Trimethylenemethane Metal Complexes. Part 1. Synthesis of Ruthenium, Osmium, Rhodium, and Iridium Complexes \dagger

Michael D. Jones, Raymond D. W. Kemmitt,* and Andrew W. G. Platt Department of Chemistry, The University, Leicester LE1 7RH

Abstract

2-[(Methylsulphonyloxy)methyl]-3-trimethylsilylprop-1-ene, available from 2-methylprop-2-en-1-ol, serves as a new entry into trimethylenemethane (tmm) metal complexes. Reaction with low-valent metal complexes affords the first tmm metal complexes of ruthenium, osmium, rhodium, and iridium: $\left[\mathrm{MCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right](\mathrm{M}=\mathrm{Ru}$ or Os $),\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right],\left[\mathrm{MCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{4}-\mathrm{tmm}\right)\right]$ $(M=R h$ or $\operatorname{Ir})$, and $\left[\mathrm{IrX}(\mathrm{CO})(\mathrm{L})\left(\eta^{4}-\mathrm{tmm}\right)\right]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{AsPh}_{3} \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{PPh}_{3}\right)$. The desilylation of an η^{3}-allyl intermediate rationalises the results and has been verified by the reaction of sodium fluoride with $\left[\mathrm{Rh}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right) \mathrm{CH}_{2}\right\} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] B \mathrm{Bh} 4$ in aqueous methyl cyanide which gave the complex $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\eta^{4}-\mathrm{tmm}\right)\right] \mathrm{BPh}_{4}$ in quantitative yield. N.m.r. data ($\left.{ }^{1} \mathrm{H},{ }^{33} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\right)$ are reported and variable-temperature ${ }^{1} \mathrm{H}$ n.m.r. spin-magnetisation transfer experiments have been used to set a lower limit of $c a .90 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the activation energies for trimethylenemethane rotation.

Trimethylenemethane (tmm) metal complexes have been synthesised via three main routes (Scheme 1): (i) the ring opening of alkylidenecyclopropanes, ${ }^{1-4}$ (ii) the dehalogenation of x, α^{\prime} -dihalogeno-substituted precursors, ${ }^{5,6}$ and (iii) the thermal extrusion of $\mathrm{RH}\left(\mathrm{R}=\mathrm{Cl}^{5}\right.$ or $\left.\mathrm{Me}^{7}\right)$ from methylallyl complexes. The ability of palladium(0) catalysts to mediate the cycloaddition of the trimethylenemethane fragment to alkenes, ${ }^{8}$ Scheme 2, led us to investigate the reactions of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{C}$ $\left(=\mathrm{CH}_{2}\right) \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CMe}(\mathbf{1 a})$ and its derivatives with other lowvalent metal complexes. In preliminary communications ${ }^{9,10}$ we have shown that derivatives of (1a) react with low-valent metal centres to form η^{4}-tmm complexes and in this paper we give full details of these reactions.

Results and Discussion

Inspired by the ability of the allylic acetate (1a) to eliminate trimethylsilyl acetate in the presence of palladium(0) catalysts ${ }^{8}$ we observed that trans- $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and the allylic chloride $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{CH}_{2} \mathrm{Cl}$ (1b) in refluxing toluene gave a small yield of the η^{4}-tmm complex $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\right.\right.$ $\mathrm{tmm})$] (2), Scheme 3. Following the pathway proposed for the formation of the reactive intermediate $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{tmm}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{8}$ a plausible route to (2) may involve oxidative addition of the allylic chloride ($\mathbf{1 b}$) to the co-ordinatively unsaturated iridium centre to give a σ-allyl, formation of an η^{3}-allyl, and elimination of $\mathrm{SiMe}_{3} \mathrm{Cl}$ from the η^{3}-allyl intermediate (3), Scheme 4. A crucial step in this mechanism is the ionisation of chloride from the metal centre followed by attack of chloride at silicon to effect desilylation of the η^{3}-allyl complex (3). The ability of allylic methanesulphonates oxidatively to add rapidly to iridium(1) centres coupled with the poor co-ordinating ability of the methanesulphonate group ${ }^{11}$ suggested that the methanesulphonate $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{CH}_{2} \mathrm{OS}(\mathrm{O})_{2} \mathrm{Me}$ (1c) might be an attractive precursor to tmm metal complexes. Accordingly the reactions of (1c) with a number of low-valent iridium complexes were investigated. These reactions afforded much improved yields of a variety of η^{4}-tmm complexes of iridium and the results are summarised in the Table.
A reaction of interest is that of $(\mathbf{1 c})$ with $\left[\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ which affords the cationic tmm complex $\left[\operatorname{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{4}-\right.\right.$ $\mathrm{tmm}]\left[\mathrm{OS}(\mathrm{O})_{2} \mathrm{Me}\right]$ (4) in high yield. Elimination of $\mathrm{SiMe}_{3} \mathrm{H}$

[^0]

Scheme 1. $\mathrm{X}=$ halide, $\mathrm{R}=\mathrm{Cl}$ or Me
from an intermediate of the type ($5, \mathbf{M}=\mathrm{Ir}$) provides an attractive pathway to the tmm complex (4), Scheme 5. Complex (4) was also formed in the reaction of the chloride (1b) with trans $-\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in the presence of KPF_{6}.

In an attempt to obtain the cationic tmm rhodium analogue of (4) the action of the methanesulphonate (1c) upon [RhH(CO) $\left.\mathrm{PPh}_{3}\right)_{3}$] was also investigated. However, this reaction gave trans $-\left[\mathrm{Rh}\left\{\mathrm{OS}(\mathrm{O})_{2} \mathrm{Me}\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ presumably because reductive elimination of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}$ occurs in preference to either elimination of $\mathrm{SiMe}_{3} \mathrm{H}$ or desilylation of the η^{3}-trimethylsilylmethylallyl intermediate (5, M = Rh).

Previous studies have shown that oxidative addition of allyl halides to trans- $\left[\mathrm{MCl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](\mathrm{M}=\mathrm{Rh} \text { or } \mathrm{Ir})^{12.13}$ gives octahedral σ-allyl complexes which on treatment with NaBPh_{4} afford cationic η^{3}-allyl derivatives. We similarly found that the methanesulphonate (1c) reacted with trans$\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ in the presence of NaBPh_{4} to give the cationic trimethylsilylmethylallyl complex [$\mathrm{Rh}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right) \mathrm{CH}_{2}\right\} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}(6)$ in high yield. The analogous iridium complex could not be isolated. The reaction of $(1 \mathbf{c})$ with trans- $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ in the presence of NaBPh_{4} afforded the protodesilylated product [$\operatorname{Ir}\left\{\eta^{3}-\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}\right\} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}$ (7). A plausible explanation for this difference is that after initial oxidative addition of the methanesulphonate (1c) to the metal centre there exists an ion pair (8), Scheme 6. Attack by the methanesulphonate anion at the trimethylsilyl group will lead to the protodesilylated product [step (i)] or alternatively, attack at the metal will lead to a σ-allyl [step (ii)]. Addition of NaBPh_{4} affords the respective η^{3}-allyls. The attack of the anion at the metal centre requires prior dissociation of the coordinated solvent molecule (S). Such a process is many times

Scheme 2. \mathbf{R}^{\prime} = electron withdrawing group

Scheme 3.

Scheme 4. $\mathrm{X}=\mathrm{Cl}$ or $\mathrm{OS}(\mathrm{O})_{2} \mathrm{Me}$

(4)

Scheme 5.
slower at an iridium(III) centre as compared to corresponding rhodium(III) centres. ${ }^{14}$ Thus in the iridium system attack by methanesulphonate at silicon is preferred to slower attack at the metal.

