Cationic Allyldinitrosyl Complexes of Iron \dagger

Paul K. Baker, Sara Clamp, Neil G. Connelly,* Martin Murray, and John B. Sheridan School of Chemistry, University of Bristol, Bristol BS8 1TS

The nitrosonium salt [NO] [PF_{6}] reacts with $\left[\mathrm{Fe}(\mathrm{CO}) \mathrm{L}(\mathrm{NO})\left(\eta^{3}\right.\right.$-allyl)] [$\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}, \mathrm{P}(\mathrm{OMe})_{3}$, or $\mathrm{PPh}_{3} ;$ allyl $=\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1$, or $\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right]$ to give [FeL(NO) $\mathbf{N}_{2}\left(\eta^{3}\right.$-allyl)][PF ${ }_{6}$]. Spin saturation transfer ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy shows that the fluxionality of the products involves slow allyl rotation at room temperature.

The substitution of CO by $[\mathrm{NO}]^{+}$provides a route by which the co-ordinated hydrocarbon of a neutral organometallic carbonyl complex can be activated towards nucleophilic attack. Thus, for example, $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{NO})\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{R}\right)\right]^{+}(\mathrm{R}=\mathrm{Me}$ or Ph$)^{1}$ and $\left[\mathrm{Mo}(\mathrm{CO})(\mathrm{NO})\left(\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{13}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)\right]^{+}$ [$\mathrm{C}_{8} \mathrm{H}_{13}=$ cyclo-octenyl, $\mathrm{R}=$ neomenthyl (c-2-isopropyl-t-5-methylcyclohexan-r-1-yl)], ${ }^{2}$ prepared from the appropriate carbonyls, have been used in the stereo- and regio-selective synthesis of disubstituted cyclohexadienes and the asymmetric synthesis of substituted cyclo-octenes respectively.

We now give details ${ }^{3}$ of the isolation of $\left[\mathrm{FeL}(\mathrm{NO})_{2}\left(\eta^{3}-\right.\right.$ allyl $)]\left[\mathrm{PF}_{6}\right]\left[1 ; \mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}, \mathrm{P}(\mathrm{OMe})_{3}\right.$, or PPh_{3}; allyl $=$ $\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1$, or $\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right]$, from [$\mathrm{Fe}(\mathrm{CO}) \mathrm{L}(\mathrm{NO})\left(\eta^{3}-\right.$ allyl)] and [NO$]\left[\mathrm{PF}_{6}\right]$, and of the fluxional properties and reactions of the allyldinitrosyl cations.

Results and Discussion

The addition of solid [NO$]\left[\mathrm{PF}_{6}\right]$ to $\left[\mathrm{Fe}(\mathrm{CO}) \mathrm{L}(\mathrm{NO})\left(\eta^{3}\right.\right.$-allyl $\left.)\right]$ $\left[\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}, \mathrm{P}(\mathrm{OMe})_{3}\right.$, or $\mathrm{PPh}_{3} ;$ allyl $=\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1$, or $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ results in the evolution of CO gas and the formation of yellow to orange solutions; on filtration and addition of diethyl ether, moderate to good yields of the yellow $\left(\mathrm{L}=\mathrm{PPh}_{3}\right)$ or orange $\left[\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}\right.$ or $\left.\mathrm{P}(\mathrm{OMe})_{3}\right]$ crystalline salts $\left[\mathrm{FeL}(\mathrm{NO})_{2}\left(\eta^{3}\right.\right.$-allyl $\left.)\right]\left[\mathrm{PF}_{6}\right]$ (1) are precipitated.

The triphenylphosphine complexes ($1 ; \mathrm{L}=\mathrm{PPh}_{3}$) are very air-sensitive in solution, and also rapidly decompose in the solid state in air. They have been characterised only by i.r. spectroscopy and by analogy with the more thermally stable phosphite derivatives (Table 1) which may be readily stored, for prolonged periods in the solid state, under nitrogen at $0^{\circ} \mathrm{C}$.

