Isocyanide Complexes with Pt₂S and Pt₂CS Cores.[†] Crystal Structure of μ-Sulphido-bis[bis(2,4,6-tri-t-butylphenyl isocyanide)platinum][‡]

Yasuhiro Yamamoto * and Hiroshi Yamazaki

Riken (The Institute of Physical and Chemical Research), Wako, Saitama 351–01, Japan

The triplatinum compound $[Pt_3(2,4,6-Bu^t_3C_6H_2NC)_6]$ (1) reacts with sulphur or carbon disulphide to give diplatinum complexes $[Pt_2(2,4,6-Bu^t_3C_6H_2NC)_4S]$ (2) and $[Pt_2(2,4,6-Bu^t_3C_6H_2NC)_4(CS_2)]$ (3). The structure of (2) has been established by a single-crystal X-ray analysis; it has a triangular Pt_2S core containing terminal isocyanide groups. Crystals are monoclinic, space group $P2_1/a$, with Z = 4 in a unit cell of dimensions a = 26.988(7), b = 22.704(11), c = 18.211(5) Å, and $\beta = 130.01(2)^\circ$.

(a) Distances

Metal clusters are of interest as plausible models of surface condition in heterogeneous catalysis.¹ Studies on interactions of cluster complexes with small molecules such as carbon monoxide, sulphur dioxide, and sulphur give information about chemisorption and chemical reactions on the surface of a catalyst.

Many carbonyl clusters are known,² but data for isocyanide clusters are relatively limited.³ Stone and co-workers⁴ reported the preparation of the triangular platinum complexes [Pt₃(RNC)₆] (R = Et, Me, or C₆H₁₁) by the reaction of [Pt(cod)₂] (cod = cyclo-octa-1,5-diene) with isocyanides. Recently we reported a convenient preparation of triangular Pt₃ complexes by the chemical or electrochemical reduction of [PtCl₂(RNC)₂] (R = 2,6-Me₂C₆H₃ or 2,4-Bu⁴₂-6-MeC₆H₂).⁵ The triangular platinum complexes reacted with olefins, acetylenes, or alkyl halides to undergo fragmentation of metalmetal bonds and mainly gave mononuclear complexes.^{3,6}

In this paper we report the preparation of complexes having Pt_2S and Pt_2CS cores by the reaction of $[Pt_3(2,4,6-Bu_3C_6H_2NC)_6]$ (1) with S or CS_2 and the X-ray crystal-lographic analysis of the complex containing the Pt_2S core.

Results and Discussion

Three-membered Ring Complex.—Treatment of (1) with sulphur in CH_2Cl_2 gave the yellow complex, $[Pt_2(2,4,6-Bu^{1}_{3}C_{6}H_2NC)_{4}S]$ (2), which was recrystallized from CH_2Cl_2 hexane. The i.r. spectrum showed the presence of terminal isocyanide groups (2 127 and 2 092 cm⁻¹), and the ¹H n.m.r. spectrum in CDCl₃ showed four singlets, assignable to t-butyl groups, comprising a 2:2:1:1 intensity ratio corresponding to two environments for the isocyanide ligands. The overall molecular geometry was established by the X-ray structure determination as shown in Figure 1. The complex has a threemembered Pt₂S core, and the aforementioned spectroscopic data were in good agreement with the crystal structure.

The temperature-dependent ¹H n.m.r. spectra in PhCl were examined. The spectrum showed three singlets at δ 1.24, 1.47, and 1.56 in a 1:1:1 intensity ratio at ambient temperature: the first was assigned to two kinds of accidentally degenerate *para* butyl groups and the last two to *ortho* butyl groups. These two singlets were broad and the motion of *ortho* butyl groups is

Table 1. Interatomic distances (Å) and bond angles (°) for complex (2)