Complex $\quad\left[\mathrm{Rh}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right) \mathrm{CH}_{2}\right\} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PMe}_{2}-\right.\right.$ $\left.\mathrm{Ph})_{2}\right] \mathrm{BPh}_{4}$ (6) was readily desilylated by sodium fluoride in aqueous methyl cyanide to give a quantitative yield of the cationic rhodium tmm complex $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\eta^{4}-\right.\right.$ tmm) $] \mathrm{BPh}_{4}$ (9). Interestingly these conditions could have led to protodesilylation. However, loss of $\mathrm{SiMe}_{3} \mathrm{~F}$ from the cationic η^{3}-allyl (6) in the presence of sodium fluoride would lead to a neutral species (Scheme 7) which would be less prone
to protonation than for example the anionic system involved in protodesilylation of $\left[\mathrm{Mo}\left(\equiv \mathrm{ECH}_{2} \mathrm{SiMe}_{3}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left(\eta^{5}-\right.\right.$ indenyl)]. ${ }^{15.16}$ The formation of the cationic tmm rhodium complex (9) provides good evidence for the proposed mechanism of formation of the tmm metal complexes, that is initial oxidative addition to the low-valent metal centre followed by elimination of $\mathrm{SiMe}_{3} \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or F$)$ from the intermediate η^{3} allyl, Scheme 4. However, we note that elimination of $\mathrm{SiMe}_{3} \mathrm{X}$ from a σ-allyl, formed by attack of fluoride at the metal, is also possible.

A number of other iridium and rhodium trimethylenemethane metal complexes have been synthesised and these results are

Table. Synthesis of trimethylenemethane metal complexes

Substrate	(1) mol	Solvent	T/ ${ }^{\circ} \mathrm{C}$	Time/h	Product	Yield (\%)
[$\left.\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$	3^{a}	PhMe	110	12	$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right]$	11
$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$	3^{6}	PhMe	110	12	$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right]$	75
$\left[\mathrm{IrBr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$	3^{6}	PhMe	110	6	$\left[\operatorname{IrBr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right]$	76
$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)_{2}\right]$	$3^{\text {b }}$	PhMe	110	0.5	$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right]$	77
$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$3^{\text {a }}$	$\mathrm{PhMe-MeCN}$	Reflux	12	$\left[\operatorname{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{4}-\mathrm{tmm}\right)\right] \mathrm{PF}_{6}$	60
$\left[\mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$	$3^{\text {b }}$	PhMe	ca. 80	ca. 1	$\left[\operatorname{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{4}-\mathrm{tmm}\right)\right]\left[\mathrm{OS}(\mathrm{O})_{2} \mathrm{Me}\right]$	90
$\left[\mathrm{Ir}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{4}\right]^{4}-4 \mathrm{PPh}_{3}$	$2.2{ }^{\text {b }}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	80	1.5	$\left[\mathrm{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{4}-\mathrm{tmm}\right)\right]$	45
$\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$	$8{ }^{\text {b }}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	ca. 70	0.05	$\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{4}-\mathrm{tmm}\right)\right]$	50
$\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$	$3^{\text {c }}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	80	12	$\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\Pi^{4}-\mathrm{tmm}\right)\right]$	11
$\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$	$3^{\text {b }}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	80	12	$\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{mmm}\right)\right]$	35
$\left[\mathrm{OsCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$	$3^{\text {b }}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	20	0.5	$\left[\mathrm{OsCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{n}^{4}-\mathrm{tmm}\right)\right]$	20
[$\left.\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$3^{\text {b }}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	20	14	[$\left.\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right]$	20

${ }^{\text {a }}$ Reagent (1b). ${ }^{b}$ Reagent (1c). ${ }^{\circ}$ Reagent (1a).

Scheme 6. $S=$ solvent
summarised in the Table along with the first trimethylenemethane complexes of ruthenium and osmium. An excess of the methanesulphonate (1c) is used in these syntheses in order to overcome any loss of (1c) by quaternisation of liberated triphenylphosphine.
Single-crystal X-ray structural studies of $[\mathrm{IrCl}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right)\left(\eta^{4} \text {-tmm) }\right]^{9}$ and several other complexes ${ }^{17}$ establish that the union of the tmm ligand with the $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ and other ML_{3} metal fragments creates a distorted octahedral arrangement about the metal with the methylene carbon atoms occupying three facial vertices as predicted by theoretical considerations. ${ }^{18,19}$ The n.m.r. spectra of the complexes are consistent with this staggered conformation, the data indicating that the tmm ligand is rigid and that no rotation occurs on the n.m.r. time-scale at room temperature. Thus the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}\right.\right.$-tmm $\left.)\right]$ (2), measured at room temperature, shows six resonances due to the methylene protons of the co-ordinated tmm, Figure. Rotation of the tmm ligand would equilibriate all six protons. Each proton of tmm in (2) shows long range ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ ' W -coupling', e.g. H^{2} couples strongly to H^{5}. In addition $\mathrm{H}^{5}, \mathrm{H}^{6}, \mathrm{H}^{2}$, and H^{3} show additional coupling to phosphorus. The protons H^{5} and H^{6}, which are in a pseudo trans orientation with respect to phosphorus, exhibit the larger ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ coupling. H^{1} and H^{4} show no coupling to phosphorus. This full analysis of the spectrum has been

(6)

(9)

Scheme 7.

Figure. ${ }^{1} \mathrm{H}$ N.m.r. spectrum of $\left[\operatorname{lrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}\right.\right.$-tmm) $]$ (2) at room temperature. The complex is viewed along the C^{1} metal axis

(1)

Scheme 8.
obtained from selective decoupling experiments and nuclear Overhauser enhancement (n.O.e.) difference spectra. Thus n.O.e. is observed for pairs of protons which are geminally related, e.g. H^{1} and H^{2}, and also for a weaker, longer range interaction, e.g. H^{1} and H^{6}. The n.O.e. technique not only provides the full assignment of the tmm fragment but due to the close proximity of H^{2} and H^{3} with the ortho protons of the triphenylphosphine rings it is possible to obtain the arrangement of the other ligands relative to the tmm protons. Similar information can be obtained for the other tmm complexes.

The ${ }^{13} \mathrm{C}$ n.m.r. spectra of the tmm metal complexes show the expected characteristic resonance due to the central carbon C^{1} in the region $100-114$ p.p.m. ${ }^{1,17}$ This resonance also exhibits a small coupling to co-ordinated tertiary phosphine ligands of the order of $1-3 \mathrm{~Hz}$. Larger ${ }^{13} \mathrm{C}^{-31} \mathrm{P}$ couplings are observed for methylene carbons trans to phosphorus ligands. Thus the methylene carbon (C^{2}) trans to phosphorus in $[\mathrm{IrCl}(\mathrm{CO})$ -$\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}\right.$-tmm $\left.)\right](2)$ exhibits a ${ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}$ coupling of 38 Hz . Both C^{3} and C^{4} show no coupling to phosphorus.

The tmm ligand in (2) is also rigid at $70^{\circ} \mathrm{C}$ on the n.m.r. timescale. Thus no sign of rotation of the tmm ligand could be detected by a spin-magnetisation transfer experiment at $70^{\circ} \mathrm{C}$ giving a lower limit for ΔG^{\ddagger} for this process of the order of 90 kJ mol^{-1}. The osmium complex $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right]$ was heated to $100^{\circ} \mathrm{C}$ and again no spin-magnetisation transfer could be observed, setting the lower limit of ΔG^{\ddagger} for this process at $95 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Both of these values are higher than the range ($71-79 \mathrm{~kJ} \mathrm{~mol}^{-1}$) found for the rotational barriers of the
substituted tmm complexes $\left[\mathrm{Fe}(\mathrm{CO})_{3}\left\{\eta^{4}-\mathrm{C}(\mathrm{CHR})\left(\mathrm{CH}_{2}\right)_{2}\right\}\right]$ $\left[\mathrm{R}=\mathrm{COMe}, \mathrm{MeCH}(\mathrm{OH}), \mathrm{MeCH}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\right.$, or Et$] .{ }^{20}$ The origins of the barrier to rotation in tmm metal complexes have been well documented, and a large increase in the barrier of rotation would be expected on replacing carbonyls with tertiary phosphine or chloride ligands, ${ }^{18,19}$ as well as descending to second- and third-row ' d-block' transition metals.
In summary the method developed by Trost and Chan ${ }^{8}$ and extended herein represents a general approach to the synthesis of a number of η^{4}-tmm metal complexes using the 'push-pull' precursors (1) (Scheme 8).