The low-temperature n.m.r. spectra (Table 2) of complexes (1) are only compatible with the presence in solution of one, asymmetric isomer, (A). For example, the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of

(A) $R=\mathrm{Me}$ or H_{c}
$\left[1 ; \mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3}\right.$, allyl $\left.=\mathrm{C}_{3} \mathrm{H}_{5}\right]$ shows three resonances for the allyl carbon atoms, one coupled to the trans-phosphorus atom, and the ${ }^{1} \mathrm{H}$ n.m.r. spectra of (1) show separate resonances for each of the terminal allyl protons. The lower-frequency

[^0]signals in the ${ }^{1} \mathrm{H}$ n.m.r. spectra of complex [1; $\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}$ or $\mathrm{P}(\mathrm{OMe})_{3}$, allyl $=\mathrm{C}_{3} \mathrm{H}_{5}$] can be assigned to the anti-protons H_{a} because of the large couplings ($12-14 \mathrm{~Hz}$) to the central proton H_{c}. In addition the coupling of only one of the antiprotons to phosphorus further supports the asymmetric structure (A). In the case of $\left[1 ; L=P(O M e)_{3}\right.$, allyl $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}$ 1], the allyl methyl group is found exclusively in the anti position trans to phosphorus (Table 2).

At $30{ }^{\circ} \mathrm{C}$, the terminal allyl resonances of complex [1; $\mathrm{L}=$ $\mathrm{P}(\mathrm{OPh})_{3}$, allyl $=\mathrm{C}_{3} \mathrm{H}_{5}$ or $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$] broaden considerably but coalescence is not observed at higher temperatures, because of sample decomposition. Nevertheless, spin saturation transfer experiments with [1; $\mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3}$, allyl $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$] revealed the cations to be fluxional. At $30^{\circ} \mathrm{C}$, irradiation at $\delta 3.38$ leads to a reduction in the intensity of the signal at $\delta \mathbf{4 . 4 3 \text { (Figure }}$ 1), clearly indicating exchange between the two anti-protons $H_{a_{1}}$ and $H_{a_{2}}$. At $-40^{\circ} \mathrm{C}$, however, no such exchange is observed (Figure 2).

That the anti-protons undergo slow exchange at $30^{\circ} \mathrm{C}$, without syn-anti interconversion, shows that the fluxional process involves slow allyl rotation. A similar process occurs for $\left[\mathrm{FeX}(\mathrm{CO})_{3}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} \text {, or } \mathrm{NCO})^{4}$ but the lowtemperature limiting spectra for these species reveal the presence of two isomers (exo and endo) in contrast to the single isomer for (1).

The reactions of complexes (1) with nucleophiles are dominated by the loss of the allyl ligand. Thus, for example, ($1 ; \mathbf{L}=$ PPh_{3}, allyl $=\mathrm{C}_{3} \mathrm{H}_{5}$) reacts with chloride ion to give the paramagnetic complex $\left[\mathrm{FeCl}\left(\mathrm{PPh}_{3}\right)(\mathrm{NO})_{2}\right][\tilde{\mathrm{v}}(\mathrm{NO})=1787$ and $1728 \mathrm{~cm}^{-1}, g_{\mathrm{av}}=2.034, A_{\mathrm{p}}=50 \mathrm{G} ; c f$. ref. $5, \tilde{\mathrm{v}}(\mathrm{NO})=$ 1789 and $\left.1731 \mathrm{~cm}^{-1}, g_{\mathrm{av} .}=2.0362, A_{\mathrm{p}}=52.1 \mathrm{G}\right]$ and $[1 ; \mathrm{L}=$ $\mathrm{P}(\mathrm{OMe})_{3}$ or $\left.\mathrm{PPh}_{3}\right]$ reacts with L to give $\left[\mathrm{FeL}_{2}(\mathrm{NO})_{2}\right][\mathrm{L}=$ $\mathrm{P}(\mathrm{OMe})_{3}$ or $\left.\mathrm{PPh}_{3}\right] .{ }^{6}$ The fate of the allyl group in these reactions has not been determined. However, of considerably more synthetic importance is the preliminary observation ${ }^{7}$ that complexes (1) undergo allyl-transfer reactions with electronrich organometallics, resulting in $\mathrm{C}-\mathrm{C}$ bond coupling. Thus, for example, the addition of $\left[1 ; \mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3}\right.$, allyl $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-$ 2] to $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{cot}\right)\right] \quad(\mathrm{cot}=$ cyclo-octatetraene $)$, followed by deprotonation of the product, yields the allylsubstituted derivative $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{R}\right)\right] \quad(\mathrm{R}=$ $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$).