(1) 2101211000				
Pt(1)-Pt(2)	2.604(2)	Pt(1)-S	2.268(10)	
Pt(2)–S	2.268(10)	Pt(1)-C(10)	1.90(3)	
Pt(1)-C(20)	1.95(2)	Pt(2)-C(30)	1.92(3)	
Pt(2)-C(40)	1.93(2)	C(10)-N(10)	1.16(4)	
C(20)-N(20)	1.16(3)	C(30)-N(30)	1.20(4)	
C(40)-N(40)	1.14(3)		~ /	
(b) Angles				
Pt(2)-Pt(1)-S	55.0(2)	Pt(1)-Pt(2)-S	55.0(3)	
Pt(1)-S-Pt(2)	70.1(2)	C(10) - Pt(1) - S	160.4(6)	
C(20)-Pt(1)-S	102.8(9)	C(30) - Pt(2) - S	102.0(7)	
C(40)-Pt(2)-S	161.0(8)	C(10) - Pt(1) - C(2)	20) 96.2(11)	
C(20)-Pt(1)-Pt(2)	105.8(6)	C(30)-Pt(2)-C(4	40) 96.9(11)	
C(30)-Pt(2)-Pt(1)	157.0(7)	C(40)-Pt(2)-Pt(1) 106.1(8)	
Pt(1)-C(10)-N(10)	176.3(20)	Pt(1)-C(20)-N(2	20) 175.5(24)	
Pt(2)-C(30)-N(30)	174.0(26)	Pt(2)-C(40)-N(40)-	40) 174.0(33)	
C(10)-N(10)-C(11)	165.4(29)	C(20)-N(20)-C(21) 179.5(30)	
C(30)-N(30)-C(31)	177.8(30)	C(40)-N(40)-C(41) 173.3(26)	
(c) Non-bonded distant	nces			
Intra-molecular system	m (< 3.75 Å)			
C(11)-C(471)	3.46(4)	C(41)-C(172)	3.47(4)	
C(172)-C(473)	3.54(7)	N(10)-C(492)	3.59(3)	
C(192)-C(271)	3.62(4)	C(42) - C(172)	3.65(6)	
N(40)-C(172)	3.68(5)	C(16)-C(491)	3.71(4)	
Inter-molecular s	ystem (< 3.8	0 Å)		
C(191)-C(471a)	3.58(6)	C(182)-C(273b)	3.70(5)	
C(183)-C(183c)	3.74(6)	C(493)-C(22a)	3 76(5)	
C(171)-C(472c)	3.78(5)	C(493)-C(23a)	3.79(6)	
C(31)-C(393d)	3.79(4)	C(493)-C(24a)	3.80(6)	
Symmetry codes: (a) 1; (c) $-x$, $-y + 1$, $-$	$x + \frac{1}{2}, -y$ z; (d) $-x + \frac{1}{2}$	$+\frac{1}{2}, z;$ (b) $-x + \frac{1}{2}$ $\frac{1}{2}, y + \frac{1}{2}, -z.$	$y + \frac{1}{2}, -z +$	

shown to be slow. The ¹H n.m.r. spectral behaviour might be related to the close interactions within the molecule associated with the t-butyl groups: $C(11) \cdots C(471)$, $C(41) \cdots C(172)$, and $C(172) \cdots C(473)$ bond distances are 3.46(4), 3.47(4), and 3.54(7) Å, respectively, shorter than the sum of van der Waals radii.

The motion of the *ortho* butyl groups became active with increase in temperature. At 96 °C each signal became sharp. With further increase in temperature the resonances broaden, suggesting that a slow inter-ligand exchange is occurring. Coalescence of two signals due to the *ortho* butyl groups was not observed even at 137 °C, showing that a rapid exchange between ligands did not occur. In the ¹H n.m.r. spectra of a

[†] Taken as 'Studies on Interactions of Isocyanides with Transition Metal Complexes. Part 29.' For Part 28, see Y. Yamamoto and H. Yamazaki, Bull. Chem. Soc. Jpn., 1985, 58, 1843.

[‡] Supplementary data available (No. SUP 56435, 3 pp.): thermal parameters. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii—xx. Structure factors are available from the editorial office.

Figure 1. Molecular structure of $[Pt_2(2,4,6-Bu^t_3C_6H_2NC)_4S]$ (2)

Figure 2. Electronic spectra of $[Pt_2(2,4,6-Bu'_3C_6H_2NC)_4S]$ (2) (----) and $[Pt_2(2,4,6-Bu'_3C_6H_2NC)_4(CS_2)]$ (3) (---)

mixture of (2) and 2,4,6-tri-t-butylphenyl isocyanide no ligand exchange was observed till 96 °C. Further increase in temperature led to reaction between (2) and the isocyanide, but no attempt to examine this reaction was made.

