A General Synthetic Route for Platinum Sulphur Dioxide Cluster Compounds and the X-Ray Structural Characterisation[†] of Di- μ -carbonyl-carbonyl-tri(μ sulphur dioxide)-tetrakis(triphenylphosphine)pentaplatinum–Dichloromethane– Propan-2-ol (1/2/1), [Pt₅(CO)(μ -CO)₂(μ -SO₂)₃(PPh₃)₄]·2CH₂Cl₂·Me₂CH(OH)

Clive E. Briant, David G. Evans, and D. Michael P. Mingos*

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR

Some or all of the carbonyl ligands in platinum carbonyl phosphine clusters may be replaced by sulphur dioxide under mild conditions to give high yields of clusters containing the bridging sulphur dioxide ligand. In some cases ligand substitution is accompanied by a change in cluster structure which gives rise to high-yield routes for altering the nuclearity of platinum carbonyl clusters. In particular the reaction of sulphur dioxide with $[Pt_4(\mu-CO)_5(PMe_2Ph)_4]$ gave the trinuclear cluster $[Pt_3(\mu-SO_2)_3(PMe_2Ph)_3]$ rather than the tetranuclear cluster reported by us in an earlier communication. The molecular structure of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4] \cdot 2CH_2CI_2 \cdot Me_2 - CO(\mu-SO_2)_3(PPh_3)_4] \cdot 2CH_2CI_2 \cdot Me_2 - CO(\mu-SO_2)_3(PPh_3)_4 + CO(\mu-SO_2)_3(PPh_3)_3($ CH(OH) has been determined by single-crystal X-ray techniques. The compound crystallises in the triclinic space group $P\overline{1}$ with two formula units in a unit cell with a = 13.991(6), b = 14.625(5), c = 21.285(4) Å, $\alpha = 84.07(2)$, $\beta = 83.34(3)$, and $\gamma = 70.76(4)^{\circ}$. The structure was solved to R 0.059 (R' 0.079) from 7 033 observed independent reflections $[F^2 \ge 3.0 \sigma (F^2)]$ collected in the range $3 \le 2\theta \le 45^\circ$. The molecule has an edge-bridged tetrahedral skeletal geometry with Pt-Pt in the range 2.751 (1)—2.877(1) Å. The cluster has one terminal carbonyl and four triphenylphosphine ligands and two edges of the cluster are bridged by carbonyl ligands and three by sulphur dioxide. The other two edges are unbridged. Detailed analysis of the structure has clarified the nature of the bonding in pentanuclear platinum clusters and enabled the structure of a previously incorrectly characterised platinum arsine cluster to be reformulated.

Although the co-ordination chemistry of sulphur dioxide has been extensively studied,^{1,2} there have been relatively few structurally characterised examples of metal cluster compounds containing co-ordinated SO₂.^{3,4} Three such clusters have been reported for platinum. A few crystals of the triangulo-cluster $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ were isolated by Moody and Ryan⁵ in 1977 and recently we have reported the structures of [Pt₃- $(\mu$ -SO₂)₃{P(C₆H₁₁)₃}₂(dppp)] [dppp = 1,3-bis(diphenylphosphino)propane]⁶ and $[Pt_3(\mu-SO_2)(\mu-Ph)(\mu-PPh_2)(PPh_3)_3]$.⁷ In this paper we report a general synthetic route for platinum phosphine sulphur dioxide clusters and the singlecrystal X-ray analysis of one such cluster. Since our preliminary communication of this work⁸ Ritchey and Moody⁹ have reported the synthesis of some trianguloplatinum sulphur dioxide clusters by similar routes.

Results and Discussion

Electronically SO₂ is a better σ donor than CO, but whereas CO has two effective π -acceptor orbitals, SO₂ only has one and CO is therefore a better π acceptor.^{10.11} In electronic terms therefore CO and SO₂ do not differ too widely, which suggested that SO₂ might replace CO in preformed carbonyl clusters. This was indeed found to be the case and the platinum cluster compounds [Pt₃(μ -CO)₃(PR₃)₃], [Pt₃(μ -CO)₃(PR₃)₄], [Pt₄(μ -CO)₅(PR₃)₄], and [Pt₅(CO)(μ -CO)₅(PR₃)₄] all reacted readily with SO₂ at 1 atm (10⁵ N m⁻²) and 60 °C in toluene solution.

Reaction of $[Pt_3(\mu-CO)_3(PR_3)_3]$ with SO₂.—Solutions of $[Pt_3(\mu-CO)_3(PR_3)_3]$, where R = cyclohexyl (C_6H_{11}) ,¹² Buⁿ,¹³

and CH_2CH_2CN ,¹³ reacted readily with SO₂ at 60 °C in toluene or acetone ($R = CH_2CH_2CN$) solutions to give products which were characterised as $[Pt_3(\mu-SO_2)_3(PR_3)_3]$ on the basis of analytical, i.r.,² and most conclusively ³¹P-{¹H} n.m.r. evidence. The relevant coupling constants are given in Table 1. The coupling constants for the carbonyl precursors are given in Table 2.

