Bis(perhalogenophenyl) Derivatives of Palladium(II) and Platinum(II) containing $\mathrm{S}_{2} \mathbf{C P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ as a Mono- or Bi-dentate Ligand. Crystal Structures of cis- $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathbf{C P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ and cis-[Pt($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right] \dagger$

Rafael Usón,* Juan Forniés, Miguel A. Usón, and José F. Yagüe
Départamento de Quimica Inorgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain Peter G. Jones* and Karen Meyer-Bäse
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

Abstract

Addition of $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ to solutions of $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left(\mathrm{OC}_{4} \mathrm{H}_{8}\right)_{2}\right](\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt} ; \mathrm{X}=\mathrm{F}$ or CI$)$ affords the derivatives $\left[M\left(\mathrm{C}_{6} X_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$, which are the first containing $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ chelatebonded to palladium or platinum. Reaction of the above complexes with 1 mol equivalent of a neutral monodentate ligand L leads to $\left[M\left(C_{6} X_{5}\right)_{2}\left\{S C(S) P\left(C_{6} H_{11}\right)_{3}\right\} L\right]\left(L=P P h_{3}, X=F, M=P d\right.$ or $\mathrm{Pt} ; \mathrm{L}=\mathrm{CO}, \mathrm{X}=\mathrm{F}$ or $\mathrm{CI}, \mathrm{M}=\mathrm{Pt} ; \mathrm{L}=$ pyridine, $\mathrm{X}=\mathrm{F}, \mathrm{M}=\mathrm{Pt}$) where $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ is monodentate. The structure of one example of each of these types has been determined by single-crystal X-ray $c=24.223(7) \AA, \beta=116.93(3)^{\circ}, Z=8$, and $R=0.045$; cis $-\left[\mathrm{Pt}^{\circ}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right]$, space group $P \overline{1}, a=9.864(2), b=14.202(3), c=14.638(5) A, \alpha=93.44(3), \beta=103.11$ (2), $\gamma=105.45(2)^{\circ}, Z=2$, and $R=0.042$. The co-ordination at the metal atoms is planar. In the palladium derivative the chelating $S_{2} C P$ group makes a dihedral angle of 12.3° to the ligand plane; in the platinum derivative the corresponding angle formed by the monodentate ligand is 55.3°.

The zwitterionic moieties $\mathrm{R}_{3} \mathrm{P}^{+}-\mathrm{CS}_{2}{ }^{-}$have nucleophilic character and a series of complexes with different electrophiles ($\mathrm{L}_{n} \mathrm{M}$) containing transition metals have been described. They are very versatile ligands, capable of acting as a monodentate σ S donor, ${ }^{1.2}$ as a bidentate (bridging) $\sigma-S, S^{\prime}$ donor, ${ }^{3}$ as a chelate, ${ }^{3-6}$ or even as a four-electron pseudo-allylic ligand. ${ }^{1}$

For $\mathbf{M}=\mathrm{Pd}$ or Pt we have recently reported ${ }^{2}$ the preparation of the cationic derivatives $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{SC}_{(S)}\left(\mathrm{SR}^{\prime}{ }_{3}\right\}\right.\right.$ $\left.\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$, containing monodentate $\mathrm{R}_{3} \mathrm{P}^{+}-\mathrm{CS}_{2}{ }^{-}$, and therefore four-co-ordinated square-planar Pd (or Pt), as confirmed by a single-crystal X-ray diffraction study of the complex with $\mathbf{R}=\mathbf{R}^{\prime}=\mathrm{Et}, \mathbf{M}=\mathrm{Pd}$. On the other hand, other authors ${ }^{7}$ have described the preparation of neutral and cationic palladium complexes and, on the basis of indirect spectroscopic data (i.r. and n.m.r.) (which, however, are compatible with monodentate $\mathrm{R}_{3} \mathrm{PCS}_{2}$ and therefore with four-coordinated palladium) have proposed structures with five- or six-co-ordinated Pd \{i.e. the proposed six-co-ordinated complex $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(\mathrm{SCS})\left(\mathrm{S}_{2} \mathrm{CPMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{BPh}_{4}$ with bidentate $\mathrm{S}_{2} \mathrm{CPMe}_{3}$ could also be $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{S}_{2} \mathrm{CPMe}_{3}\right)\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathrm{BPh}_{4} \cdot \mathrm{CS}_{2}$, with monodentate $\mathrm{S}_{2} \mathrm{CPMe}_{3}$ and uncoordinated crystal $\left.\mathrm{CS}_{2}\right\}$.
In the present paper we describe the preparation and reactivity of four-co-ordinated complexes of Pd^{11} and Pt^{t} that contain either a genuine chelate-bonded $\mathrm{R}_{3} \mathrm{P}^{+}-\mathrm{CS}_{2}{ }^{-}$ligand or a monodentate $\mathrm{R}_{3} \mathrm{P}^{+}-\mathrm{CS}_{2}{ }^{-}$ligand. The structures of cis$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ and $c i s-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right]$ have been established by X-ray diffraction.

[^0]
Results and Discussion

Our previous approach ${ }^{2}$ to the synthesis of complexes with $\mathrm{R}_{3} \mathrm{P} \cdot \mathrm{CS}_{2}$ ligands consisted of the nucleophilic attack of the betaine upon derivatives of $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ containing an anionic, weakly co-ordinating ligand $\left(\mathrm{OClO}_{3}{ }^{-}\right)$which leads [equation (1)] to cationic four-co-ordinated complexes. In order to force

the betaine to act as a chelate, it seems convenient to find precursors containing two substitution-labile groups, i.e. of the type $\mathrm{MR}_{2} \mathrm{~L}_{2}(\mathrm{~L}=$ weak ligand), such as those we have recently prepared ${ }^{8}\left[\mathrm{M}=\mathrm{Pd}\right.$ or $\mathrm{Pt} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$ or $\mathrm{C}_{6} \mathrm{Cl}_{5} ; \mathrm{L}=$ tetrahydrofuran (thf)] and whose reactivity is presently being studied. Thus, the reaction [equation (2)] of these complexes with $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right){ }_{3} \mathrm{P}^{+}-\mathrm{CS}_{2}{ }^{-}$leads to the neutral compounds (1)(4).