The electronic spectrum of (2) in CH_2Cl_2 (Figure 2) shows two absorption bands at 282 and 311 nm. The latter band is attributable to a σ - σ * transition, comparable with those (*ca.* 320 nm) of the dimeric complex [{Pt(RNC)_2Cl}_2],⁵ having no bridging ligand.

Description of the Structure of (2).—Crystals suitable for Xray analysis were obtained by recrystallization from CH_2Cl_2 ethanol. The molecule consists of a PtPtS triangle, and contains ethanol of solvation. Similar complexes containing the PtPtS ring are $[Pt_2(\mu-S)(PPh_3)_3(CO)]$ (4)⁷ and $[Pt_2(\mu-S)(PPh_3)_2-(MeNC)_2]$ (5).⁸

The Pt-Pt distance of 2.604(2) Å is considered as a single

Table 2. Some least-squares planes and interplanar angles for complex (2): distances (Å) of relevant atoms from these planes are given in square brackets

Plane (1): Pt(1), Pt(2), S -0.6369x + 0.6694y + 0.7024z = 2.8681Plane (2): C(11), C(12), C(13), C(14), C(15), C(16) -0.5053x - 0.6769y - 0.0852z = -7.9829[C(11), 0.059; C(12), -0.039; C(13), -0.028; C(14), 0.063; C(15),-0.017; C(16), -0.040] Plane (3): C(21), C(22), C(23), C(24), C(25), C(26) -0.6096x - 0.4525y + 0.8905z = -3.6666[C(21), -0.014; C(22), 0.025; C(23), -0.022; C(24), 0.005; C(25),0.014; C(26), -0.006] Plane (4): C(31), C(32), C(33), C(34), C(35), C(36) 0.6863x - 0.6304y - 0.1633z = -2.4345[C(31), 0.011; C(32), -0.002; C(33), -0.008; C(34), 0.007; C(35),0.003; C(36), -0.010]Plane (5): C(41), C(42), C(43), C(44), C(45), C(46) -0.5521x - 0.7189y + 0.0314z = -4.0293[C(41), -0.030; C(42), 0.032; C(43), 0.000; C(44), -0.026; C(45),0.012; C(46), 0.015] Angles (°) between least-squares planes: (1)-(2), 109.6(7); (1)-(3), 94.5(11)

covalent Pt-Pt bond, in agreement with the sum of the covalent radii (2.62 Å) and is shorter than that found in the metal (2.78 Å). This distance is somewhat shorter than that [2.647(2) Å] found in (4), but the average Pt-S distance (2.268 Å) is longer than that (2.223 Å) in (4). The difference of these distances within the PtPtS ring causes the Pt-S-Pt angle [70.1(2)°] of (2) to be narrower than that [73.1(4)°] of (4). The mean Pt-C distance (1.93 Å) and mean Pt-C-N angle (175°) in (2) are Table 3. Positional parameters for complex (2)*