Experimental

Melting points were measured on a Reichert hot-stage apparatus and are uncorrected. Infrared spectra were recorded as CsCl discs on a Perkin-Elmer 580 spectrophotometer. Hydrogen-1 n.m.r. were recorded on a Bruker Spectrospin WH 400 spectrometer at 400.13 MHz , a JEOL EM390 spectrometer at 90 MHz , and a Bruker AM300 spectrometer at 300.13 MHz with SiMe_{4} (0.0 p.p.m.) as internal reference, positive values being to high frequency (low field) in [${ }^{2} \mathrm{H}_{2}$]dichloromethane unless otherwise stated; coupling constants are in Hz . Carbon13, hydrogen-1 decoupled, n.m.r. spectra were recorded on a Bruker Spectrospin WH400 spectrometer at 100.62 MHz and on a Bruker AM 300 spectrometer at 75.47 MHz with SiMe_{4} (0.0 p.p.m.) as internal reference. The carbon- 13 data for the aromatic region have been omitted for clarity. Phosphorus-31, hydrogen- 1 decoupled, n.m.r. spectra were recorded on a JEOL JNM-FX60 spectrometer at 24.15 MHz with $\left[\mathrm{P}(\mathrm{OH})_{4}\right]^{+}$in $\mathrm{D}_{2} \mathrm{O}$ (0.0 p.p.m.) as external reference. ${ }^{21}$ Mass spectra were obtained using an A.E.I. MS9 spectrometer at 70 eV .

Experiments were carried out under a dry, oxygen-free nitrogen atmosphere, using solvents which were dried and distilled under nitrogen prior to use. The compounds trans$\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{22} \quad\left[\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{23} \quad[\mathrm{RhH}(\mathrm{CO})-$
$\left.\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{24}$ trans $-\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right],{ }^{25}$ trans $-[\operatorname{IrCl}(\mathrm{CO})-$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]{ }^{26} \quad$ trans $-\left[\operatorname{IrBr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{27}$ trans $-[\operatorname{IrCl}(\mathrm{CO})$ $\left.\left(\mathrm{AsPh}_{3}\right)_{2}\right]{ }^{28}\left[\mathrm{Ir}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{4}\right],{ }^{29}\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{30}\left[\mathrm{Os}(\mathrm{CO})_{2}{ }^{-}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{31}\left[\mathrm{OsCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{32}\left[\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{33}{ }_{2-}$ (hydroxymethyl)-3-trimethylsilylprop-1-ene, ${ }^{34}$ and 2-(acetoxy-methyl)-3-trimethylsilylprop-1-ene ${ }^{8}$ were prepared as described in the literature. Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$.

Preparation of 2-[(Methylsulphonyloxy)methyl $]-3$-trimethyl-silylprop-1-ene (1c).-Methanesulphonyl chloride ($1.66 \mathrm{~g}, 0.144$ mol) in dichloromethane ($15 \mathrm{~cm}^{3}$) was added dropwise over 0.5 h to a stirred solution of 2-(hydroxymethyl)-3-trimethyl-silylprop-1-ene ($2.0 \mathrm{~g}, 0.0133 \mathrm{~mol}$) and triethylamine $(3.0 \mathrm{~g}, 0.03$ mol) in dichloromethane ($10 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The resultant cloudy solution was stirred at $0^{\circ} \mathrm{C}$ for a further 0.5 h . The reaction mixture was diluted with diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$, washed successively with saturated sodium bicarbonate ($2 \times 25 \mathrm{~cm}^{3}$), saturated copper sulphate ($3 \times 25 \mathrm{~cm}^{3}$), water ($25 \mathrm{~cm}^{3}$), and brine ($25 \mathrm{~cm}^{3}$) and dried over anhydrous potassium carbonate. The solvent was removed at water pump pressure and the residue distilled $\left(80^{\circ} \mathrm{C}, 0.5 \mathrm{mmHg}\right)$ to give $2.76 \mathrm{~g}(90 \%)$ of the title compound as a colourless liquid. N.m.r. $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1} \mathrm{H}(90$ MHz), $\boldsymbol{\delta} 0.1$ ($\mathrm{s}, 9 \mathrm{H}$), 1.6 ($\mathrm{s}, 2 \mathrm{H}$), $3.0(\mathrm{~s}, 3 \mathrm{H}), 4.5$ ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$), 4.8 (br $\mathrm{s}, 1 \mathrm{H}$), and $5.0(\mathrm{~m}, 1 \mathrm{H}$). I.r. (film): $3080 \mathrm{w}, 3030 \mathrm{w}, 2950 \mathrm{~m}$, $2920 \mathrm{~m}, 1640 \mathrm{~m}, 1460 \mathrm{~m}, 1420 \mathrm{~m}, 1360 \mathrm{~s}, 1255 \mathrm{~s}, 1175 \mathrm{vs}, 1010 \mathrm{~s}$, $970 \mathrm{~s}, 935 \mathrm{~s}$, and $855 \mathrm{vs} \mathrm{cm}^{-1}$. Mass spectrum, $m / e(\%) M^{+}$ 222 (6), 169 (10), 155 (5), 154 (6), 153 (100), 110 (10).

Preparation of 2-(Chloromethyl)-3-trimethylsilylprop-1-ene (1b).-Thionyl chloride ($1.7 \mathrm{~g}, 14 \mathrm{mmol}$) in dichloromethane ($100 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of 2-(hydroxymethyl)-3-trimethylsilylprop-1-ene ($2.0 \mathrm{~g}, 13.86 \mathrm{mmol}$) and pyridine ($1.5 \mathrm{~g}, 18.9 \mathrm{mmol}$) in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 0.5 h at $0^{\circ} \mathrm{C}$ and then allowed to warm to room temperature and stirred for a further 0.5 h . The solution was washed with dilute sulphuric acid ($0.1 \mathrm{~mol} \mathrm{dm}^{-3}$, $3 \times 100 \mathrm{~cm}^{3}$) and dried over anhydrous potassium carbonate. The solvent was removed in vacuo and the residue distilled $\left(40^{\circ} \mathrm{C}, 0.005 \mathrm{mmHg}\right.$) into a trap cooled to $-78^{\circ} \mathrm{C}$ to give a clear oil ($2.21 \mathrm{~g}, 98 \%$). The product must be stored at $0^{\circ} \mathrm{C}$ to avoid decomposition. N.m.r. $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1} \mathrm{H}(90 \mathrm{MHz}), \delta 0.1(\mathrm{~s}, 9 \mathrm{H}$, SiMe_{3}), 1.7 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}$), 4.4 (br s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$), 4.85 (br s, 1 H), 5.0 (m, 1 H). I.r. (film): $850 \mathrm{~cm}^{-1}$.