Experimental

The preparation, purification, and reactions of the complexes described were carried out under an atmosphere of dry nitrogen. The compounds [$\mathrm{Fe}(\mathrm{CO}) \mathrm{L}(\mathrm{NO})\left(\eta^{3}\right.$-allyl)] [$\mathrm{L}=$ $\mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OMe})_{3}$, or $\mathrm{P}(\mathrm{OPh})_{3}$; allyl $=\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1$, or $\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right]$ were prepared by the published method; ${ }^{8}$ the salt [NO$]\left[\mathrm{PF}_{6}\right]$ was purchased from Fluorochem Ltd., Glossop, Derbyshire.

Infrared spectra were recorded on a Perkin-Elmer PE 257 spectrometer. Proton n.m.r. spectra were recorded on a JEOL

Table 1. Analytical and i.r. spectral data for $\left[\mathrm{FeL}(\mathrm{NO})_{2}\left(\eta^{3}\right.\right.$-allyl $\left.)\right]\left[\mathrm{PF}_{6}\right](1)$

L	Allyl	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	Analysis ${ }^{\text {a }}$			$\check{v}(\mathrm{NO})^{\mathrm{b}} / \mathrm{cm}^{-1}$
			C	H	N	
$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{C}_{3} \mathrm{H}_{5}$	78	16.9 (16.9)	3.4 (3.3)	6.4 (6.6)	1853,1801
$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1$	71	19.1 (19.1)	3.8 (3.6)	6.1 (6.4)	1843, 1794
$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$	70	19.4 (19.1)	3.9 (3.6)	6.3 (6.4)	1851, 1798
$\mathrm{P}(\mathrm{OPh})_{3}$	$\mathrm{C}_{3} \mathrm{H}_{5}$	57	41.1 (41.2)	3.4 (3.3)	4.7 (4.6)	1865, 1813
$\mathrm{P}(\mathrm{OPh})_{3}$	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$	64	42.2 (42.2)	3.4 (3.5)	4.5 (4.5)	1858, 1807
PPh_{3}	$\mathrm{C}_{3} \mathrm{H}_{5}$	59	-	-	-	1842, 1792
PPh_{3}	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me-1}$	63	-	-	-	1833,1785
PPh_{3}	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$	68	-	-	-	1839,1789

${ }^{a}$ Calculated values are in parentheses. ${ }^{6}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure 1. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $\left[\mathrm{Fe}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{NO})_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$ $2)]^{+}$at $30^{\circ} \mathrm{C}(a)$, with saturation at $\delta 3.38(b)$, and spectrum (a) minus spectrum (b) $[(c)]$. The asterisks indicate peaks due to $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

PS 100 or FX 200 instrument, ${ }^{13} \mathrm{C}$ n.m.r. spectra on the FX 200 instrument.