Atom	x	у	Ζ	Atom	x	У	z
Pt(1)	1 788	2 758(1)	1 368(1)	C(47)	-1 286(12)	3 490(12)	-1 525(18)
Pt(2)	695	2 215(1)	544(Ì)	C(48)	-2030(15)	4 252(15)	-4 748(22)
SÌ	1 631(3)	2 018(4)	2 037(5)	C(49)	- 343(11)	2 608(11)	-3 020(17)
N(10)	1 585(9)	3 609(8)	- 107(14)	C(171)	132(2)	484(2)	7(2)
C(10)	1 640(10)	3 283(12)	434(16)	C(172)	29(2)	430(2)	-117(3)
C(11)	1 545(11)	3 870(12)	-839(14)	C(173)	49(2)	527(2)	- 160(3)
C(12)	1 121(11)	4 364(11)	-1 373(18)	C(181)	149(2)	408(2)	- 369(3)
C(13)	1 022(11)	4 525(10)	-2 168(18)	C(182)	123(2)	506(2)	- 348(2)
C(14)	1 311(12)	4 242(11)	-2 494(19)	C(183)	39(2)	432(2)	-425(3)
C(15)	1 792(11)	3 808(10)	-1 900(17)	C(191)	289(1)	313(1)	-73(2)
C(16)	1 924(11)	3 620(11)	-1 048(16)	C(192)	293(1)	345(1)	64(2)
C(17)	796(10)	4 673(9)	-1043(16)	C(193)	220(1)	257(1)	-44(2)
C(18)	1 146(10)	4 415(10)	-3 472(15)	C(271)	367(1)	215(1)	215(2)
C(19)	2 489(9)	3 192(9)	- 399(14)	C(272)	468(2)	166(1)	354(2)
N(20)	3 260(8)	2 996(9)	2 950(13)	C(273)	372(1)	169(1)	352(2)
C(20)	2 707(11)	2 932(12)	2 355(17)	C(281)	626(2)	355(2)	547(3)
C(21)	3 927(10)	3 076(11)	3 663(17)	C(282)	632(2)	277(2)	643(3)
C(22)	4 341(10)	2 608(10)	3 810(16)	C(283)	611(2)	375(2)	668(3)
C(23)	5 019(11)	2 716(12)	4 538(16)	C(291)	404(2)	462(2)	475(3)
C(24)	5 235(11)	3 241(12)	5 107(17)	C(292)	322(2)	383(2)	426(2)
C(25)	4 807(12)	3 663(12)	4 944(19)	C(293)	328(1)	435(1)	303(2)
C(26)	4 141(10)	3 596(11)	4 215(17)	C(371)	63(1)	98(1)	258(2)
C(27)	4 072(9)	2 036(9)	3 260(14)	C(372)	-20(1)	178(1)	190(2)
C(28)	5 987(10)	3 327(10)	5 907(14)	C(373)	- 19(2)	93(1)	280(2)
C(29)	3 663(10)	4 096(10)	4 043(16)	C(381)	-122(2)	- 107(2)	87(3)
N(30)	-217(8)	1 273(9)	374(14)	C(382)	-216(3)	-86(3)	-73(4)
C(30)	109(11)	1 661(13)	425(18)	C(383)	- 198(2)	- 39(2)	65(4)
C(31)	- 608 (10)	842(10)	315(17)	C(391)	-133(1)	125(1)	-181(2)
C(32)	- 541(12)	763(13)	1 155(18)	C(392)	-156(1)	19(1)	- 222(2)
C(33)	-915(11)	296(11)	1 090(19)	C(393)	-41(1)	54(1)	-119(2)
C(34)	-1 305(13)	-49(11)	269(18)	C(471)	-140(1)	288(1)	-134(2)
C(35)	-1 355(11)	55(11)	- 528(18)	C(472)	- 185(1)	391(1)	- 181(2)
C(36)	-1 008(10)	513(11)	- 526(17)	C(473)	-65(1)	376(1)	- 58(2)
C(37)	- 87(9)	1 108(10)	2 091(14)	C(481)	-253(2)	456(2)	-477(3)
C(38)	-1 700(10)	- 564(10)	207(15)	C(482)	-232(3)	390(3)	- 559(4)
C(39)	-1 062(12)	626(12)	-1 398(17)	C(483)	-162(2)	473(2)	- 466(4)
N(40)	- 329(8)	2 800(10)	-1 404(13)	C(491)	-46(1)	197(1)	- 283(2)
C(40)	75(11)	2 587(10)	-690(17)	C(492)	40(1)	279(1)	-225(2)
C(41)	- 770(10)	3 111(9)	-2 249(15)	C(493)	-48(1)	262(1)	- 398(2)
C(42)	-1 209(11)	3 472(11)	-2 306(18)	C (1)	113(2)	290(2)	287(2)
C(43)	-1 625(11)	3 843(13)	-3 094(17)	C(2)	83(2)	351(2)	229(3)
C(44)	-1 590(12)	3 801(13)	-3 847(19)	Ο	119(1)	398(1)	220(2)
C(45)	-1188(11)	3 412(11)	-3816(16)				
C(46)	-782(10)	3 067(10)	-3 030(16)				

* Positional parameters from Pt(1) to C(49) were refined anisotropically and are multiplied by 10⁴; others from C(171) to O, by 10³.

comparable with those found in the other isocyanide complexes. The bond angle C(10)-N(10)-C(11) is 165.4(29)° and the other three corresponding bond angles are linear. The C-Pt-S angles are 102.0(7) and 102.8(9)°, being smaller than the P-Pt-S angles [106.8(4) and 104.5(4)°] in (4). The closest interatomic distance in the crystal is 3.58(6) Å for C(191) \cdots C(471) $(x + \frac{1}{2}, -y + \frac{1}{2}, z)$. This is less than the sum of the van der Waals radii of the corresponding atoms.

