.088 O(10)	$0.1637(6)$
$\mathrm{P}(2)$	0.723 9(4)	$0.1327(3)$	$0.10827(16)$	C(302)	0.546 9(18)	0.123 9(10)	0.114 2(7)
C(11)	0.575 5(19)	0.324 7(11)	0.066 8(7)	C(102)	0.174 3(10)	0.055 7(9)	$0.2410(5)$
O(11)	0.593 6(19)	$0.3529(8)$	0.1051 (5)	C(103)	0.144 5(10)	0.029 5(9)	0.289 8(5)
C(12)	0.4358 8(20)	0.199 6(12)	0.0037 (7)	C(104)	0.243 4(10)	0.0026 (9)	0.3260 (5)
$\mathrm{O}(12)$	0.365 3(14)	0.143 9(9)	0.0026 (6)	C(105)	0.372 1(10)	$0.0018(9)$	0.313 4(5)
C(13)	0.418 4(18)	0.354 1(11)	-0.0229(7)	C(106)	0.401 8(10)	0.028 O(9)	0.264 5(5)
O(13)	0.3318 8(17)	0.395 3(10)	-0.031 9(7)	C(101)	0.302 9(10)	0.054 9(9)	0.228 4(5)
C(21)	$0.6766(18)$	0.097 7(10)	-0.0118(7)	C(112)	0.266 2(15)	0.245 6(7)	$0.1307(4)$
$\mathrm{O}(21)$	0.6201 (18)	0.048 9(9)	-0.034 8(7)	C(113)	$0.2615(15)$	0.327 8(7)	0.133 2(4)
C(22)	0.880 4(20)	0.262 6(11)	0.062 3(7)	C(114)	0.308 9(15)	0.3667 (7)	$0.1787(4)$
$\mathrm{O}(22)$	0.928 O(17)	$0.3159(8)$	0.084 3(6)	C(115)	0.3610 (15)	0.323 5(7)	$0.2217(4)$
C(23)	0.942 4(22)	0.115 4(12)	0.032 2(8)	C(116)	$0.3658(15)$	0.241 4(7)	0.219 2(4)
O(23)	1.029 3(15)	0.076 3(10)	0.0359 (7)	C(111)	$0.3183(15)$	0.202 4(7)	$0.1737(4)$
C(31)	0.8329 9(25)	0.439 3(14)	-0.099 8(9)	C(202)	0.818 4(13)	0.018 5(7)	0.182 4(3)
O(31)	0.8919 (24)	0.472 4(10)	-0.129 3(7)	C(203)	0.838 4(13)	-0.059 2(7)	0.199 1(3)
C(32)	$0.6130(23)$	0.462 4(14)	-0.057 7(8)	C(204)	0.817 0(13)	-0.1213(7)	$0.1638(3)$
O(32)	$0.5302(18)$	0.510 2(11)	-0.063 3(7)	C(205)	0.775 6(13)	-0.105 7(7)	0.1118 (3)
C(33)	0.834 8(22)	0.434 4(12)	0.0058 (8)	C(206)	0.755 6(13)	-0.0280 (7)	0.0951 (3)
O(33)	0.883 7(21)	0.470 8(11)	0.0403 (7)	C(201)	0.776 9(13)	0.0340 (7)	0.1304 (3)
C(41)	0.897 5(21)	$0.1316(12)$	-0.095 4(7)	C(212)	0.924 2(9)	0.199 9(8)	0.174 5(5)
O(41)	$0.9003(20)$	0.071 1(8)	-0.109 8(7)	C(213)	0.977 4(9)	0.254 3(8)	$0.2110(5)$
C(42)	$1.0506(24)$	0.254 3(13)	-0.029 9(9)	C(214)	0.896 1(9)	0.305 5(8)	$0.2354(5)$
$\mathrm{O}(42)$	$1.1409(17)$	0.267 3(15)	-0.0077 (7)	C(215)	0.761 6(9)	0.3023 (8)	0.2231 (5)
C(43)	0.949(3)	0.2880 (14)	-0.132 4(10)	C(216)	0.708 4(9)	0.247 9(8)	0.1866 (5)
O(43)	0.983 9(19)	$0.3101(11)$	-0.168 1(6)	C(211)	0.789 7(9)	$0.1967(8)$	0.162 2(5)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\right.$ dppe $\left.)\right]$ (1) with estimated standard deviations in parentheses