Complexes (1)-(4) and the betaine are insoluble in the reaction medium and the use of an excess of the betaine therefore precipitates mixtures that are difficult to separate $\{$ i.e. the formation of $\left[\mathrm{MR}_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ cannot be observed\}. Employing a slight deficit of the betaine allows the

Table 1. Analytical and i.r. data for complexes (1)-(12)

	Analysis(\%) ${ }^{\text {a }}$		$M^{\text {a }}$	I.r. bands (cm^{-1})		
Complex	C	H		$\mathrm{C}_{6} \mathrm{X}_{5}$	$\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$	L
(1) cis-[Pd($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$	$\begin{array}{r} 46.45 \\ (46.7) \end{array}$	$\begin{gathered} 4.20 \\ (4.70) \end{gathered}$	$\begin{gathered} 751 \\ (797) \end{gathered}$	$\begin{aligned} & 1493 \mathrm{vs}, 1048 \mathrm{vs}, 953 \mathrm{vs} \text {, } \\ & 788 \mathrm{~s}, 778 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1273 \mathrm{~m}, 1003 \mathrm{~s}, 898 \mathrm{~m}, \\ & 848 \mathrm{~s}, 560 \mathrm{~s}, 548 \mathrm{~m} \end{aligned}$	
(2) cis-[Pd($\left.\left.\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$	$\begin{gathered} 38.6 \\ (38.7) \end{gathered}$	$\begin{gathered} 3.70 \\ (3.45) \end{gathered}$	b	$\begin{aligned} & 1323 \mathrm{~s}, 1313 \mathrm{~s}, 1285 \mathrm{~s}, \\ & 833 \mathrm{w}, 828 \mathrm{w}, 668 \mathrm{~s} \\ & 613 \mathrm{~m}, 603 \mathrm{~m} \end{aligned}$	$1218 \mathrm{~m}, 1005 \mathrm{~s}, 898 \mathrm{~m}$, $848 \mathrm{~m}, 553 \mathrm{~m}, 535 \mathrm{~m}$	
(3) cis-[$\left.\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$	$\begin{aligned} & 42.5 \\ & (42.05) \end{aligned}$	$\begin{gathered} 4.20 \\ (3.75) \end{gathered}$	$\begin{gathered} 884 \\ (886) \end{gathered}$	$\begin{aligned} & 1498 \mathrm{vs}, 1053 \mathrm{vs}, 953 \mathrm{vs} \text {, } \\ & 800 \mathrm{~s}, 790 \mathrm{~s} \end{aligned}$	$1273 \mathrm{~m}, 1005 \mathrm{~s}, 898 \mathrm{~m}$, $848 \mathrm{~s}, 553 \mathrm{~m}, 540 \mathrm{~m}$	
(4) cis-[Pt($\left.\left.\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$	$\begin{gathered} 35.95 \\ (35.45) \end{gathered}$	$\begin{gathered} 3.20 \\ (3.15) \end{gathered}$	b	$1325 \mathrm{~s}, 1315 \mathrm{~s}, 1290 \mathrm{~s}$, 823w, 813w, 670m, $623 \mathrm{~m}, 618 \mathrm{~m}$	$1218 \mathrm{~m}, 1003 \mathrm{~m}, 895 \mathrm{~m}$, $848 \mathrm{~m}, 552 \mathrm{~m}, 538 \mathrm{~m}$	
(5) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right]$	$\begin{aligned} & 42.3 \\ & (42.05) \end{aligned}$	$\begin{gathered} 3.60 \\ (3.65) \end{gathered}$	$\begin{gathered} 917 \\ (914) \end{gathered}$	$\begin{aligned} & 1503 \mathrm{vs}, 1063 \mathrm{vs}, 958 \mathrm{vs} \text {, } \\ & 798 \mathrm{~s}, 793 \mathrm{~s} \end{aligned}$	$1273 \mathrm{~m}, 1033 \mathrm{~m}, 898 \mathrm{~m}$, $848 \mathrm{~m}, 558 \mathrm{~m}, 538 \mathrm{~m}$	2043 vs
(6) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right]$	$\begin{gathered} 34.95 \\ (35.65) \end{gathered}$	$\begin{gathered} 3.05 \\ (3.10) \end{gathered}$	$\begin{gathered} 1010 \\ (1078) \end{gathered}$	$\begin{aligned} & 1333 \mathrm{~s}, 1323 \mathrm{~s}, 1293 \mathrm{vs} \text {, } \\ & 838 \mathrm{w}, 833 \mathrm{w}, 673 \mathrm{~s} \text {, } \\ & 623 \mathrm{~m}, 613 \mathrm{~m} \end{aligned}$	$1218 \mathrm{~m}, 998 \mathrm{~m}, 898 \mathrm{~m}$, $848 \mathrm{~m}, 553 \mathrm{~m}, 533 \mathrm{~m}$	2045 vs
(7) $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 55.65 \\ (55.55) \end{gathered}$	$\begin{gathered} 4.45 \\ (4.55) \end{gathered}$	$\begin{gathered} 1133 \\ (1059) \end{gathered}$	$\begin{aligned} & 1493 \mathrm{vs}, 1058 \mathrm{vs}, 948 \mathrm{vs} \text {, } \\ & 778 \mathrm{~s}, 768 \mathrm{~s} \end{aligned}$	$1268 \mathrm{~m}, 1038 \mathrm{~s}, 895 \mathrm{~m}$, $848 \mathrm{~m}, 558 \mathrm{~s}, 533 \mathrm{~s}$	$\begin{aligned} & 1435 \mathrm{vs}, 1098 \mathrm{~s}, 748 \mathrm{~s} \\ & 703 \mathrm{~s}, 693 \mathrm{~s}, 523 \mathrm{~s} \end{aligned}$
(8) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 50.40 \\ (51.25) \end{gathered}$	$\begin{gathered} 3.90 \\ (4.20) \end{gathered}$	$\begin{gathered} 1192 \\ (1148) \end{gathered}$	$1498 \mathrm{vs}, 1058 \mathrm{vs}, 953 \mathrm{vs}$, 793 s , 778 s	$1268 \mathrm{~m}, 1038 \mathrm{~s}, 898 \mathrm{~m}$, $848 \mathrm{~m}, 555 \mathrm{~s}, 530 \mathrm{~s}$	$\begin{aligned} & 1438 \mathrm{vs}, 1098 \mathrm{~s}, 738 \mathrm{~s}, \\ & 708 \mathrm{~s}, 693 \mathrm{~s}, 508 \mathrm{~s} \end{aligned}$
(9) $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{py})\right]^{c}$	$\begin{array}{r} 45.25 \\ (44.8) \end{array}$	$\begin{gathered} 3.80 \\ (3.95) \end{gathered}$	$\begin{gathered} 1023 \\ (965) \end{gathered}$	$1505 \mathrm{vs}, 1060 \mathrm{vs}, 963 \mathrm{vs}$, 803s, 790s	$1278 \mathrm{~m}, 1018 \mathrm{~m}, 898 \mathrm{~m}$, $848 \mathrm{~m}, 553 \mathrm{~m}, 538 \mathrm{~m}$	$\begin{aligned} & 1603 \mathrm{~m}, 1218 \mathrm{w} \\ & 1035 \mathrm{~m} \end{aligned}$
(10) $\left[\left\{\mathrm{PdCl}_{2}\left[\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]\right\}_{x}\right]$	$\begin{gathered} 43.65 \\ (42.75) \end{gathered}$	$\begin{gathered} 6.65 \\ (6.25) \end{gathered}$	b		$1275 \mathrm{~m}, 968 \mathrm{~s}, 898 \mathrm{~m}$, $848 \mathrm{~m}, 555 \mathrm{~s}, 535 \mathrm{~s}$	
(11) $\left[\left\{\mathrm{PdBr}_{2}\left[\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]\right\}_{x}\right]$	$\begin{gathered} 37.05 \\ (36.65) \end{gathered}$	$\begin{gathered} 5.45 \\ (5.30) \end{gathered}$	b		$\begin{aligned} & 1278 \mathrm{~m}, 1003 \mathrm{~m}, 893 \mathrm{~s}, \\ & 848 \mathrm{~s}, 558 \mathrm{~s}, 528 \mathrm{~s} \end{aligned}$	
(12) $\left[\left\{\mathrm{PdI}_{2}\left[\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]\right\}_{x}\right]$	$\begin{gathered} 31.55 \\ (31.85) \end{gathered}$	$\begin{gathered} 4.85 \\ (4.65) \end{gathered}$	b		$1268 \mathrm{~m}, 998 \mathrm{~m}, 893 \mathrm{~m}$ $848 \mathrm{~m}, 558 \mathrm{~s}, 523 \mathrm{~s}$	