The dihedral angle between the PtPtS ring and the phenyl plane C(31)—C(36) is 44°. The dihedral angles with the other four phenyl rings fall in the range 70—110°, and these are tilted

in the same direction. The phenyl rings C(11)-C(16) and C(41)-C(46) lie in a nearly parallel plane (dihedral angle 7°), in order to minimize steric repulsion. Least-squares planes are given in Table 2.

Four-membered Ring Complex.—The reaction of (1) with CS_2 in CH_2Cl_2 at room temperature gave stable yellow crystals of (3), formulated as $[Pt_2(2,4,6-Bu'_3C_6H_2NC)_4(CS_2)]$. The i.r. spectrum showed three peaks at 2 181, 2 152, and 2 125 cm⁻¹ due to the terminal isocyanide groups and a peak ⁹ at 1 153 cm⁻¹ due to the C=S vibration.

The ¹H n.m.r. spectrum showed the presence of four kinds of terminal isocyanide groups. The electronic spectrum in the short-wavelength range is closely similar to that of (2). The band at 309 nm is assigned to a σ - σ ⁺ transition.

We propose a four-membered ring structure containing two platinum atoms, on the basis of the aforementioned spectroscopic data. There is a precedent for such a compound having a four-membered ring, $[(cod)Pt{(CF_3)_2CO}Pt(cod)]$.¹⁰

Experimental

Infrared spectra were recorded on a Shimazu IR-27G spectrometer. Hydrogen-1 n.m.r. spectra were obtained on JEOL C-60HL and internal Varian HA-100B spectrometers, with SiMe₄ as reference. Electronic spectra were recorded on a Shimazu UV-180 spectrometer. All operations were performed under nitrogen. 2,4,6-Tri-t-butylphenyl isocyanide¹¹ and [Pt₃(2,4,6-Bu¹₃C₆H₂NC)₆] (1)⁵ were prepared by procedures described in the literature.

Preparation of (2).—A mixture of (1) (0.2 g, 0.10 mmol) and sulphur (0.2 g) in CH₂Cl₂ (15 cm³) was stirred for 5 h at room temperature. The mixture was chromatographed on alumina. Elution with benzene gave a yellow solution. Removal and crystallization of the residue from CH₂Cl₂–hexane gave yellow crystals of (2), yield 0.05 g, m.p. 246—250 °C (decomp.). I.r. (Nujol): 2 127 and 2 092 cm⁻¹. N.m.r. (CDCl₃): δ 1.26 (s, 2,6-Bu'), 1.28 (s, 4-Bu'), 1.34 (s, 2,6-Bu'), 1.48 (s, 2,6-Bu'), 7.19 (s, 3,5-H), and 7.28 (s, 3,5-H). Electronic spectrum(CH₂Cl₂): λ 282 (ϵ 31 760) and 311 nm (23 750 dm³ mol⁻¹ cm⁻¹) (Found: C, 60.55; H, 7.75; N, 3.70; S, 2.05. Calc. for C₇₆H₁₁₆N₄Pt₂S: C, 60.55; H, 7.75; N, 3.70; S, 2.15%).

Preparation of (3).—Excess carbon disulphide was added to (1) (0.1 g, 0.05 mmol) in CH₂Cl₂ (15 cm³) at room temperature. After stirring for 4 h, the volatile materials were removed under reduced pressure. The residue was chromatographed on alumina. Elution with CH₂Cl₂ (containing ca. 5% ethyl acetate) gave a yellow solution. Removal of the solvent and crystallization of the residue from CH₂Cl₂–hexane gave yellow crystals of (3) (0.02 g). Molecular weight (C₆H₆): 1 485 (calc. 1 508). I.r. (Nujol): 2 181, 2 152, and 2 125 cm⁻¹. N.m.r. (CDCl₃): δ 1.30 (s, Bu¹), 1.32 (s, Bu¹), 1.38 (s, Bu¹), 1.40 (s, Bu¹), 1.46 (s, Bu¹), 1.64 (s, Bu¹), 5.30 (s, CH₂Cl₂): λ 397 (ϵ 13 610), 344 (23 530), 309 (28 330), and 260 nm (63 960 dm³ mol⁻¹ cm⁻¹) (Found: C, 58.05; H, 7.25; N, 3.20. Calc. for C₇₇H₁₁₆N₄Pt₂S₂: C, 58.4; H, 7.40; N, 3.50%).