$\mathrm{Os}(1)-\mathrm{Os}(2)$	2.996(1)	$\mathrm{Os}(2)-\mathrm{C}(1)$	2.20(1)	$\mathrm{Os}(3)-\mathrm{Os}(4)$	2.909(1)	Os(4)-C(41) 1.97	1.97(2)
$\mathrm{Os}(1)-\mathrm{Os}(3)$	2.897(1)	$\mathrm{Os}(2)-\mathrm{P}(2)$	$2.395(4)$	$\mathrm{Os}(3)-\mathrm{Os}(5)$	2.761(1)	Os(4)-C(42) 1.96	
$\mathrm{Os}(1)-\mathrm{Os}(5)$	2.884(1)	$\mathrm{Os}(2)-\mathrm{C}(21)$	1.96(2)	$\mathrm{Os}(3)-\mathrm{C}(1)$	2.14(1)	$\mathrm{Os}(4)-\mathrm{C}(43) \quad 1.98$	
$\mathrm{Os}(1)-\mathrm{C}(1)$	1.97(1)	$\mathrm{Os}(2)-\mathrm{C}(22)$	1.94(2)	$\mathrm{Os}(3)-\mathrm{C}(31)$	1.89(3)	$\mathrm{Os}(5)-\mathrm{C}(1) \quad 2.09$	
$\mathrm{Os}(1)-\mathrm{C}(11)$	1.93(2)	$\mathrm{Os}(2)-\mathrm{C}(23)$	1.96(2)	$\mathrm{Os}(3)-\mathrm{C}(32)$	1.86(2)	$\mathrm{Os}(5)-\mathrm{C}(51) \quad 1.91$	
$\mathrm{Os}(1)-\mathrm{C}(12)$	1.92(2)	$\mathrm{P}(2)-\mathrm{C}(302)$	1.85(2)	$\mathrm{Os}(2)-\mathrm{C}(33)$	1.89(2)	$\mathrm{Os}(5)-\mathrm{C}(52) \quad 1.87$	
$\mathrm{Os}(1)-\mathrm{C}(13)$	1.91(2)	$\mathrm{P}(1)-\mathrm{C}(301)$	1.87(2)	$\mathrm{Os}(4)-\mathrm{Os}(5)$	2.897(1)	$\mathrm{Os}(5)-\mathrm{C}(53) \quad 1.97$	
$\mathrm{Os}(2)-\mathrm{Os}(4)$	2.947(1)	$\mathrm{C}(301)-\mathrm{C}(302)$	1.49(2)	$\mathrm{Os}(4)-\mathrm{C}(1)$	1.99(1)		
$-\mathrm{Os}(1)-\mathrm{Os}(3)$	86.6(1)	$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{Os}(2)$	90.5(6)	$\mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{Os}(3)$	86.7(1)	$\mathrm{Os}(3)-\mathrm{C}(1)-\mathrm{Os}(5)$	81.5(5)
-Os(1)-Os(5)	88.0(1)	$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{Os}(3)$	89.5(6)	$\mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{Os}(5)$	88.1(1)	$\mathrm{Os}(4)-\mathrm{C}(1)-\mathrm{Os}(5)$	90.6(6)
$-\mathrm{Os}(1)-\mathrm{Os}(5)$	57.1(1)	$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{Os}(4)$	178.4(8)	$\mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{Os}(5)$	56.8(1)	$\mathrm{Os}(2)-\mathrm{P}(2)-\mathrm{C}(302)$	115.6(6)
$-\mathrm{Os}(2)-\mathrm{Os}(4)$	84.0(1)	$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{Os}(5)$	90.5(6)	$\mathrm{Os}(1)-\mathrm{Os}(5)-\mathrm{Os}(3)$	61.7(1)	$\mathrm{Os}(2)-\mathrm{P}(2)-\mathrm{C}(201)$	118.6(4)
Oss 3 - $\mathrm{Os}(4)$	85.9(1)	$\mathrm{Os}(2)-\mathrm{C}(1)-\mathrm{Os}(3)$	135.7(7)	$\mathrm{Os}(1)-\mathrm{Os}(5)-\mathrm{Os}(4)$	86.4(1)	$\mathrm{C}(302)-\mathrm{P}(2)-\mathrm{C}(201)$	99.8(7)
Os(3)-Os(5)	61.2(1)	$\mathrm{Os}(2)-\mathrm{C}(1)-\mathrm{Os}(4)$	89.3(6)	$\mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{Os}(4)$	61.8(1)	$\mathrm{C}(302)-\mathrm{P}(2)-\mathrm{C}(211)$	106.4(7)
-Os(3)-Os(5)	61.4(1)	$\mathrm{Os}(2)-\mathrm{C}(1)-\mathrm{Os}(5)$	142.8(7)	$\mathrm{Os}(3)-\mathrm{C}(1)-\mathrm{Os}(4)$	89.5(6)	$\mathbf{C}(201)-\mathrm{P}(2)-\mathrm{C}(211)$	102.9(6)

$\mathrm{Os}($ wingtip $)-\mathrm{Os}($ bridge) distances. It is interesting that for the cluster $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{L})\right]$ when $\mathrm{L}=$ dppe this ligand occupies a co-ordination site trans to an $\mathrm{Os}-\mathrm{Os}$ bond, while when $\mathrm{L}=\mathrm{I}^{-}$ the ligand occupies a site trans to a carbonyl ligand. This may reflect the relative donor/acceptor properties of dppe compared to I^{-}.