Preparation of Trimethylenemethane Metal Complexes.Carbonylchloro(η^{4}-trimethylenemethane) (triphenylphosphine)-
iridium (2). trans- $\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right](1.00 \mathrm{~g}, 1.28 \mathrm{mmol})$ and 2-[(methylsulphonyloxy)methyl]-3-trimethylsilylprop-1ene (1c) ($0.85 \mathrm{~g}, 3.84 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$) were refluxed for 12 h (the reaction appeared to be complete after the disappearance of the yellow colour within 3 h). The solvent was removed in vacuo and ethanol ($5 \mathrm{~cm}^{3}$) was added to the residue. The white product was filtered off and washed with ethanol (5 cm^{3}) and diethyl ether ($5 \mathrm{~cm}^{3}$). The product was recrystallised from hot ethanol ($0.55 \mathrm{~g}, 0.96 \mathrm{mmol}, 75 \%$), m.p. $>180^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 48.2 ; \mathrm{H}, 3.6 . \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClIrOP}$ requires C , 48.3 ; H, 3.7%). I.r.: $v_{\text {co }} 2030, v_{\text {rçl }} 282 \mathrm{~cm}^{-1}$. N.m.r. ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta 0.70\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{2}, J\left(\mathrm{H}^{2} \mathrm{H}^{5}\right)=J\left(\mathrm{H}^{2} \mathrm{P}\right)=3.8\right.$, $\left.J\left(\mathrm{H}^{2} \mathrm{H}^{1}\right) 0.7\right], 1.66\left[\mathrm{br}, \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{H}^{4}\right) 4.1\right], 2.40$ [dd, 1 H , $\left.\mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{6}\right) 3.9, J\left(\mathrm{H}^{3} \mathrm{P}\right) 6.4\right], 2.94$ [dd, $1 \mathrm{H}, \mathrm{H}^{6}, J\left(\mathrm{H}^{6} \mathrm{H}^{3}\right) 3.9$, $\left.J\left(\mathrm{H}^{6} \mathrm{P}\right) 7.5\right], 3.03\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, J\left(\mathrm{H}^{4} \mathrm{H}^{1}\right) 4.1, J\left(\mathrm{H}^{4} \mathrm{H}^{3}\right)\right.$ or $J\left(\mathrm{H}^{4} \mathrm{P}\right)$ $0.5], 3.16$ [dd, $\left.\left.1 \mathrm{H}, \mathrm{H}^{5}, J\left(\mathrm{H}^{5} \mathrm{H}^{2}\right)\right] 3.8, J\left(\mathrm{H}^{5} \mathbf{P}\right) 7.0\right]$, and 7.55 $\left(\mathrm{m}, 15 \mathrm{H}, \mathrm{PPh} \mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz}), \delta 40.2\left(\mathrm{~s}, \mathrm{C}^{3}\right), 54.0$ [d, C^{2}, $\left.J\left(\mathrm{C}^{2} \mathrm{P}\right) 37.7\right], 57.8\left(\mathrm{~s}, \mathrm{C}^{4}\right), 108.8\left[\mathrm{~d}, \mathrm{C}^{1}, J\left(\mathrm{C}^{1} \mathrm{P}\right) 3.1\right]$, and 175.0 p.p.m. [d, $\left.\mathrm{C}^{5}, J\left(\mathrm{C}^{5} \mathrm{P}\right) 4.4\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right), \delta 6.25$ p.p.m.

Bromo(carbonyl)(η^{4}-trimethylenemethane)(triphenylphosphine)iridium. trans $-\left[\operatorname{IrBr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right](0.50 \mathrm{~g}, 0.60 \mathrm{mmol})$ and

(1c) $(0.4 \mathrm{~g}, 1.82 \mathrm{mmol})$ were refluxed in toluene $\left(10 \mathrm{~cm}^{3}\right)$ for 6 h . The solvent was removed in vacuo and ethanol ($5 \mathrm{~cm}^{3}$) was added to the residue. The white precipitate was filtered off and washed with ethanol ($3 \mathrm{~cm}^{3}$) and diethyl ether ($5 \mathrm{~cm}^{3}$). Yield: 0.28 g ($0.45 \mathrm{mmol}, 76 \%$), m.p. $>170^{\circ} \mathrm{C}$ (decomp.) (Found: C, $44.9 ; \mathrm{H}$, 3.5. $\mathrm{C}_{23} \mathrm{H}_{21}$ BrIrOP requires $\mathrm{C}, 44.8 ; \mathrm{H}, 3.4 \%$). I.r.: $\mathrm{v}_{\mathrm{co}} 2030$ cm^{-1}. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: ${ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta 1.14\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{2}\right.$, $\left.J\left(\mathbf{H}^{2} \mathbf{H}^{5}\right)=J\left(\mathbf{H}^{2} \mathbf{P}\right)=3.7\right], 2.29\left[\mathrm{br} \mathrm{d}, 1 \mathbf{H}, \mathbf{H}^{1}, J\left(\mathrm{H}^{1} \mathbf{H}^{4}\right) 4.13\right]$, 2.42 [dd, $\left.1 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{6}\right) 3.95, J\left(\mathrm{H}^{3} \mathrm{P}\right) 6.29\right], 2.99\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$, $\left.J\left(\mathrm{H}^{4} \mathrm{H}^{1}\right) 4.13\right], 3.08$ [dd, $\left.1 \mathbf{H}, \mathrm{H}^{5}, J\left(\mathbf{H}^{5} \mathrm{H}^{2}\right) 3.7, J\left(\mathrm{H}^{5} \mathrm{P}\right) 6.84\right]$, $3.18\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6}, J\left(\mathrm{H}^{6} \mathrm{H}^{3}\right) 3.95, J\left(\mathrm{H}^{6} \mathrm{P}\right) 7.39\right]$, and $7.55(\mathrm{~m}, 15$ $\left.\mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz}), \delta 43.8\left(\mathrm{~s}, \mathrm{C}^{3}\right), 52.99$ [d, C^{2}, $\left.J\left(\mathrm{C}^{2} \mathrm{P}\right) 36.5\right] 57.00\left(\mathrm{~s}, \mathrm{C}^{4}\right), 107.88\left(\mathrm{~s}, \mathrm{C}^{1}\right)$, and 173.98 p.p.m. ($\mathrm{s}, \mathrm{C}^{5}$).

Carbonylchloro $\left(\eta^{4}\right.$-trimethylenemethane)(triphenylarsine)iridium. trans- $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)_{2}\right](0.33 \mathrm{~g}, 0.374 \mathrm{mmol})$ and (1c) $(0.255 \mathrm{~g}, 1.14 \mathrm{mmol})$ in toluene $\left(15 \mathrm{~cm}^{3}\right)$ were warmed to reflux for 0.5 h . After cooling the solvent was removed in vacuo and diethyl ether ($10 \mathrm{~cm}^{3}$) was added. The cream coloured compound was filtered off and washed with diethyl ether (10 cm^{3}) and dried in vacuo to give the title complex ($0.177 \mathrm{~g}, 77 \%$), m.p. $>138{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C , 44.6; H, 3.4. $\mathrm{C}_{23} \mathrm{H}_{21^{-}}$ AsClIrO requires C, $44.8 ; \mathbf{H}, 3.4 \%$). I.r.: $v_{c c} 2020, v_{\mathrm{Ircl}^{2}} 285 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta 1.54\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, J\left(\mathrm{H}^{2} \mathrm{H}^{5}\right)\right.$ 3.46], $2.11\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{H}^{4}\right) 4.10\right], 2.72\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{6}\right)\right.$ 3.92], $2.88\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4}, J\left(\mathrm{H}^{4} \mathrm{H}^{1}\right) 4.10\right], 3.12\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, J\left(\mathrm{H}^{5} \mathrm{H}^{2}\right)\right.$ $\left.{ }^{3.46}\right], 3.19\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, J\left(\mathrm{H}^{6} \mathrm{H}^{3}\right) 3.92\right.$], and $7.5\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{AsPh}_{3}\right)$; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz}), \delta 37.44\left(\mathrm{~s}, \mathrm{C}^{3}\right), 52.05\left(\mathrm{~s}, \mathrm{C}^{2}\right), 57.18\left(\mathrm{~s}, \mathrm{C}^{4}\right)$, 106.07 (s, C ${ }^{1}$), and 174.4 p.p.m. (s, C^{5}).

Carbonyl(η^{4}-trimethylenemethane)bis(triphenylphosphine)iridium methanesulphonate (4). $\left[\mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right](0.46 \mathrm{~g}, 0.45$ $\mathrm{mmol})$ and $(1 \mathrm{c})(0.31 \mathrm{~g}, 1.39 \mathrm{mmol})$ were warmed in toluene (15 cm^{3}) until complete formation of the white solid had occurred ($c a .1 \mathrm{~h}$). The solution was cooled and the product was filtered off and washed with light petroleum ($15 \mathrm{~cm}^{3}$) to give the title complex ($0.36 \mathrm{~g}, 90 \%$). Recrystallisation from dichloromethane and light petroleum afforded white needles which crystallised with 0.75 mol equiv. of dichloromethane (as seen by ${ }^{1} \mathrm{H}$ n.m.r.), m.p. $107-109{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 53.4 ; \mathrm{H}, 4.6 . \mathrm{C}_{42} \mathrm{H}_{39} \mathrm{IrO}_{4} \mathrm{P}_{2} \mathrm{~S}$ $0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $53.6 ; \mathrm{H}, 4.3 \%$). I.r.: $v_{\mathrm{co}} 2040 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}(90 \mathrm{MHz}), \delta 2.0\left[1: 2: 6: 2: 1\right.$ quintet, $2 \mathrm{H}, \mathrm{H}^{2}$, $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system, $J\left(\mathrm{H}^{2} \mathrm{H}^{2}\right)$ 4.1, $\quad J\left(\mathrm{PP}^{\prime}\right) \quad 0.0, \quad J\left(\mathrm{H}^{2} \mathrm{P}\right)=$ $\left.-J\left(\mathbf{H}^{2} \mathbf{P}\right)= \pm 5.8\right], 2.3$ [dd, $\left.2 \mathbf{H}, \mathbf{H}^{1}, J\left(\mathrm{H}^{1} \mathbf{H}^{3}\right) 4.1, J\left(\mathrm{H}^{1} \mathbf{P}\right) 6.5\right]$, $2.8\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeSO}_{3}\right], 3.3$ [dd, $\left.2 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{1}\right) 4.1, J\left(\mathrm{H}^{3} \mathrm{P}\right) 6.4\right]$, and $7.5\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta-2.42$ p.p.m.