Microanalyses were by the staff of the Microanalytical Service of the School of Chemistry, University of Bristol.
(η-Allyl)dinitrosyl(trimethyl phosphite)iron Hexafluorophosphate, $\left[\mathrm{Fe}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{NO})_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$.-To a stirred solution of $\left[\mathrm{Fe}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{NO})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right](1.75 \mathrm{~g}, 6.27$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(90 \mathrm{~cm}^{3}\right)$ was added solid [NO] $\left[\mathrm{PF}_{6}\right](1.05 \mathrm{~g}$, 6.0 mmol). After 10 min the pale orange solution was filtered, and addition of diethyl ether ($200 \mathrm{~cm}^{3}$) gave the product as
(a)

\qquad
(b)

Figure 2. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $\left[\mathrm{Fe}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{NO})_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$ $2)]^{+}$at $-40^{\circ} \mathrm{C}(a)$, with saturation at $\delta 3.38(b)$, and spectrum (a) minus spectrum (b) $[(c)]$. Other details as in Figure 1
orange crystals, yield $2.08 \mathrm{~g}(78 \%)$. The complex may be recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether if necessary.

The complexes $\left[\mathrm{FeL}(\mathrm{NO})_{2}\left(\eta^{3}\right.\right.$-allyl) $]\left[\mathrm{PF}_{6}\right]\left[\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}\right.$, allyl $=\mathrm{C}_{3} \mathrm{H}_{5}$ or $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2 ; \mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3}$, allyl $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-$ 1 or $-2 ; \mathrm{L}=\mathrm{PPh}_{3}$, allyl $=\mathrm{C}_{3} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1$, or $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$] were prepared similarly. All dissolve in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give airsensitive solutions.

Acknowledgements

We thank the S.E.R.C. for Research Studentships (to P. K. B., S. C., and J. B. S.).

Table 2. Proton and ${ }^{13} \mathrm{C}$ n.m.r. spectral data for $\left[\mathrm{FeL}(\mathrm{NO})_{2}\left(\eta^{3}\right.\right.$-allyl $\left.)\right]\left[\mathrm{PF}_{6}\right]^{a}$