The carbido-carbon remains at the centre of the 'bridgedbutterfly.'As in related carbide-centred clusters, ${ }^{3.5}$ there are small differences in $\mathrm{Os}-\mathrm{C}$ (carbide) distances. The shortest $\mathrm{Os}-\mathrm{C}(1)$ distances involve the wingtip metal atoms and the longest the bridging $\mathrm{Os}(2)$ atom.

When complex (1) is heated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $40^{\circ} \mathrm{C}$ no reaction occurs. This is in contrast to the analogous ruthenium system
which closes up to give the substitution product with the square-based pyramidal metal geometry under these reaction conditions. ${ }^{2}$ However, when (1) is heated, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to reflux with 1 equivalent of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ a yellow, insoluble product is obtained. This insolubility precludes the use of ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy to investigate the phosphorus environments, and the mass spectrum failed to give a clear molecular ion. When the reaction is monitored by i.r. spectroscopy in the carbonyl region ($2150-1700 \mathrm{~cm}^{-1}$) the initial peaks due to complex (1) and $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right.$] persist for up to 48 h , but those of [$\left.\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ then slowly disappear. The remaining species then possess a carbonyl environment similar to that of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{dppe})\right]$. On this evidence the yellow complex is
tentatively assigned the formula $\left[\left\{\mathrm{Os}_{5}(\mathrm{CO})_{1_{5}} \mathrm{C}\right\}_{2}(\right.$ dppe $\left.)\right]$ (2) where the dppe ligand links two ' $\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}$ ' fragments via the two P donor atoms.

Experimental

The cluster [$\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}$] was obtained as a minor product in the sealed-tube pyrolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]^{8}$ Infrared spectra were recorded as solutions in $0.5-\mathrm{mm} \mathrm{CaF} 2$ cells on a PerkinElmer 983 spectrometer. Mass spectra were obtained using an AEI MS 12 instrument at an ionising potential of $70 \mathrm{eV}(1.12 \times$ $10^{-17} \mathrm{~J}$). The ${ }^{31} \mathrm{P}$ n.m.r. spectra were recorded on a Bruker WH 400 spectrometer (400 MHz) using $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent and $\mathrm{P}(\mathrm{OMe})_{3}$ as a reference. Thin-layer chromatography was carried out on $20 \times 20 \mathrm{~cm}$ glass plates (Merck) coated with a $0.25-\mathrm{mm}$ layer of silica gel.

Preparation $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{dppe})\right]$ (1).-A mixture of $\left[\mathrm{Os}_{5}-\right.$ $\left.(\mathrm{CO})_{15} \mathrm{C}\right]$ and dppe (1 equivalent) in dichloromethane was heated, under reflux, until the i.r. spectrum showed disappearance of the $\mathrm{v}(\mathrm{CO})$ of the starting material (about 24 h). The solution was concentrated, applied to t.l.c. plates, and eluted with a 50% solution of dichloromethane in n -hexane to yield $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{dppe})\right](95 \%) ; R_{\mathrm{f}} 0.6$. Infrared spectrum: $v(\mathrm{CO})$ (dichloromethane solution) at $2114 \mathrm{w}, 2075 \mathrm{~s}, 2053 \mathrm{vs}, 2041 \mathrm{~s}$, $2027 \mathrm{~s}, 2016 \mathrm{~m}, 1994 \mathrm{~m}$, and $1967 \mathrm{w} \mathrm{cm}^{-1}$. Molecular ion at m / e 1790 corresponding to $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}(\mathrm{dppe})\right]\left({ }^{192} \mathrm{Os}\right)$ with subsequent loss of 56 mass units to give $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{C}(\mathrm{dppe})\right]^{++}$.

Reaction of Complex (1) with $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$.-A mixture of complex (1) and 1 mol equivalent of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}\right]$ was refluxed in dichloromethane, under N_{2}, and the reaction followed by i.r. spectroscopy $[\mathrm{v}(\mathrm{CO})]$. After 48 h , peaks due to [$\mathrm{Os}_{5}(\mathrm{CO})_{15} \mathrm{C}$] had disappeared and a yellow, powdery material had precipitated at the bottom of the flask. Infrared spectrum: $v(C O)$ (dichloromethane solution) at $2114 w, 2075 \mathrm{~s}, 2053 \mathrm{vs}$, $2041 \mathrm{~s}, 2027 \mathrm{~s}, 2016 \mathrm{~m}, 1994 \mathrm{~m}$, and $1967 \mathrm{w} \mathrm{cm}^{-1}$.