Carbonyl(η^{4}-trimethylenemethane)bis(triphenylphosphine)iridium hexafluorophosphate. trans- $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right](1.0 \mathrm{~g}$, $1.28 \mathrm{mmol}), \mathrm{KPF}_{6}(0.37 \mathrm{~g}, 2.0 \mathrm{mmol})$, and ($\mathbf{1 b}$) $(0.6 \mathrm{~g}, 3.69 \mathrm{mmol})$ in methyl cyanide ($20 \mathrm{~cm}^{3}$) and toluene ($20 \mathrm{~cm}^{3}$) were refluxed for 12 h . The solvent was removed in vacuo and the residue dissolved in methyl cyanide ($30 \mathrm{~cm}^{3}$) and unchanged trans$\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right](0.16 \mathrm{~g}, 0.2 \mathrm{mmol})$ was filtered off. The

solvent was removed in vacuo, the residue was dissolved in dichloromethane ($20 \mathrm{~cm}^{3}$) and potassium salts were filtered off. The solvent was removed in vacuo and the product recrystallised from hot ethanol to give the title complex $(0.7 \mathrm{~g}, 0.74 \mathrm{mmol}$, 58% (Found: $\mathrm{C}, 51.7$; $\mathrm{H}, 4.0 . \mathrm{C}_{41} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{IrOP}{ }_{3}$ requires $\mathrm{C}, 52.2$; $\mathrm{H}, 3.8 \%$) I.r.: $\mathrm{v}_{\mathrm{CO}} 2040 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz})$, $\delta 2.02\left[1: 2: 6: 2: 1\right.$ quintet, $2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system, $J\left(\mathrm{H}^{2} \mathrm{H}^{2}\right)$ $\left.4.1, J\left(\mathrm{PP}^{\prime}\right) 0, J\left(\mathrm{H}^{2} \mathrm{P}\right)=-J\left(\mathrm{H}^{2} \mathrm{P}\right)= \pm 5.8\right], 2.27\left[\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{1}\right.$, $\left.J\left(\mathrm{H}^{1} \mathrm{H}^{3}\right) 4.1, J\left(\mathrm{H}^{1} \mathrm{P}\right) 6.5\right], 3.26\left[d \mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{1}\right) 4.1\right.$, $\left.J\left(\mathrm{H}^{3} \mathrm{P}\right) 6.4\right]$, and $7.5\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz}), \delta$ 54.9 [d, $\left.\mathrm{C}^{2}, J\left(\mathrm{C}^{2} \mathrm{P}\right) 29.8\right], 58.5\left(\mathrm{~s}, \mathrm{C}^{3}\right), 108.2\left(\mathrm{~s}, \mathrm{C}^{1}\right)$, and 172.2 p.p.m. (s, C^{4}).

Dicarbonyl(η^{4}-trimethylenemethane)(triphenylphosphine)osmium. A suspension of $\left[\mathrm{Os}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right](0.8 \mathrm{~g}, 0.77 \mathrm{mmol})$ in benzene ($15 \mathrm{~cm}^{3}$) and ($\mathbf{1 c}$) $(0.57 \mathrm{~g}, 2.56 \mathrm{mmol})$ were refluxed for 12 h . A white solid was filtered off $(0.185 \mathrm{~g}$) (which has yet to be identified). The solvent was removed in vacuo from the mother-liquor and methanol $\left(5 \mathrm{~cm}^{3}\right)$ was added to the oily residue. The white product was filtered off and washed with methanol ($5 \mathrm{~cm}^{3}$) and light petroleum ($10 \mathrm{~cm}^{3}$). Yield: 0.16 g (35%), m.p. $145{ }^{\circ} \mathrm{C}$ (Found: C, 50.8; H, 3.6. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{OsP}$ requires C, $51.2 ; \mathrm{H}, 3.7 \%$). I.r.: $v_{\mathrm{co}} 2000,1935 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta 1.04\left[\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{H}^{3}\right) 4.2\right.$, $\left.J\left(\mathrm{H}^{1} \mathrm{P}\right) 6.65\right], 2.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 2.07\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{1}\right)=\right.$ $\left.J\left(\mathrm{H}^{3} \mathrm{P}\right)=4.2\right]$, and $7.5\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz}), \delta$ 34.44 [d, $\left.\mathrm{C}^{2}, J\left(\mathrm{C}^{2} \mathrm{P}\right) 23.2\right], 44.11\left[\mathrm{~d}, \mathrm{C}^{3}, J\left(\mathrm{C}^{3} \mathrm{P}\right) 2.46\right], 107.51(\mathrm{~s}$, C^{1}), and 185.2 p.p.m. [d, $\mathrm{C}^{4}, J\left(\mathrm{C}^{4} \mathrm{P}\right) 2.42$].

Chloro(η^{4}-trimethylenemethane)bis(triphenylphosphine)iridium. A solution of $\left[\mathrm{Ir}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{4}\right](0.5 \mathrm{~g}, 0.56 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.58 \mathrm{~g}, 2.21 \mathrm{mmol})$ were stirred under N_{2} in benzene (40 $\left.\mathrm{cm}^{3}\right)$. After $5 \min (1 \mathbf{c})(0.383 \mathrm{~g}, 1.72 \mathrm{mmol})$ was added under N_{2}. The solution was heated to reflux for 1.5 h . The solvent was removed in vacuo and the residue was washed with light petroleum and chromatographed on alumina. Elution with dichloromethane gave a pale yellow band. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum gave large crystals of the title complex ($0.41 \mathrm{~g}, 0.51 \mathrm{mmol}, 45 \%$), m.p. $200^{\circ} \mathrm{C}$ (decomp.) (Found $\mathrm{C}, 59.3 ; \mathbf{H}, 4.9 . \mathrm{C}_{40} \mathrm{H}_{36} \mathrm{ClIrP}_{2}$ requires $\mathrm{C}, 59.6 ; \mathrm{H}, 4.5 \%$). I.r.: $v_{\text {rcc }} 260 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta 0.81[\mathrm{t}, 2$ $\left.\mathrm{H}, \mathrm{H}^{\mathrm{r}}, J\left(\mathrm{H}^{1} \mathrm{H}^{3}\right)=J\left(\mathrm{H}^{1} \mathrm{P}\right)=3.8\right]$, $2.1[1: 2: 4: 4: 2: 1$ sextet, 2 H , $\mathrm{H}^{2}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system, $J\left(\mathrm{H}^{2} \mathrm{H}^{2^{\prime}}\right) 3.7, J\left(\mathrm{PP}^{\prime}\right) 0.0, J\left(\mathrm{H}^{2} \mathrm{P}\right) 6.65$, $\left.J\left(\mathrm{H}^{2} \mathrm{P}^{\prime}\right)-5.3\right], 2.9\left[\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{1}\right) 3.8, J\left(\mathrm{H}^{3} \mathrm{P}\right) 6.96\right]$, and $7.55\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right):{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\},(100 \mathrm{MHz}), \delta 39.0\left(\mathrm{~s}, \mathrm{C}^{2}\right), 55.3$ [dd, $\left.\mathrm{AXX}^{\prime},\left|J\left(\mathrm{C}^{2} \mathrm{P}\right)+J\left(\mathrm{C}^{2} \mathrm{P}^{\prime}\right)\right| 42.6, J\left(\mathrm{PP}^{\prime}\right) 0\right]$, and 104.5 p.p.m. [t, $\left.\mathbf{C}^{1}, J\left(\mathbf{C}^{1} \mathrm{P}\right) 3.0\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 0.201$ p.p.m. (s).