Comparison of Tables 1 and 2 shows that for the SO₂-bridged clusters, ${}^{1}J({}^{195}\text{Pt}{-}^{31}\text{P})$ is *ca.* 700 Hz smaller than in the analogous CO-bridged cluster. This coupling constant has been related 14 to the *s* character of the Pt–P bond, which is affected by the electronic properties of the bridging ligand. In this case the reduced (Pt–P) *s* character may be attributed to the better σ -donor and weaker π -acceptor properties of SO₂ compared with CO.

Reaction of $[Pt_3(\mu-CO)_3(PPh_3)_4]$ with SO₂.—A solution of $[Pt_3(\mu-CO)_3(PPh_3)_4]$ reacted readily with SO₂ at 60 °C in toluene solution to give a product which was characterised as $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ ·SO₂·C₇H₈ on the basis of analytical, i.r., and ³¹P-{¹H} n.m.r. evidence $[^{1}J(^{195}Pt-^{31}P) = 4073, ^{2}J(^{195}Pt-^{31}P) = 425, ^{3}J(^{31}P-^{31}P) = 51$ Hz]. As discussed above, this compound had previously been obtained in trace amounts by Moody and Ryan⁵ and characterised by a single-crystal X-ray analysis.

It is noteworthy that replacement of CO by SO_2 in the cluster has led to a change in electron count from 44 to 42, consistent with the lower π -acceptor ability of SO_2 . The factors which determine the electron count of a trinuclear platinum cluster have been discussed in detail by Dedieu and Hoffmann¹⁵ and ourselves.¹⁶

It was of interest to study the reverse reaction of $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ with CO since there is obviously insufficient phosphine to enable the carbonyl precursor to be regenerated. The carbonyl cluster $[Pt_3(\mu-CO)_3(PPh_3)_3]$ has been shown to

[†] Supplementary data available (No. SUP 56526, 5 pp.): thermal parameters. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii—xx. Structure factors are available from the editorial office.

Table 1. Coupling constants (Hz) for some triangulo-triplatinum sulphur dioxide clusters

	$^{1}J(^{195}\text{Pt}-^{31}\text{P})$	$^{2}J(^{195}\text{Pt}-^{31}\text{P})$	${}^{3}J({}^{31}P-{}^{31}P)$	
$[Pt_{3}(\mu-SO_{2})_{3}{P(C_{6}H_{11})_{3}}]$	3 760	330	49	
$[Pt_{3}(\mu-SO_{2})_{3}(PBu^{n}_{3})_{3}]$	3 673	361	49	
$[Pt_{3}(\mu-SO_{2})_{3}{P(CH_{2}CH_{2}CN)_{3}}_{3}]$	3 785	367	51	

Table 2. Coupling constants (Hz) for some triangulo-triplatinum carbonyl clusters

	¹ <i>J</i> (¹⁹⁵ Pt- ³¹ P)	$^{2}J(^{195}\text{Pt}-^{31}\text{P})$	${}^{3}J({}^{31}P-{}^{31}P)$	
$[Pt_{3}(\mu-CO)_{3}\{P(C_{6}H_{11})_{3}\}_{3}]$	4 412	430	58	
$[Pt_{3}(\mu-CO)_{3}(PBu^{n}_{3})_{3}]$	4 425	444	60	
$[Pt_{3}(\mu-CO)_{3}\{P(CH_{2}CH_{2}CN)_{3}\}_{3}]$	4 489	466	61	

be unstable with respect to phosphine exchange¹⁷ and is perhaps therefore not a very likely product. Indeed $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ reacts with CO in toluene solution at 60 °C to give $[Pt_5(CO)(\mu-CO)_5(PPh_3)_4]$ as a reddish-brown crystalline solid.^{18,19} Sequential replacement of CO and SO₂ therefore provides a facile and high-yield route for the conversion of $[Pt_3(\mu-CO)_3(PPh_3)_4]$ into $[Pt_5(CO)(\mu-CO)_5(PPh_3)_4]$ (see Scheme 1). The same transformation has recently been achieved by Bender and Braunstein²⁰ by passing a solution of $[Pt_3(\mu-CO)_3(PPh_3)_4]$ down a Kieselgel column.

$$[Pt_{3}(\mu-CO)_{3}(PPh_{3})_{4}] \xrightarrow{SO_{2}} [Pt_{3}(\mu-SO_{2})_{3}(PPh_{3})_{3}]$$

$$\downarrow CO. PhMe$$

$$[Pt_{5}(CO)(\mu-CO)_{5}(PPh_{3})_{4}]$$

Scheme 1.