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b}$ The very low solubility in chloroform prevents the determination of the molecular weight. ${ }^{c} \mathrm{~N} 1.42$ (1.45\%).

$$
\begin{aligned}
& M=P d, X=F(1) \text { or } \mathrm{Cl}(2) \\
& M=P t, X=F(3) \text { or } C l(4)
\end{aligned}
$$

separation of the precipitated complexes from the excess of [$\mathbf{M R}_{2}(\mathrm{thf})_{2}$], which remains in solution.

The elemental analyses and measured molecular weights of complexes (1)-(4) are listed in Table 1. Their i.r. spectra show absorptions from the $\mathrm{C}_{6} \mathrm{~F}_{5}{ }^{9}$ or $\mathrm{C}_{6} \mathrm{Cl}_{5}{ }^{10}$ groups; the characteristic bands are also shown in Table 1. Complexes (1) and (3) exhibit two absorptions in the $760-800 \mathrm{~cm}^{-1}$ region assignable to the X-sensitive mode of the pentafluorophenyl group, whilst complexes (2) and (4) show two bands in the $800-850 \mathrm{~cm}^{-1}$ region (assignable to the X -sensitive mode of the pentachlorophenyl group) and two more in the $620-600 \mathrm{~cm}^{-1}$ region [assignable to $v(M-C)$ vibration], thus confirming the cis configuration of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ or $\mathrm{C}_{6} \mathrm{Cl}_{5}$ groups respectively. The internal vibrations of the $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ groups prevent the assignment of the absorptions of the $-\mathrm{C}_{\mathrm{S}}^{\mathrm{S}}$ moiety.

The ${ }^{31} \mathrm{P}$ n.m.r. spectra of complexes (1) and (2) show a peak at $\delta 31.96$ or 30.68 p.p.m. respectively, whereas (3) and (4) show an absorption with corresponding platinum satellites $\{\delta 44.37$ $\left[{ }^{3} J(\mathrm{Pt}-\mathrm{P})=136\right]$ and 38.18 p.p.m. $\left[{ }^{3} J(\mathrm{Pt}-\mathrm{P})=137 \mathrm{~Hz}\right]$

Figure 1. The molecule of (1) in the crystal (radii arbitrary, H atoms omitted)
respectively \} indicating the presence of only one type of phosphorus nucleus.