$$
M=I r \text { or } R h
$$

Chloro(η^{4}-trimethylenemethane)bis(triphenylphosphine)rhodium. A solution of $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](0.29 \mathrm{~g}, 0.31 \mathrm{mmol})$ and (1c) $(0.5 \mathrm{~g}, 2.25 \mathrm{mmol})$ were heated in benzene ($5 \mathrm{~cm}^{3}$) until there was complete dissolution of the starting material. The solvent was removed in vacuo and the residue washed with light petroleum. Addition of methanol $\left(10 \mathrm{~cm}^{3}\right)$ caused a yellow solid to precipitate out ($0.11 \mathrm{~g}, 0.15 \mathrm{mmol}, 50 \%$). N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}$ $(300 \mathrm{MHz}), \delta 0.94\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{H}^{3}\right)=J\left(\mathrm{H}^{1} \mathrm{P}\right)=3.6\right], 2.23$ [$\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime},\left|J_{\mathrm{Ax}}+J_{\mathrm{Ax}}\right| 3.3$], $3.10\left[\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$, $\left.J\left(\mathrm{H}^{3} \mathrm{H}^{1}\right) 3.6, J\left(\mathrm{H}^{3} \mathrm{P}\right) 9.6\right], 7.55\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75$ $\mathrm{MHz}), \delta 56.7$ [d, $\left.\mathrm{C}^{3}, J\left(\mathrm{C}^{3} \mathrm{Rh}\right) 13.4\right], 64.42$ [1:3:1:0.5:0.5:1:3:1 octet, $\mathrm{C}^{2}, \mathrm{AMXX}^{\prime}, J(\mathrm{CP})-26, J\left(\mathrm{CP}^{\prime}\right) 5, J(\mathrm{CRh}) 7, J(\mathrm{PRh}) 151$, $\left.J\left(\mathrm{P}^{\prime} \mathrm{Rh}\right) 151, J\left(\mathrm{PP}^{\prime}\right) 5\right]$, and $111.12\left[\mathrm{dt}, \mathrm{C}^{1}, J\left(\mathrm{C}^{1} \mathrm{Rh}\right) 3.7, J\left(\mathrm{C}^{1} \mathrm{P}\right)\right.$ 5.4]; ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 28.7$ p.p.m. [d, $J(\mathrm{PRh})$ 151.4].

Chloro(nitrosyl)(η^{4}-trimethylenemethane)triphenylphos-

phine) osmium. $\left[\mathrm{OsCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{3}\right](\sim 0.94 \mathrm{~g}, 0.9 \mathrm{mmol})$ and (1c) $(0.6 \mathrm{~g}, 2.7 \mathrm{mmol})$ were stirred in benzene ($20 \mathrm{~cm}^{3}$). The green suspension dissolved after 20 min to give an orange solution. The solvent was reduced in vacuo to $c a .1 \mathrm{~cm}^{3}$. Light petroleum ($35 \mathrm{~cm}^{3}$) was added and the suspension was filtered to give an orange solution. The solvent was removed in vacuo and the residue stirred with light petroleum. The crude solid obtained was chromatographed on a short alumina column. Elution with dichloromethane gave an orange band which on addition of light petroleum gave $\left[\mathrm{OsCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{4}-\mathrm{tmm}\right)\right](0.1 \mathrm{~g}, 20 \%)$, m.p. $187-189^{\circ} \mathrm{C}$ (decomp.) (Found: C, 46.9; H, 3.9; N, 2.1 . $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClNOOsP}$ requires $\mathrm{C}, 46.2 ; \mathrm{H}, 3.7 ; \mathrm{N}, 2.4 \%$). I.r.: v_{NO} $1770, v_{\mathrm{osCl}} 290 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}(300 \mathrm{MHz}), \delta 1.85[\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{s}}, J\left(\mathrm{H}^{3} \mathrm{H}^{6}\right) 5.0, J\left(\mathrm{H}^{3} \mathrm{P}\right) 9.4\right], 1.99\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4}, J\left(\mathrm{H}^{4} \mathrm{H}^{1}\right)\right.$ 5.5], $2.09\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{H}^{4}\right) 5.5\right], 2.68\left[\mathrm{br} \mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{2}\right.$, $\left.J\left(\mathrm{H}^{2} \mathrm{H}^{5}\right)=J\left(\mathrm{H}^{2} \mathrm{P}\right)=3.0\right], 3.26\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{6}, J\left(\mathrm{H}^{6} \mathrm{H}^{3}\right)=\right.$ $\left.J\left(\mathrm{H}^{6} \mathrm{P}\right) 5.0\right], 3.61\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{5}, J\left(\mathrm{H}^{5} \mathrm{H}^{2}\right)=J\left(\mathrm{H}^{5} \mathrm{P}\right)=3.0\right]$, and $7.5\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75 \mathrm{MHz}), \delta 46.3\left(\mathrm{~s}, \mathrm{C}^{3}\right.$ or $\left.\mathrm{C}^{4}\right)$, $60.15\left[\mathrm{~d}, \mathrm{C}^{2}, J\left(\mathrm{C}^{2} \mathrm{P}\right) 27.6\right], 66.98\left(\mathrm{~s}, \mathrm{C}^{3}\right.$ or $\left.\mathrm{C}^{4}\right)$, and 114.6 p.p.m. (s, C^{1}).

$M=0 s$ or Ru
$X=$ NO, $Y=C l$ or $X=C l, Y=N O$ (exact position of X and Y not determined)

Chloro(nitrosyl) $\left(\eta^{4}\right.$-trimethylenemethane)(triphenylphosphine)ruthenium. $\left[\mathrm{RuCl}_{3}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right](0.6 \mathrm{~g}, 0.585 \mathrm{mmol})$ suspended in benzene was reduced using a $\mathrm{Zn}-\mathrm{Cu}$ couple. The solution containing [$\left.\mathrm{RuCl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right](0.585 \mathrm{mmol})$ was filtered and (1c) $(0.39 \mathrm{~g}, 1.75 \mathrm{mmol})$ was added. The green colour gradually disappeared. After stirring for 14 h the solvent was removed in vacuo. The residue was washed with light petroleum ($40 \mathrm{~cm}^{3}$) and diethyl ether ($30 \mathrm{~cm}^{3}$), and chromatographed on
an alumina column. Elution with dichloromethane produced an orange band which on addition of light petroleum gave the title complex ($0.06 \mathrm{~g}, 20 \%$), m.p. $129^{\circ} \mathrm{C}$ (decomp.) (Found: C, 54.2 ; $\mathrm{H}, 4.4 ; \mathrm{N}, 2.9 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClNOPRu}$ requires $\mathrm{C}, 54.7 ; \mathrm{H}, 4.4 ; \mathrm{N}$, 2.9%). I.r.: $v_{\mathrm{NO}} 1775, \mathrm{v}_{\mathrm{RuCl}} 280 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}(400$ $\mathrm{MHz}), \delta 2.13\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{H}^{4}\right) 5.2\right], 2.18\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{2}\right.$, $\left.J\left(\mathrm{H}^{2} \mathrm{H}^{5}\right)=J\left(\mathrm{H}^{2} \mathrm{P}\right)=3.5\right], 2.34\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{6}\right) 4.4\right.$, $\left.J\left(\mathrm{H}^{3} \mathrm{P}\right) 9.2\right], 2.49\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4}, J\left(\mathrm{H}^{4} \mathrm{H}^{1}\right) 5.2\right], 3.38\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6}\right.$, $\left.J\left(\mathrm{H}^{6} \mathrm{H}^{3}\right) 4.4, J\left(\mathrm{H}^{6} \mathrm{P}\right) 6.72\right], 3.44\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, J\left(\mathrm{H}^{5} \mathrm{H}^{2}\right) 3.5\right.$, $\left.J\left(\mathrm{H}^{5} \mathrm{P}\right) 5.1\right]$, and $7.5\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100 \mathrm{MHz})$, $58.98\left(\mathrm{~s}, \mathrm{C}^{3}\right.$ or $\left.\mathrm{C}^{4}\right), 67.48\left[\mathrm{~d}, \mathrm{C}^{2}, J\left(\mathrm{C}^{2} \mathrm{P}\right) 28.8\right], 77.28\left(\mathrm{~s}, \mathrm{C}^{3}\right.$ or $\left.\mathrm{C}^{4}\right)$, and 117.87 p.p.m. (s, C^{1}).