Collection of X-Ray Data and Solution of the Structure of (2).—The yellow crystals of $[Pt_2(2,4,6-Bu^t_3C_6H_2NC)_4S]\cdot C_2-H_5OH$ were obtained by recrystallization from $CH_2Cl_2-C_2H_5OH$.

Crystal data. $C_{78}H_{122}N_4OPt_2S$, M = 1553.0, monoclinic, space group $P2_1/a$, a = 26.988(7), b = 22.704(11), c = 18.211(5) Å, $\beta = 130.01(2)^\circ$, U = 8546.8 Å³, Z = 4, $D_c = 1.207$ g cm⁻³, F(000) = 3 192, $\mu(Mo-K_n) = 37.84$ cm⁻¹. Data collection¹² was carried out using the ω -2 θ scan technique and graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.710$ 69 Å) with 2 < 2 θ <45°. Intensities were corrected for Lorentz and polarisation effects. Of the total 5 719 reflections, 5 160 were considered observed [$I \ge 3\sigma(I)$].

The positions of two Pt atoms were determined from a Patterson map. Subsequent difference Fourier maps and cycles of least-squares refinement revealed the positions of the remaining non-hydrogen atoms. The atomic scattering factors and anomalous dispersion corrections for the non-hydrogen atoms were taken from ref. 13. Two platinum, sulphur, four nitrogen, and 40 carbon atoms (except 36 methyl carbons) were refined anisotropically and the remaining non-hydrogen atoms were refined isotropically. Several block-diagram least-squares cycles led to convergence of $R (=\Sigma |\Delta F|/\Sigma |F_0|)$ and $R' \{= [\Sigma w (\Delta F)^2 / \Sigma w |F_0|^2]^{\frac{1}{2}}\}$ to 0.070 and 0.081 respectively. The final difference synthesis showed no peak higher than 0.4 e Å⁻³. No attempt was made to locate the hydrogen atoms; no correction was made for absorption. The final atomic coordinates are listed in Table 3.

References

- 1 R. Ugo, Catal. Rev., 1975, 11, 225; E. L. Muetterties, Bull. Chem. Soc. Chim. Belg., 1975, 84, 959.
- 2 B. F. G. Johnson, 'Transition Metal Clusters,' Wiley, London, 1980.
- 3 Y. Yamamoto, Coord. Chem. Rev., 1980, 32, 193.
- 4 M. Green, J. A. K. Howard, M. Murray, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1977, 1509.
- 5 Y. Yamamoto, K. Takahashi, and H. Yamazaki, *Chem. Lett.*, 1985, 201; Y. Yamamoto and H. Yamazaki, unpublished work.
- 6 J. B. B. Heyns and F. G. A. Stone, J. Organomet. Chem., 1978, 160, 337; J. L. Spencer, F. G. A. Stone, and J. Vincente, J. Chem. Soc., Dalton Trans., 1979, 536; J. Fornies, M. Green, A. Laguna, M. Murray, J. L. Spencer, and F. G. A. Stone, *ibid.*, 1977, 1515.
- 7 A. C. Skapski and P. G. H. Troughton, J. Chem. Soc. A, 1969, 2772.
- 8 C. T. Hunt, G. B. Matson, and A. L. Balch, *Inorg. Chem.*, 1981, 20, 2270.
- 9 L. J. Bellamy, 'The Infrared Spectra of Complex Molecules,' Methuen, London, 1958, p. 350.
- 10 M. Green, J. A. K. Howard, A. Laguna, L. E. Smart, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1977, 278.
- 11 Y. Yamamoto, K. Aoki, and H. Yamazaki, Inorg. Chem., 1979, 18, 1681.
- 12 T. Sakurai and K. Kobayashi, UNICS III program, Riken, 1978.
- 13 D. T. Cromer, Acta Crystallogr., 1965, 18, 17.

Received 3rd June 1985; Paper 5/928