The bidentate nature of the $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligand in complexes (1)-(4) has been established by X-ray diffraction studies on complex (1) (see Experimental section and Figure 1). Single crystals were grown by diffusion of n-hexane into a concentrated solution of (1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Palladium is in a cis square-planar environment [root-mean square (r.m.s.) deviation $0.02 \AA$] formed by one carbon of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ group and the two sulphurs of the $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ group. The $\mathrm{Pd}-\mathrm{C}$ bond
lengths $[2.029(4)$ and $2.012(6) ~ \AA]$ are shorter than in the $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{SC}(\mathrm{S}) \mathrm{PEt}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}$cation; ${ }^{2}$ the $\mathrm{C}-\mathrm{S}$ bond lengths are $1.662(6)$ and $1.672(4) \AA$. Because of the chelating nature of the betaine, the angle $\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(2)$ is only $73.8(2)^{\circ}$; this is similar to corresponding angles in other PdSCS rings, e.g. 75.4° in $\left[\mathrm{Pd}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]{ }^{11} 74.5^{\circ}$ in $\left[\mathrm{Pd}\left(\mathrm{S}_{2} \mathrm{CPh}\right)_{2}\right] .{ }^{12}$ The planar $\mathrm{S}_{2} \mathrm{CP}$ moiety forms a dihedral angle of 12.3° to the ligand plane, and its dimensions are in general agreement with those for similar chelated complexes. ${ }^{3-6}$ The dihedral angles between the $\mathrm{S}_{2} \mathrm{CP}$ plane and the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are 94.4 trans to $\mathrm{S}(1)$ and 113.3 trans to $\mathrm{S}(2)$.
Bubbling CO through dichloromethane solutions of the platinum complexes (3) and (4) causes the colour of the solution to change from dark red to orange with the formation of species of the general formula $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right][\mathrm{X}$ $=\mathrm{F}(5)$ or $\mathrm{Cl}(6)]$ according to equation (3) where the betaine

acts as a monodentate ligand. No reaction takes place with the palladium complexes (1) and (2); after treatment with CO, their solutions do not show any $v(\mathrm{CO})$ absorptions, and the unchanged starting materials are recovered. The i.r. spectra of complexes (5) and (6) show absorptions characteristic of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ or $\mathrm{C}_{6} \mathrm{Cl}_{5}$ group and the $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligand (see Table 1), and a strong absorption band at 2043 (5) or $2045 \mathrm{~cm}^{-1}$ (6) assignable to $\mathrm{v}(\mathrm{CO})$.

Analogously, complexes (1) and (3) react with other neutral ligands $\mathrm{L}\left[\mathrm{PPh}_{3}\right.$ or pyridine (py) $]$ to give compounds of the general formula $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\} \mathrm{L}\right] \quad[\mathrm{M}=\mathrm{Pd}$, $\mathrm{L}=\mathrm{PPh}_{3}$ (7); $\left.\mathrm{M}=\mathrm{Pt}, \mathrm{L}=\mathrm{PPh}_{3}(8) ; \mathrm{M}=\mathrm{Pt}, \mathrm{L}=\mathrm{py}(9)\right]$, where the $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{PCS}_{2}$ moiety must be monodentate. The
absorptions assignable to the X -sensitive mode of $\mathrm{C}_{6} \mathrm{~F}_{5}$ (two in each case, see Table 1) do not distinguish cis from trans geometry since two bands are expected in both cases.

For complexes (5)-(9) the monodentate nature of the $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligand can be inferred from the structure of complex (5) as determined by X-ray diffraction [see Experimental section and Figure 2; single crystals obtained as for complex (1)]; a five-co-ordinate palladium or platinum environment may thus be ruled out. The metal is again in a cis square-planar environment (r.m.s. deviation $0.04 \AA$), less distorted than that of complex (1), as expected from the monodentate character of all four ligands. The distance $\mathrm{Pt}-\mathrm{S}(1)$ is $2.348(2) \AA ; \mathrm{Pt}-\mathrm{S}(2)$ is $3.589 \AA$, therefore $\mathrm{Pt}-\mathrm{S}(2)$ bonding may be ruled out. In agreement with this, $\mathrm{C}(2)-\mathrm{S}(1)[1.682(6) \AA]$ is somewhat longer than $\mathrm{C}(2)-\mathrm{S}(2)$ [1.643(7) \AA]. The small difference between the two bond lengths is a consequence of electron delocalisation within the SCS moiety. ${ }^{2}$ As for other metal $\mathrm{S}_{2} \mathrm{CPR}_{3}$ complexes (e.g. ref. 6) there is no significant difference between the dimensions of the co-ordinated ligand and those of free $\mathrm{S}_{2} \mathrm{CPEt}_{3} .{ }^{13}$ The distances $\mathrm{Pt}-\mathrm{C}(41)$ and $\mathrm{Pt}-\mathrm{C}(51)$ are 2.056(6) and 2.045(7) \AA, similar to those found for other bis(pentafluorophenyl)platinum(II) derivatives. ${ }^{14}$ The dihedral angle between the co-ordination plane and the $\mathrm{S}_{2} \mathrm{CP}$ plane is 55.3°. The $\mathrm{C}_{6} \mathrm{~F}_{5}$ group trans to $\mathrm{S}(1)$ forms a dihedral angle of 61.1° with the $\mathrm{S}_{2} \mathrm{CP}$ group; this is in contrast to the corresponding angle of 4° in trans- $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{CPEt}_{3}\right)\right.$ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}{ }^{2}$

The ${ }^{31} \mathrm{P}$ n.m.r. spectra of complexes (5) and (6) show a single signal with ${ }^{195} \mathrm{Pt}$ satellites $\left\{\delta 33.89\left[{ }^{3} \mathrm{~J}(\mathrm{Pt}-\mathrm{P}) 79.2\right]\right.$ and $\delta 32.79$ p.p.m. [$\left.{ }^{3} J(\mathrm{Pt}-\mathrm{P}) 75.5 \mathrm{~Hz}\right]$ respectively $\}$. Compound (7) shows two signals with equal intensity: a broad multiplet $\left(\mathrm{PPh}_{3}\right.$ coupled to the F atoms of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group, $\delta 24.08$ p.p.m.) and a sharp singlet $\left[P\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}, \delta 27.85\right.$ p.p.m.].