Preparation of $\left[\mathrm{Rh}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right) \mathrm{CH}_{2}\right\} \mathrm{Cl}(\mathrm{CO})\right.$ ($\left.\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}$ (6). Compound (1c) ($0.75 \mathrm{~g}, 3.38 \mathrm{mmol}$) was added to a stirred suspension of trans $-\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ $(0.5 \mathrm{~g}, 1.14 \mathrm{mmol})$ in methanol $\left(5 \mathrm{~cm}^{3}\right)$. The suspension immediately dissolved leaving a dark brown-red solution. $\mathrm{NaBPh}_{4}(0.396 \mathrm{~g}, 1.16 \mathrm{mmol})$ in methanol ($2 \mathrm{~cm}^{3}$) was added and immediately a yellow precipitate formed which was filtered off and washed with water ($3 \mathrm{~cm}^{3}$), methanol $\left(2 \mathrm{~cm}^{3}\right)$, and diethyl ether ($2 \mathrm{~cm}^{3}$). Yield: $0.81 \mathrm{~g}(0.91 \mathrm{mmol}, 80 \%), 114-$ $115^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.8 ; \mathrm{H}, 6.4 . \mathrm{C}_{48} \mathrm{H}_{57} \mathrm{BClOP}_{2} \mathrm{RhSi}$ requires C , $65.3 ; \mathrm{H}, 6.5 \%$). I.r.: $v_{\mathrm{co}} 2070 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}(400$ MHz), $\delta 0.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 1.80\left[\mathrm{~d}, 6 \mathrm{H}, \mathrm{PMe}{ }_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+\right.$ $\left.{ }^{4} J(\mathrm{PH}) \mid 11.27\right], 1.86\left[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right.$; other isomer 1.88 (br s)], $1.88\left[\mathrm{~d}, 6 \mathrm{H}, \mathrm{PM} e_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 7.33\right], 3.52\{\mathrm{~d}$, $2 \mathrm{H}, \mathrm{H}^{2}, J\left(\mathrm{H}^{2} \mathrm{P}\right) 9.45$; other isomer 3.53 [d, $\left.\left.J\left(\mathrm{H}^{2} \mathrm{P}\right) 9.05\right]\right\}, 4.12$ $\left\{\mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{P}\right) 3.39\right.$; other isomer $\left.4.19\left[\mathrm{~d}, J\left(\mathrm{H}^{1} \mathrm{P}\right) 3.76\right]\right\}$, $7.13\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{PMe}_{2} \mathrm{Ph}\right)$, and $7.6\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{BPh}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(100$ $\mathrm{MHz}), \delta 2.13\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right.$), 13.97 (d , second order, $\mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph}$, $\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 35.56$; other isomer 14.1 [d, second order, $\left.\left.\mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) 36.54\right]\right\}$, $17.02\{\mathrm{~d}$, second order, $\mathrm{Me}, \mathrm{PMe}{ }_{2} \mathrm{Ph},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 35.5$; other isomer 17.05 [d, second order, $\left.\left.\mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 36.3\right]\right\}, 31.94$ [$\mathrm{s}, \mathrm{C}^{3}$; other isomer $\left.24.6(\mathrm{~s})\right], 69.3$ [$\mathrm{m}, \mathrm{C}^{2}, \mathrm{AMXX}^{\prime}$ system; other isomer $73.45\left(\mathrm{~m}\right.$, AMXX' $^{\prime}$ system $\left.)\right], 145.29\left(\mathrm{~m}, \mathrm{C}^{1}\right)$, and 182.7 p.p.m. [d t, $\left.\mathrm{C}^{4}, J\left(\mathrm{C}^{4} \mathrm{Rh}\right) 62.3, J\left(\mathrm{C}^{4} \mathrm{P}\right) 10.12\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(162$ $\mathrm{MHz}), \delta-2.48\{\mathrm{~d}, J(\mathrm{PRh}) 101$; other isomer $-2.15[\mathrm{~d}, J(\mathrm{PRh})$ 102.1 $\}$. The complex exists as two isomers in a ratio of $3: 1$ (see below).

BPh_{4}

Carbonylbis(dimethylphenylphosphine) $\left(\eta^{4}\right.$-trimethylenemethane)rhodium tetraphenylborate (9). Sodium fluoride $(0.06 \mathrm{~g}$, $1.4 \mathrm{mmol})$ was added to a solution of complex (6) $(0.05 \mathrm{~g}, 0.056$ mmol) in aqueous methyl cyanide ($5 \mathrm{~cm}^{3}$). After standing for 12
h at room temperature the solvent was removed in vacuo and the residue extracted with dichloromethane ($15 \mathrm{~cm}^{3}$) and dried over anhydrous potassium carbonate. The solvent was removed in vacuo and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ n.m.r. spectra showed complete reaction. Recrystallisation from dichloromethane-diethyl ether afforded pale yellow needles ($0.035 \mathrm{~g}, 0.045 \mathrm{mmol}, 80 \%$ recovered), m.p. $108-109^{\circ} \mathrm{C}$ (Found: C, 68.7; H, 6.2. $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{BOP}_{2} \mathrm{Rh}$ requires C, $69.2 ; \mathrm{H}, 6.2 \%$). I.r.: $\mathrm{v}_{\mathrm{co}} 2058 \mathrm{~cm}^{-1}$; n.m.r. $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1} \mathrm{H}(300$ $\mathrm{MHz}), \delta 1.22\left[\mathrm{~m}\right.$, second order, $6 \mathrm{H}, \mathrm{PMe} e_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid$ 8.84], 1.32 [m, second order, $6 \mathrm{H}, \mathrm{PMe} e_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid$ 8.5], $1.86\left[\mathrm{br} \mathrm{d}, 2 \mathrm{H}\right.$, second order $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, \mathrm{H}^{2}$, $\left.\left|J\left(\mathrm{H}^{2} \mathrm{P}\right)+J\left(\mathrm{H}^{2} \mathrm{P}^{\prime}\right)\right| 1.6\right], 2.13\left[\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{1}, J\left(\mathrm{H}^{1} \mathrm{H}^{3}\right) 4.2, J\left(\mathrm{H}^{1} \mathrm{P}\right)\right.$ 6.3], $2.65\left[\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{3}, J\left(\mathrm{H}^{3} \mathrm{H}^{1}\right) 4.2, J\left(\mathrm{H}^{3} \mathrm{P}\right) 6.7\right]$, and $7.5(\mathrm{~m}, 30$ $\mathrm{H}, \mathrm{PMe}_{2} \mathrm{Ph}$ and BPh_{4}); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75 \mathrm{MHz}), \delta 17.0-19.0(\mathrm{~m}$, $\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{AMXX}^{\prime}$ system), 60.6 [1:1:3:3:3:3:3:3:1:1, dectet, $\mathrm{AMXX}^{\prime}, \mathrm{C}^{2}, J(\mathrm{CP})-28, J\left(\mathrm{CP}^{\prime}\right) 5, J(\mathrm{CRh}) 5.7, J(\mathrm{PRh}) 132$, $\left.J\left(\mathrm{P}^{\prime} \mathrm{Rh}\right) 132, J\left(\mathrm{PP}^{\prime}\right) 17\right], 62.7\left[\mathrm{~d}, \mathrm{C}^{3}, J\left(\mathrm{C}^{3} \mathrm{Rh}\right) 7.5\right], 112.3$ [dt, C^{1}, $\left.J\left(\mathrm{C}^{1} \mathrm{Rh}\right) 3.3, J\left(\mathrm{C}^{1} \mathrm{P}\right) 5.0\right]$, and 190.0 p.p.m. $\left[\mathrm{dt}, \mathrm{C}^{4}, J\left(\mathrm{C}^{4} \mathrm{Rh}\right) 63.3\right.$, $\left.J\left(\mathrm{C}^{4} \mathrm{P}\right) 10.7\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 4.134$ p.p.m. [d, $\left.J(\mathrm{PRh}) 131.8\right]$.