Crystallography.-Crystals of complex (1) were prepared by slow evaporation of a dichloromethane solution and mounted on glass fibres. Crystal singularity was established by preliminary photography [oscillation and zero- and first-level (equi-inclination) Weissenberg; $\mathrm{Cu}-K_{\alpha} X$-radiation].

Crystal data. $\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{O}_{15} \mathrm{Os}_{5} \mathrm{P}_{2}, M=1781$, monoclinic, $a=10.313(3), b=16.949(5), c=25.786(8) \AA, \beta=95.23(2)^{\circ}$, $U=4488.5 \AA^{3}$ (by least-squares refinement on diffractometer angles for 54 automatically centred reflections at $\pm 2 \theta, \bar{\lambda}=$ $0.71069 \AA$), space group $P 2_{1} / c$ (no. 14), $Z=4, D_{\mathrm{c}}=2.601$ $\mathrm{g} \mathrm{cm}^{-3}, F(000)=3224$ electrons, crystal dimensions $0.51 \times$ $0.46 \times 0.16 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=142.22 \mathrm{~cm}^{-1}$.

Data collection and processing. Stoe four-circle diffractometer, graphite-monochromated Mo- $K_{\alpha} X$-radiation, 24-step $\omega-\theta$ scans with step width 0.05°. On-line profile-fitting scheme: ${ }^{9} 52$
strong reflections used as models for ideal profiles of intensity counts which were then used in data collection. 8404 Reflections measured ($5 \leqslant \theta \leqslant 25^{\circ}, \pm h-k-l$), empirical absorption correction applied using 300 azimuthal scan data, 6986 data with $F_{o}>2 \sigma\left(F_{\mathrm{o}}\right)$. No significant crystal decomposition or movement during data collection.

Structure analysis and refinement. Automatic centrosymmetric direct methods (SHELX:EEES) ${ }^{10}$ for osmium atoms followed by Fourier difference synthesis to locate remaining non-hydrogen atoms. Blocked-cascade least-squares refinement with osmium, phosphorus, oxygen, and carbidocarbon atoms anisotropic. The F_{0} moduli were weighted according to $w^{-1}=\sigma^{2}\left(F_{0}\right)+0.004256 F_{0}{ }^{2}$. Phenyl rings refined as rigid, planar hexagons (C-C $1.395 \AA$), their hydrogen atoms idealised ($\mathrm{C}-\mathrm{H} 1.08 \AA$) and allowed to ride on the respective carbon atom ($U_{\mathrm{H}}=0.08 \AA^{2}$). Refinement (6986 data, 339 variables) converged at $R=0.0810$, $R_{\mathrm{g}}\left[=\sqrt{ }\left(\Sigma \Delta^{2} w\right) / \Sigma w F^{2}\right]=0.1067$. Complex neutral scattering factors ${ }^{11}$ were employed throughout the structure solution and refinement; computations performed on the University of Cambridge IBM 370/165 computer. The molecular plot was drawn using the ORTEP package. ${ }^{12}$

Acknowledgements

We thank the Universidad Nacional Autónoma de Mexico (M. J. R.) and the S.E.R.C. for financial support during the period of this research.

References

1 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, J. N. Nicholls, and M. D. Vargas, J. Organomet. Chem., 1983, 249, 255.
2 B. F. G. Johnson, J. Lewis, J. N. Nicholls, J. Puga, P. R. Raithby, M. J. Rosales, M. McPartlin, and W. Clegg, J. Chem. Soc., Dalton Trans., 1983, 277.
3 P. F. Jackson, B. F. G. Johnson, J. Lewis, J. N. Nicholls, M. McPartlin, and W. J. H. Nelson, J. Chem. Soc., Chem. Commun., 1980, 564.
4 W. J. H. Nelson, unpublished work.
5 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, J. N. Nicholls, J. Puga, P. R. Raithby, M. J. Rosales, M. Schröder, and M. D. Vargas, J. Chem. Soc., Dalton Trans., 1983, 2447.
6 D. A. Welch, unpublished work.
7 J. Evans, B. P. Gracey, L. R. Gray, and M. Webster, J. Organomet. Chem., 1982, 240, C61.
8 M. J. Rosales, Ph.D. Thesis, University of Cambridge, 1982.
9 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
10 G. M. Sheldrick, SHELX 76, University of Cambridge, 1976.
11 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
12 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, 1976.

Received 2nd May 1985; Paper 5/724

[^0]: \dagger [1,2-Bis(diphenylphosphino)ethane- $P]-\mu_{5}$-carbido-cyclo-pentakis-(tricarbonylosmium)(7Os-Os).
 Supplementary data available (No. SUP 56401, 6 pp.): thermal parameters, H-atom co-ordinates, complete bond lengths and angles. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii-xx. Structure factors are available from the editorial office.