The synthesis of complexes of the type $\mathrm{MX}_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}$, analogous to the compounds described above but containing a halogen instead of the perhalogenophenyl group, must be attempted by a different route, since no precursors of the type $\mathrm{MX}_{2} \mathrm{~L}_{2}(\mathrm{~L}=$ weak ligand; $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$ are known. Treatment of acetone-dichloromethane solutions of $\left[\mathrm{NBu}_{4}\right]_{2}-$ $\left[\mathrm{Pd}_{2} \mathrm{X}_{6}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) with stoicheiometric amounts of the betaine leads, according to equation (4), to the precipitation of dark red solids of the desired general formula, as confirmed by C and H analyses [see Table 1; $\mathrm{X}=\mathrm{Cl}(10), \mathrm{Br}(11)$, or $\mathrm{I}(12)$]. The ${ }^{31} \mathrm{P}$ n.m.r. spectrum of the chloro derivative (10) shows a single signal ($\delta 39.2$ p.p.m.) indicating the presence of only one type of

Figure 2. The molecule of (5) in the crystal (radii arbitrary, H atoms omitted)

phosphorus nucleus, whilst its i.r. spectrum shows two bands with two shoulders in the $400-250 \mathrm{~cm}^{-1}$ region [$340(\mathrm{sh}), 325 \mathrm{~s}$, 290 s , and $\left.275(\mathrm{sh}) \mathrm{cm}^{-1}\right]$ characteristic of $v(\mathrm{Pd}-\mathrm{Cl})$. These data do not allow a distinction between a square-pl' \quad ar geometry (A) with two mutually cis terminal chlorines (for which two bands are expected) and a binuclear structure (B) with unidentate betaine and a double chloro bridge, for which three absorptions ${ }^{15}$ are expected.

The low solubility of these complexes has prevented both the determination of their molecular weights and the preparation of suitable crystals for X-ray diffraction studies. Neither does the reactivity of these compounds provide any useful indication of their structure; the complexes $\left[\left\{\mathrm{PdX}_{2}\left[\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]\right\}_{x}\right]$ react with tris(cyclohexyl)phosphine or triphenylphosphine [equation (5)] to give trans- $\left[\mathrm{PdX}_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\mathrm{PR}_{3}\right)\right](\mathrm{X}=\mathrm{Cl}}\right.\right.$ or $\mathrm{Br} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}$ or Ph), where elimination of CS_{2} has taken place, as shown by quantitative C and H and qualitative S analyses.

$$
\begin{align*}
{\left[\left\{\mathrm{PdX}_{2}\left[\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]\right\}_{x}\right] } & +\mathrm{PR}_{3} \longrightarrow \\
& {\left[\mathrm { PdX } _ { 2 } \left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\mathrm{PR}_{3}\right)\right]}\right.\right.} \tag{5}
\end{align*}
$$

In the case of $\left[\mathrm{PdCl}_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ the i.r. spectrum is identical to that of the trans isomer prepared by a standard procedure, ${ }^{16}$ showing a single band at $348 \mathrm{~cm}^{-1}$.

Experimental

The C, H, and N analyses were carried out with a Perkin-Elmer 240 B microanalyser. Infrared spectra ($4000-200 \mathrm{~cm}^{-1}$) were recorded on a Perkin-Elmer 599 spectrophotometer using Nujol mulls between polyethylene sheets, n.m.r. spectra on a Varian XL-200. Molecular weights were determined with a Knauer 11.00 vapour-pressure osmometer.

The complexes $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ were prepared as described elsewhere. ${ }^{8}$

Preparations.- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \quad(\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt} ; \mathrm{X}=\mathrm{F}$ or Cl$)$. The ligand $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(0.0713 \mathrm{~g}, 0.20$ mmol) was added to a yellow solution containing the corresponding complex $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \quad(0.25 \mathrm{mmol})$ in diethyl ether ($30 \mathrm{~cm}^{3}$), and stirred (45 min when $X=F, 3 \mathrm{~h}$ when $X=C l$). The resulting orange to red precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. Yields: $\mathrm{M}=\mathrm{Pd}$, $\mathrm{X}=\mathrm{F}, 83 ; \mathrm{X}=\mathrm{Cl}, 61 \% ; \mathrm{M}=\mathrm{Pt}, \mathrm{X}=\mathrm{F}, 80 ; \mathrm{X}=\mathrm{Cl}, 65 \%$.
$\left[\left\{\mathrm{PdX}_{2}\left[\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]\right\}_{x}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$. To a solution containing $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2} \mathrm{X}_{6}\right](0.25 \mathrm{mmol})$ in acetone-dichloromethane ($30 \mathrm{~cm}^{3}: 40 \mathrm{~cm}^{3}$) was added $\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(0.1783 \mathrm{~g}$,

Table 2. Atomic co-ordinates ($\times 10^{4}$) for complex (1)