L	Allyl	${ }^{1} \mathrm{H}(\mathrm{\delta})$	${ }^{13} \mathrm{C}^{\text {b }}$ (p.p.m.)
$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{C}_{3} \mathrm{H}_{5}$	$3.46\left[1 \mathrm{H}, \mathrm{d}, J\left(\mathrm{H}_{\mathrm{a}_{1}} \mathrm{H}_{\mathrm{c}}\right) 15, \mathrm{H}_{\mathrm{a}_{1}}\right], 3.93[9 \mathrm{H}, \mathrm{d}$, $\left.J(\mathrm{MeP}) 12, \mathrm{P}(\mathrm{OMe})_{3}\right], 4.45$ [1 H, dd, $J\left(\mathrm{H}_{\mathrm{a}_{2}} \mathrm{H}_{\mathrm{c}}\right)$ $\left.14, J\left(\mathrm{H}_{\mathrm{a}_{2}} \mathrm{P}\right) 4.5, \mathrm{H}_{\mathrm{a}_{2}}\right], 5.26\left[2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}}\right], 5.54$ $\left[1 \mathrm{H}, \mathrm{spt}, J\left(\mathrm{H}_{\mathrm{a}_{1}} \mathrm{H}_{\mathrm{c}}\right) 15, J\left(\mathrm{H}_{\mathrm{a}_{2}} \mathrm{H}_{\mathrm{c}}\right) 14, J\left(\mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right) 9\right.$, $\left.J\left(\mathrm{H}_{\mathrm{c}} \mathrm{P}\right) 13, \mathrm{H}_{\mathrm{c}}\right]^{\mathrm{c}}{ }^{\mathrm{c} d}$	$\begin{aligned} & 55.4\left[\mathrm{~d}, J(\mathrm{CP}) 4.5, \mathrm{P}\left(\mathrm{OMe}_{3}\right], 73.1\left[\mathrm{~d}, J\left(\mathrm{C}^{2} \mathrm{P}\right)\right.\right. \\ & \left.5, \mathrm{C}^{2}\right], 81.4\left(\mathrm{C}^{1}\right), 111.4\left(\mathrm{C}^{3}\right) \end{aligned}$
	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1$	$\begin{aligned} & 2.40\left[3 \mathrm{H}, \mathrm{t}, J\left(\mathrm{H}_{\mathrm{b}}, \mathrm{Me}\right) 5, J(\mathrm{MeP}) 5, \mathrm{Me}\right], 3.23 \\ & {\left[1 \mathrm{H}, \mathrm{~d}, \mathrm{br}, J\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}\right) 13, \mathrm{H}_{\mathrm{a}_{1}}\right], 3.91[9 \mathrm{H}, \mathrm{~d},} \\ & \left.(\mathrm{MeP}) 12, \mathrm{P}(\mathrm{OMe})_{3}\right], 5.02\left(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}_{\mathrm{b}_{1}}\right), 5.46 \\ & \left(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}_{\mathrm{b}_{2}}, \mathrm{H}_{\mathrm{c}}\right]^{\mathrm{c} . \mathrm{d}} \end{aligned}$	$21.7(\mathrm{Me}), 55.2\left[\mathrm{~d}, J(\mathrm{CP}) 6, \mathrm{P}(\mathrm{OMe})_{3}\right], 75.8$ $\left[\mathrm{d}, J\left(\mathrm{C}^{1} \mathrm{P}\right) 4.5, \mathrm{C}^{1}\right], 100.1\left[\mathrm{~d}, J\left(\mathrm{C}^{2} \mathrm{P}\right) 9, \mathrm{C}^{2}\right]$, $110.1\left(\mathrm{C}^{3}\right)$
	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$	1.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.38 ($1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{H}_{\mathrm{a}_{1}}$), 3.95 [$\left.9 \mathrm{H}, \mathrm{d}, J(\mathrm{MeP}) 12, \mathrm{P}(\mathrm{OMe})_{3}\right], 4.43[1 \mathrm{H}, \mathrm{d}$, $\left.J\left(\mathrm{H}_{\mathrm{a}_{2}} \mathrm{P}\right) 5, \mathrm{H}_{\mathrm{a}_{2}}\right], 5.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}}\right)$	$22.9(\mathrm{Me}), 55.5\left[\mathrm{~d}, \mathrm{~J}(\mathrm{CP}) 6, \mathrm{P}(\mathrm{OMe})_{3}\right.$], 73.3 [d, $J\left(\mathrm{C}^{2} \mathrm{P}\right) 9, \mathrm{C}^{2}$], $82.0\left[\mathrm{~d}, J\left(\mathrm{C}^{1} \mathrm{P}\right) 6, \mathrm{C}^{1}\right.$], 130.4 (C^{3})
			$\begin{aligned} & 21.7[\mathrm{q}, J(\mathrm{Me}) 130, \mathrm{Me}], 55.2\left[\mathrm{~m}, \mathrm{P}(\mathrm{OMe})_{3}\right], \\ & 75.8\left(\mathrm{t}, \mathrm{br}, J\left(\mathrm{C}^{1} \mathrm{H}_{\mathrm{a}}\right), J\left(\mathrm{C}^{1} \mathrm{H}_{\mathrm{b}}\right) 156, \mathrm{C}^{1}\right], 100.1 \\ & {\left[\mathrm{~d}, \mathrm{br}, J\left(\mathrm{C}^{2} \mathrm{H}_{\mathrm{b}_{2}}\right) 169, \mathrm{C}^{2}\right], 110.1\left[\mathrm{~d}, J\left(\mathrm{C}^{3} \mathrm{H}_{\mathrm{c}}\right) 162,\right.} \\ & \left.\mathrm{C}^{3}\right]^{5} \end{aligned}$
$\mathrm{P}(\mathrm{OPh})_{3}$	$\mathrm{C}_{3} \mathrm{H}_{5}$	$\begin{aligned} & 3.45\left(1 \mathrm{H}, \mathrm{~s}, \mathrm{br}, \mathrm{H}_{\mathrm{a}}\right), 4.30\left(1 \mathrm{H}, \mathrm{~s}, \mathrm{br}, \mathrm{H}_{\mathrm{a}}\right), 5.16(3 \mathrm{H}, \\ & \left.\mathrm{m}, \mathrm{br}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}\right), 7.3\left[15 \mathrm{H}, \mathrm{~m}, \mathrm{P}(\mathrm{OPh})_{3}\right]^{5 . h} \end{aligned}$	
		$\begin{aligned} & 3.25\left[1 \mathrm{H}, \mathrm{~d}, J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{c}}\right) 12, \mathrm{H}_{\mathrm{a}}\right], 4.20(1 \mathrm{H}, \mathrm{~d} \\ & \left.J\left(\mathrm{H}_{\mathbf{a}} \mathrm{H}_{\mathrm{c}}\right) 12, \mathrm{H}_{\mathrm{a}}\right], 4.98\left(3 \mathrm{H}, \mathrm{~m}, \mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right), 7.3[15 \mathrm{H}, \\ & \left.\mathrm{m}, \mathrm{P}(\mathrm{OPh})_{3}\right]^{\mathrm{g} . i} \end{aligned}$	
	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2$	1.44 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{H}_{\mathrm{a}}\right.$), $4.31(1 \mathrm{H}$, s,br, $\left.\mathrm{H}_{\mathrm{a}}\right), 4.99\left(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{H}_{\mathrm{b}}\right), 5.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{H}_{\mathrm{b}}\right)$, $7.3\left[15 \mathrm{H}, \mathrm{m}, \mathrm{P}(\mathrm{OPh})_{3}\right]^{g . h}$	
		$1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 4.35(1 \mathrm{H}, \mathrm{s}$, $\left.\mathbf{H}_{\mathrm{a}}\right), 4.95\left[1 \mathrm{H}, \mathrm{d}, J\left(\mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}}\right) 3, \mathrm{H}_{\mathrm{b}}\right], 5.20[1 \mathrm{H}, \mathrm{d}$, $\left.J\left(\mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}}\right) 3, \mathrm{H}_{\mathrm{b}}\right], 7.3\left[15 \mathrm{H}, \mathrm{m}, \mathrm{P}(\mathrm{OPh})_{3}\right]^{9 . i}$	