Reaction of trans- $\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with (1c).-(1c) $(0.63 \mathrm{~g}, 2.81 \mathrm{mmol})$ was added to a stirred solution of trans$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](0.5 \mathrm{~g}, 0.94 \mathrm{mmol})$ in methanol $\left(7 \mathrm{~cm}^{3}\right)$. After 2 min NaBPh 4 ($0.35 \mathrm{~g}, 1.02 \mathrm{mmol}$) in methanol ($5 \mathrm{~cm}^{3}$) was added to the pale yellow solution. The white precipitate was filtered off and washed with methanol ($10 \mathrm{~cm}^{3}$) and dried in vacuo. Yield: $0.6 \mathrm{~g}\left(0.66 \mathrm{mmol}, 70 \%\right.$), m.p. $168-170^{\circ} \mathrm{C}$ (decomp.). I.r.: $v_{\mathrm{CO}} 2050 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}(90 \mathrm{MHz}), \delta$ $1.7\left[\mathrm{~d}, \mathrm{P} M e_{2} \mathrm{Ph},\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 10.5\right], 1.85\left[\mathrm{~d}, \mathrm{P} M e_{2} \mathrm{Ph}\right.$, $\left.\left.\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid 10.5\right], 10.5\right], 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.0[\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{CH}_{2}($ anti) $\left.) J(\mathrm{HP}) 6.8\right], 3.8\left[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}(\right.$ syn) $)$, and $7.5(\mathrm{~m}, 30$ $\mathrm{H}, \mathrm{BPh}_{4}$ and $\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)$.

The hydrogen- 1 n.m.r. is identical to that of $\left[\operatorname{Ir}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\right.\right.$ $\left.\left.(\mathrm{Me}) \mathrm{CH}_{2}\right\} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}{ }^{13}$

Reaction of $\left[\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with (1c).-To a solution of $\left[\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right](0.4 \mathrm{~g}, 0.44 \mathrm{mmol})$ in toluene $\left(15 \mathrm{~cm}^{3}\right)$ was added (1c) ($0.3 \mathrm{~g}, 1.35 \mathrm{mmol}$). A yellow solid was precipitated and after 0.5 h the solution was filtered and the product washed with light petroleum to give trans- $\left[\operatorname{Rh}\left\{\mathrm{OS}(\mathrm{O})_{2} \mathrm{Me}\right\}(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(0.28 \mathrm{~g}, 0.37 \mathrm{mmol}, 85 \%\right.$), m.p. $170-172{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 60.7; H, 4.5. $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{RhS}$ requires $\mathrm{C}, 60.8 ; \mathrm{H}$, 4.4). I.r.: $\mathrm{v}_{\mathrm{cO}} 1980 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}(90 \mathrm{MHz}), \delta 1.55(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{MeSO}_{3}$), $7.5\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{3}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(24.15 \mathrm{MHz}), \delta$ 28.4 p.p.m. [d, $J(\mathrm{PRh})$ 127].

Acknowledgements

We thank the S.E.R.C. for support and for provision of highfield n.m.r. facilities, Johnson Matthey plc for the generous loan of platinum metal salts, and Drs. O. Howarth and E. Curzon (University of Warwick) for high-field ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra.

References

1 S. R. Allen, S. G. Barnes, M. Green, G. Moran, N. W. Murrall, D. M. Sharaiha, L. Trollope, and A. J. Welch, J. Chem. Soc., Dalton Trans., 1984, 1157.

2 R. Noyori, T. Nishimura, and H. Takaya, Chem. Commun., 1969, 89.
3 W. E. Billups, L-P. Lin, and O. A. Gansow, Angew. Chem., Int. Ed. Engl., 1972, 11, 637.
4 A. R. Pinhas, A. G. Samuelson, R. Risenberg, E. V. Arnold, J. Clardy, and B. K. Carpenter, J. Am. Chem. Soc., 1981, 103, 1668.
5 K. Ehrlich and G. F. Emerson, J. Am. Chem. Soc., 1972, 94, 2464.
6 J-M. Grosselin, H. Le Bozec, C. Moinet, L. Toupet, and P. H. Dixneuf, J. Am. Chem. Soc., 1985, 107, 2809.
7 J. M. Mayer, C. J. Curtis, and J. E. Bercaw, J. Am. Chem. Soc., 1983, 105, 2651.
8 B. M. Trost and D. M. T. Chan, J. Am. Chem. Soc., 1983, 105, 2315, 2326.

9 M. D. Jones, R. D. W. Kemmitt, A. W. G. Platt, D. R. Russell, and L. J. S. Sherry, J. Chem. Soc., Chem. Commun., 1984, 673.

10 M. D. Jones and R. D. W. Kemmitt, J. Chem. Soc., Chem. Commun., 1985, 811.
11 R. G. Pearson and A. T. Poulos, Inorg. Chim. Acta, 1979, 34, 67.
12 A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1969, 597.
13 A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1969, 1562.
14 O. W. Howarth, C. H. McAteer, P. Moore, and G. E. Morris, J. Chem. Soc., Dalton Trans., 1981, 1481.

15 S. R. Allen, M. Green, A. Guy Orpen, and I. D. Williams, J. Chem. Soc., Chem. Commun., 1982, 826.
16 E. Colvin, 'Silicon in Organic Synthesis,' Butterworths, London, 1981.

17 M. D. Jones, J. Fawcett, R. D. W. Kemmitt, M. Lees, A. W. G. Platt, D. R. Russell, and L. J. S. Sherry, unpublished work.

18 T. A. Albright, P. Hofmann, and R. Hoffmann, J. Am. Chem. Soc., 1977, 99, 7546.

19 T. A. Albright, Acc. Chem. Res., 1982, 15, 149.
20 E. S. Magyar and C. P. Lillya, J. Organomet. Chem., 1976, 116, 99.
21 T. Glonek and J. R. vanWazer, J. Magn. Reson., 1974, 13, 390.
22 J. P. Collman, C. T. Sears, jun., and M. Kubota, Inorg. Synth., 1968, 11, 101.
23 G. Wilkinson, Inorg. Synth., 1972, 13, 126.
24 N. Ahmad, J. J. Levison, S. D. Robinson, and M. F. Uttley, Inorg. Synth., 1974, 15, 59.
25 A. E. Crease, B. Dass Gupta, M. D. Johnson, and S. Moorehouse, J. Chem. Soc., Dalton Trans., 1978, 1821.

26 L. R. Smith, S. M. Lin, M. G. Chen, J. U. Mondal, and D. M. Blake, Inorg. Synth., 1982, 21, 97.
27 P. B. Chock and J. Halpern, J. Am. Chem. Soc., 1966, 88, 3511.
28 W. Hieber and V. Frey, Chem. Ber., 1966, 99, 2607.
29 J. L. Herde, J. C. Lambert, and C. V. Senoff, Inorg. Synth., 1974, $15,18$.
30 J. A. Osborn and G. Wilkinson, Inorg. Synth., 1967, 10, 67.
31 T. J. Collins, K. R. Grundy, and W. R. Roper, J. Organomet. Chem., 1982, 231, 161.
32 A. F. Hill, W. R. Roper, J. M. Waters, and A. H. Wright, J. Am. Chem. Soc., 1983, 105, 5939.
33 J. Reed, C. G. Pierpont, and R. Eisenberg, Inorg. Synth., 1976, 16, 21.
34 B. M. Trost, D. M. T. Chan, and T. N. Nanninga, Org. Synth., 1984, 62, 58.

[^0]: * Non-S.I. units employed: $\mathrm{mmHg}=133 \mathrm{Nm}^{-2}, \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$.