Atom	x	y	2	Atom	x	y	z
Pd	$3651.3(0.1)$	$4571.5(0.3)$	$1604.0(0.1)$	C(41)	$2971(2)$	4 980(4)	799(2)
P	$4066.5(0.4)$	2 426(1)	3 346.9(0.4)	C(42)	$2817(2)$	4 309(4)	274(2)
S(1)	4 396.4(0.4)	$4000(1)$	2 565.9(0.5)	C(43)	$2367(2)$	4 598(4)	-288(2)
S(2)	3 280.9(0.4)	3041 (1)	$1996.8(0.5)$	C(44)	$2061(2)$	5 579(4)	-333(2)
C(2)	3 916(1)	$3134(3)$	$2607(2)$	C(45)	2 191(2)	6 248(4)	173(2)
C(11)	4 824(1)	2 226(3)	$3768(2)$	C(46)	2 647(2)	$5942(4)$	733(2)
C(12)	$5091(1)$	$1498(4)$	3 445(2)	$\mathrm{F}(42)$	$3105(1)$	3 344(2)	292(1)
C(13)	5730 (2)	$1575(4)$	$3802(2)$	$F(43)$	2230 (1)	$3905(3)$	-783(1)
C(14)	5937 (2)	$1181(4)$	4 466(2)	F(44)	$1631(1)$	$5851(3)$	-881(1)
C(15)	5 664(2)	$1856(4)$	4786 (2)	$F(45)$	$1877(1)$	$7191(3)$	128(2)
C(16)	$5019(2)$	$1789(4)$	4 433(2)	F(46)	$2753(1)$	6 658(3)	$1212(1)$
C(21)	3 640(2)	$1122(3)$	$3181(2)$	C(51)	4069 (2)	$5862(4)$	$1432(2)$
C(22)	3760 (2)	222(4)	$2792(2)$	C(52)	4 270(2)	$5755(4)$	$1009(2)$
C(23)	3 318(2)	-731(4)	2 604(3)	C(53)	4 558(2)	$6621(4)$	881(2)
C(24)	3 299(2)	-1297(4)	3160 (3)	C(54)	4 663(2)	$7650(4)$	1 192(2)
C(25)	3200 (2)	-407(4)	$3553(2)$	C(55)	4 470(2)	$7808(4)$	$1619(2)$
C(26)	$3634(2)$	557(4)	3 754(2)	$\mathrm{C}(56)$	$4183(2)$	$6912(4)$	$1742(2)$
C(31)	$3856(2)$	3 469(3)	3768 (2)	F(52)	$4195(1)$	4760 (2)	685(1)
C(32)	4126 (2)	4 664(4)	$3808(2)$	F(53)	4 745(1)	$6477(3)$	450(1)
C(33)	3 968(2)	5 536(4)	$4178(2)$	F(54)	4 942(1)	$8513(3)$	$1076(2)$
C(34)	3 338(2)	5 629(5)	3926 (2)	F(55)	4 546(2)	$8817(3)$	1923(2)
C(35)	3 078(2)	4 448(5)	3 905(2)	F(56)	$4009(1)$	$7090(3)$	2173(1)
C(36)	$3217(2)$	3 593(4)	3 508(2)				

0.5 mmol). After stirring for 20 h , the precipitate was filtered off and washed (with acetone for $\mathrm{X}=\mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for $\mathrm{X}=\mathrm{Br}$, and hexane for $\mathrm{X}=\mathrm{I}$). The resulting red solids were recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(\mathrm{X}=\mathrm{Cl})$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(\mathrm{X}=\mathrm{I})$. Yields: $\mathrm{X}=\mathrm{Cl}, 72 ; \mathrm{X}=\mathrm{Br}, 95 ; \mathrm{X}=\mathrm{I}, 70 \%$.
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right]$. Carbon monoxide was bubbled through a red solution containing $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}-\right.$ $\left.\left\{\mathrm{S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right](0.125 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ for 30 min while the solution slowly turned orange. The solvent was partially evaporated under vacuum and $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate a pink $(X=F)$ or pale pink $(X=C l)$ solid. Yields: $X=F, 49 ; X=C l, 66 \%$.
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{41}\right)_{3}\right\} \mathrm{L}\right]\left[\mathrm{L}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$. To a dark red solution containing $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ $(0.125 \mathrm{mmol}, 0.1107 \mathrm{~g})$ was added an equivalent amount of the neutral ligand L . The stirred solution slowly became paler [L $=\mathrm{PPh}_{3}, 1 \mathrm{~h}$, yellow; $\mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}, 24 \mathrm{~h}$, pale red] and, after partially evaporating the solvent, methanol was added to precipitate a yellow solid, which was washed with MeOH $\left(2 \times 5 \mathrm{~cm}^{3}\right)$. Yields: $\mathrm{L}=\mathrm{PPh}_{3}, 69 ; \mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}, 66 \%$.

Table 3. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex (1)

Pd-S(1)	$2.368(2)$		C(11)-P
C(2)-P	$1.838(5)$	$\mathrm{C}(21)-\mathrm{P}$	$1.819(4)$
$\mathrm{C}(2)-\mathrm{S}(2)$	$1.672(4)$	$\mathrm{C}(31)-\mathrm{P}$	$1.823(6)$
$\mathrm{Pd}-\mathrm{S}(2)$	$2.415(2)$	$\mathrm{C}(41)-\mathrm{Pd}$	$2.029(4)$
$\mathrm{C}(2)-\mathrm{S}(1)$	$1.662(6)$	$\mathrm{C}(51)-\mathrm{Pd}$	$2.012(6)$
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(2)$	$73.8(2)$	$\mathrm{S}(2)-\mathrm{Pd}-\mathrm{C}(41)$	$101.6(2)$
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{C}(41)$	$175.3(2)$	$\mathrm{S}(2)-\mathrm{Pd}-\mathrm{C}(51)$	$169.9(2)$
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{C}(51)$	$96.5(2)$	$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(11)$	$107.5(3)$
$\mathrm{C}(41)-\mathrm{Pd}-\mathrm{C}(51)$	$88.0(3)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$116.3(3)$
$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(21)$	$108.2(3)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$108.3(3)$
$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(31)$	$105.5(3)$	$\mathrm{Pd}-\mathrm{S}(1)-\mathrm{C}(2)$	$84.3(2)$
$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$110.4(3)$	$\mathrm{P}-\mathrm{C}(2)-\mathrm{S}(1)$	$119.4(3)$
$\mathrm{Pd}-\mathrm{S}(2)-\mathrm{C}(2)$	$82.6(3)$	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{S}(2)$	$119.0(3)$
$\mathrm{P}-\mathrm{C}(2)-\mathrm{S}(2)$	$121.3(4)$		

$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\mathrm{PPh}_{3}\right)\right]$. The complex $\left[\mathrm{Pd}\left(\mathrm{C}_{6}-\right.\right.$ $\left.\left.\mathrm{F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right](0.0996 \mathrm{~g})$ was suspended in ether (20 cm^{3}) and $\mathrm{PPh}_{3}(0.0328 \mathrm{~g}, 0.125 \mathrm{mmol})$ was added. On stirring, the orange solid gave way to a yellow solution which was evaporated to dryness. Addition of $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ afforded a yellow solid which was filtered off and washed with MeOH $\left(2 \times 5 \mathrm{~cm}^{3}\right)$.
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{py})\right]$. To a dark red solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CP}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right](0.0886 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~cm}^{3}$) was added an excess ($0.20 \mathrm{~cm}^{3}$) of pyridine. The solution became paler and, after stirring for 12 h , the solvent was partially removed under vacuum. Methanol was added to precipitate a yellow solid, which was filtered off and washed with methanol $\left(2 \times 5 \mathrm{~cm}^{3}\right)$. Yield: 56%.