${ }^{a}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}, J$ in Hz ; assignments refer to structure (A). ${ }^{b} \mathrm{At} 50 \mathrm{MHz}$ and at $-40{ }^{\circ} \mathrm{C} .{ }^{\mathrm{c}} 200-\mathrm{MHz}$ Spectrum. ${ }^{d} \mathrm{At}-10{ }^{\circ} \mathrm{C} .{ }^{e} \mathrm{At}-40{ }^{\circ} \mathrm{C} .{ }^{5} \mathrm{Proton}-$ coupled spectrum. ${ }^{9}$ Phosphorus-decoupled $100-\mathrm{MHz}$ spectrum. ${ }^{h}$ Room temperature. ${ }^{i} \mathrm{At}-50^{\circ} \mathrm{C}$.

References

1 Y-K. Chung, D. A. Sweigart, N. G. Connelly, and J. B. Sheridan, J. Am. Chem. Soc., 1985, 107, 2388.

2 J. W. Faller and K-H. Chao, Organometallics, 1984, 3, 927.
3 P. K. Baker and N. G. Connelly, J. Organomet. Chem., 1979, 178, C33.
4 J. W. Faller and M. A. Adams, J. Organomet. Chem., 1979, 170, 71.
5 J. Schmidt, Z. Nalurforsch., Teil B, 1972, 27, 600.

6 W. Beck and K. Lottes, Chem. Ber., 1965, 98, 2657.
7 N. G. Connelly, A. G. Orpen, I. C. Quarmby, and J. B. Sheridan, unpublished work.
8 G. Cardaci and A. Foffani, J. Chem. Soc., Datton Trans., 1974, 1808.

[^0]: + Non-S.I. unit employed: $\mathbf{G}=10^{-4} \mathrm{~T}$.