X-Ray Structure Determination of Complex (1).-Crystal data. $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~F}_{10} \mathrm{PPdS}_{2}, M=796.4$, monoclinic, $a=26.654(8)$, $b=11.519(3), c=24.223(7) \AA, \beta=116.93(3)^{\circ}, U=6630.4$ \AA^{3} (by refinement of 2θ values for 41 reflections in the range $20-23^{\circ}$), space group $C 2 / c, Z=8, D_{\mathrm{c}}=1.595 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)$ $=3216$, red prism, $0.5 \times 0.35 \times 0.25 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.8$ mm^{-1}.

Data collection and processing. Stoe-Siemens four-circle diffractometer, monochromated Mo- K_{α} radiation ($\lambda=$ $0.71069 \AA$). 8828 Profile-fitted ${ }^{17}$ reflections ($2 \theta_{\text {max. }} 50^{\circ},+h+k$ ± 1 and $+h-k+l$ equivalents), 5818 unique, 4338 with $F>4 \sigma(F)$ used for all calculations. Absorption correction (ψ scans) with transmission factors $0.51-0.97$; three check reflections, no decay.

Structure analysis and refinement. Heavy-atom method. Refinement on F to $R 0.045, R^{\prime} 0.039$ \{all non-H atoms anisotropic; H atoms included with riding model [$\mathrm{C}-\mathrm{H} 0.96 \AA$, $\left.\mathrm{H}-\mathrm{C}-\mathrm{H} 109.5^{\circ}, U(\mathbf{H})=1.2 U_{\mathrm{eq}}(\mathrm{CC})\right]$; weighting scheme ${n^{-1}}^{-1}$ $=\sigma^{2}(F)+0.00015 F^{2} ; 406$ parameters $\}$. Program system SHELXTL. ${ }^{18}$ Final atomic co-ordinates and derived parameters are given in Tables 2 and 3.

X-Ray Structure Determination of Complex (5).-Crystal data. $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~F}_{10} \mathrm{PPtS}_{2} \mathrm{O} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=999$, triclinic, $a=$

Table 4. Atomic co-ordinates ($\times 10^{4}$) for complex (5)

Atom	x	y	z	Atom	x	y	z
Pt	$7830.8(0.2)$	$7277.5(0.1)$	2 424.8(0.2)	C(41)	$8868(5)$	$8615(3)$	$2078(4)$
P	$5331(1)$	3700 (1)	2 438(1)	C(42)	$10020(6)$	9 276(4)	2 696(4)
S(1)	6 492(2)	$5849(1)$	$2904(1)$	C(43)	$10713(7)$	10 187(5)	2 490(5)
S(2)	7 247(2)	$4829(1)$	$1318(1)$	C(44)	$10210(7)$	$10453(4)$	1 619(6)
C(1)	9 536(7)	$6857(4)$	$2515(5)$	C(45)	9 068(6)	$9806(4)$	973(5)
$\mathrm{O}(1)$	10 585(5)	6661(4)	2 568(5)	C(46)	8 420(6)	8 908(4)	1210 (4)
C(2)	6474(5)	$4864(3)$	2 198(3)	F(42)	10 578(4)	$9044(3)$	3561 (3)
C(11)	3 433(5)	3 640(3)	$1934(3)$	F(43)	11 847(5)	$10815(3)$	3 127(3)
C(12)	3 153(6)	3790 (4)	886(4)	$\mathrm{F}(44)$	$10858(4)$	11343 (3)	$1407(4)$
C(13)	$1528(6)$	3 616(5)	463(4)	$F(45)$	8 588(4)	$10077(3)$	124(3)
C(14)	929(7)	4 291(5)	976(5)	F(46)	7 299(4)	8 308(3)	545(2)
C(15)	1216 (6)	4 159(5)	2 035(5)	C(51)	$6013(6)$	$7746(4)$	2 276(4)
C(16)	$2835(6)$	4 331(4)	2 467(4)	C(52)	4 790(7)	$7347(5)$	1540 (5)
C(21)	5 733(5)	$2682(3)$	1840 (4)	C(53)	3 555(7)	$7647(7)$	$1430(6)$
C(22)	7 246(5)	$2578(4)$	2 279(4)	C(54)	3 523(11)	8 388(8)	2 048(9)
C(23)	7 591(7)	$1806(5)$	1 666(5)	C(55)	4700 (11)	8 814(6)	2 783(8)
C(24)	6 438(7)	824(4)	$1528(5)$	C(56)	5 935(7)	8 494(4)	$2898(5)$
C(25)	4 935(6)	918(4)	$1107(5)$	F(52)	4 775(4)	6 610(3)	912(3)
C(26)	$4557(6)$	1680 (3)	1 697(4)	F(53)	2399 (5)	7 218(5)	703(4)
C(31)	5 626(5)	$3712(4)$	3 723(3)	F(54)	$2327(6)$	8 698(5)	$1927(6)$
C(32)	4 692(7)	$2792(4)$	4001(4)	F(55)	4 673(7)	$9547(4)$	3 407(5)
C(33)	$4812(8)$	$2949(6)$	$5061(4)$	F(56)	7 057(5)	8 937(3)	3641 (3)
C(34)	6 383(8)	3 208(6)	5 639(4)	C(3)	538(11)	2 009(8)	4 792(8)
C(35)	7 322(7)	4 101(5)	$5339(4)$	$\mathrm{Cl}(1)$	838(3)	3 148(2)	4 422(3)
C(36)	$7226(6)$	$3952(4)$	$4284(4)$	$\mathrm{Cl}(2)$	- $1092(4)$	1216 (2)	4236 (2)

Table 5. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex (5)

$\mathrm{Pt}-\mathrm{S}(1)$	$2.348(2)$	$\mathrm{C}(2)-\mathrm{P}$	$1.840(6)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.128(10)$	$\mathrm{C}(2)-\mathrm{S}(2)$	$1.643(7)$
$\mathrm{C}(2)-\mathrm{S}(1)$	$1.682(6)$	$\mathrm{C}(11)-\mathrm{P}$	$1.828(6)$
$\mathrm{C}(41)-\mathrm{Pt}$	$2.056(6)$	$\mathrm{C}(21)-\mathrm{P}$	$1.823(7)$
$\mathrm{C}(51)-\mathrm{Pt}$	$2.045(7)$	$\mathrm{C}(31)-\mathrm{P}$	$1.835(6)$
$\mathrm{C}(1)-\mathrm{Pt}$	$1.910(9)$		

$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{C}(1)$	$95.2(3)$	$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{C}(41)$	$173.3(3)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{C}(41)$	$90.6(3)$	$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{C}(51)$	$86.5(3)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{C}(51)$	$177.7(4)$	$\mathrm{C}(41)-\mathrm{Pt}-\mathrm{C}(51)$	$87.9(3)$
$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(11)$	$107.9(3)$	$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(21)$	$108.5(3)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$108.6(3)$	$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(31)$	$108.7(3)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$108.4(3)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$114.6(3)$
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(2)$	$108.6(3)$	$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{O}(1)$	$176.2(6)$
$\mathrm{P}-\mathrm{C}(2)-\mathrm{S}(1)$	$113.0(4)$	$\mathrm{P}-\mathrm{C}(2)-\mathrm{S}(2)$	$118.1(4)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{S}(2)$	$128.8(4)$		

9.864(2), $b=14.202(3), c=14.638(5) \AA, x=93.44(3), \beta=$ 103.11(2), $\gamma=105.45(2)^{\circ}, U=1909.0 \AA^{3}$ (by refinement of 2θ values of 49 reflections in the range $20-23^{\circ}$), space group $P \uparrow$, $Z=2, D_{\mathrm{c}}=1.738 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=980$, violet prism, $0.29 \times$ $0.27 \times 0.23 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=4.1 \mathrm{~mm}^{-1}$.

Data collection and processing. As for complex (1) with the following differences: 8079 reflections measured ($2 \theta_{\text {max. }} 53^{\circ} ;+h$ $\pm k \pm l$ and some $-h$ equivalents), 7902 unique, 6606 with $F>4 \sigma(F)$. Transmission factors $0.59-0.76$.

Structure analysis and refinement. Heavy-atom method. Refinement on F to $R 0.042, R^{\prime} 0.037$ [non-H atoms anisotropic except for $\mathrm{C}(3), \mathrm{H}$ atoms as for complex (1); weighting scheme $w^{-1}=\sigma^{2}(F)+0.0002 F^{2} ; 446$ parameters]. See Tables 4 and 5 for final parameters.

Acknowledgements

We thank Comisión Asesora de Investigación Científica y Técnica (Spain) and the Fonds der Chemischen Industrie for financial support.

References

1 C. Bianchini, C. A. Ghilardi, A. Meli, S. Midollini, and A. Orlandini, Organometallics, 1982, 1, 778.
2 R. Usón, J. Forniés, R. Navarro, M. A. Usón, M. P. García, and A. J. Welch, J. Chem. Soc., Dalton Trans., 1984, 345.
3 C. Bianchini, C. A. Ghilardi, A. Meli, A. Orlandini, and G. Scapacci, J. Chem. Soc., Dalton Trans., 1983, 1969.
4 C. Bianchini, P. Innocenti, A. Meli, A. Orlandini, and G. Scapacci, J. Organomet. Chem., 1982, 233, 233.
5 C. Bianchini, C. A. Ghilardi, A. Meli, and A. Orlandini, Inorg. Chem., 1983, 22, 2188.
6 S. M. Boniface and G. R. Clark, J. Organomet. Chem., 1980, 188, 263.
7 H. Werner and W. Bertleff, Chem. Ber., 1980, 113, 167.
8 R. Usón, J. Forniés, M. Tomás, and B. Menjón, Organometallics, 1985, 4, 1912.
9 R. Usón, J. Forniés, F. Martínez, and M. Tomás, J. Chem. Soc., Dalton Trans., 1980, 888.
10 R. Usón, J. Forniés, F. Martinez, M. Tomás, and I. Reoyo, Organometallics, 1983, 2, 1386 and refs. therein.
11 L. T. Chan, H-W. Chen, J. P. Fackler, jun., A. F. Masters, and W-H Pan, Inorg. Chem., 1982, 21, 4921.
12 M. Bonamico and G. Dessy, Chem. Commun., 1968, 483.
13 T. N. Margulis and D. H. Templeton, J. Am. Chem. Soc., 1961, 83, 995.
14 R. Usón, J. Forniés, M. Tomás, B. Menjón, and A. J. Welch, unpublished work.
15 R. J. Goodfellow, P. L. Goggin, and L. M. Venanzi, J. Chem. Soc. A, 1967, 1879.
16 F. R. Hartley, 'The Chemistry of Platinum and Palladium,' Applied Science, London, 1973, p. 458.
17 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 21.
18 G. M. Sheldrick, SHELXTL Program System, Revision 4, Göttingen, 1983.

[^0]: \dagger cis-Bis(pentafluorophenyl)(tricyclohexylphosphoniodithioformateSS')palladium(11) and cis-carbonylbis(pentafluorophenyl)(tricyclo-hexylphosphoniodithioformate-S)platinum(it).
 Supplementary data available: complete bond lengths and angles, structure factors, H-atom co-ordinates, thermal parameters can be ordered from the Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, W. Germany. Please quote reference number CSD/51525 and a full literature citation.