Reaction of $[Pt_4(\mu-CO)_5(PMe_2Ph)_4]$ with SO₂.—A solution of the tetranuclear $[Pt_4(\mu-CO)_5(PMe_2Ph)_4]$ cluster, which has a 'butterfly' structure, also reacted with SO₂ in toluene solution at 60 °C to give a red crystalline solid. Although analytical and i.r. data were insufficient to unambiguously identify the cluster, a high-field n.m.r. spectrum conclusively indicated that the SO₂ had not simply replaced the bridging CO ligands as reported in our original communication,⁸ but had in fact brought about cluster degradation to give $[Pt_3(\mu-SO_2)_3(PMe_2Ph)_3]$. The measured coupling constants were: ${}^{1}J({}^{195}Pt-{}^{31}P) = 3974$, ${}^{2}J({}^{195}Pt-{}^{31}P) = 388$, ${}^{3}J({}^{31}P-{}^{31}P) = 50$ Hz. The reduction in cluster nuclearity is possibly related to the poorer π -acceptor ability of SO₂ relative to CO or alternatively may be a consequence of the greater steric requirements of the angular SO₂ ligand.

The reaction of $[Pt_3(\mu-SO_2)_2(PMe_3Ph)_3]$ with CO was also of interest because $[Pt_3(\mu-CO)_3(PMe_2Ph)_3]$ has not been isolated.²¹ Whilst the phosphine ratio is such that $[Pt_4(\mu-CO)_5(PMe_2Ph)_4]$ could conceivably have been regenerated, the reaction of $[Pt_3(\mu-SO_2)_3(PMe_2Ph)_3]$ with CO in toluene at 60 °C gave $[Pt_5(CO)(\mu-CO)_5(PMe_2Ph)_4]$, as shown by analytical data and its i.r. spectrum which was very similar to that of the other known $[Pt_5(CO)(\mu-CO)_5(PR_3)_4]$ clusters.¹⁹

The sequence shown in Scheme 2 therefore provides an

 $[Pt_{4}(\mu-CO)_{5}(PMe_{2}Ph)_{4}] \xrightarrow{SO_{2}} [Pt_{3}(\mu-SO_{2})_{3}(PMe_{2}Ph)_{3}]$ $\downarrow CO. PhMe$ $[Pt_{4}(CO)(\mu-CO)_{5}(PMe_{2}Ph)_{4}]$

Scheme 2.

Figure. Crystal structure of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$

alternative route for the interconversion of platinum clusters. Clearly the pathways for the interconversion of the various platinum clusters have low activation energies and it is difficult to predict the nuclearity of a cluster which will be obtained from a given reaction.

Reaction of $[Pt_5(CO)(\mu-CO)_5(PPh_3)_4]$ with SO₂.—When SO₂ was bubbled through a toluene solution of $[Pt_5(CO)(\mu-CO)_5(PPh_3)_4]$ at 60 °C for 30 min, a slightly darker red solution was obtained from which an orange-red crystalline solid could be isolated. This compound analysed correctly for $[Pt_5(CO)_3(SO_2)_3(PPh_3)_4]$ and the i.r. spectrum showed bands characteristic of terminal and bridging CO and bridging SO₂ ligands. The ³¹P-{¹H} n.m.r. spectrum of this compound was extremely complex and defied any simple analysis.

Since the structure of $[Pt_5(CO)_3(SO_2)_3(PPh_3)_4]$ could not be determined from the available spectroscopic data a singlecrystal X-ray structural analysis of this compound was undertaken. The relevant details are given in the Experimental section.

Crystal and Molecular Structure of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$ -2CH₂Cl₂·Me₂CH(OH).—The molecular structure of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$ determined from the X-ray crystallographic analysis is illustrated in the Figure and selected intramolecular bond lengths and angles are given in Tables 3 and 4 respectively. The fractional atomic coordinates are given in Table 5.

The molecular structure of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3^-(PPh_3)_4]$ is related to that of the parent carbonyl cluster,^{18,19} but differs in a number of interesting and detailed respects. The unbridged Pt-Pt bond lengths radiating from Pt(3) in $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$ are 0.05-0.12 Å shorter than the corresponding bond lengths in $[Pt_5(CO)(\mu-CO)_5^-(\mu-CO)_5^-(PPh_3)_4]$

Table 3. Interatomic distances (Å) in $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3-(PPh_3)_4]$

Pt-Pt		C0	
Pt(1)-Pt(2)	2.826(1)	C(3)–O(3)	1.20(3)
Pt(1)-Pt(3)	2.751(1)	C(14)-O(14)	1.24(3)
Pt(1) - Pt(4)	2.763(1)	C(15)-O(15)	1.14(3)
Pt(1)-Pt(5)	2.766(1)		
Pt(2) - Pt(3)	2.784(1)	S-O	
Pt(3)-Pt(4)	2.877(1)	S(21) = O(211)	1 46(2)
Pt(3)-Pt(5)	2.808(1)	S(21) - O(212)	1.44(2)
Pt(4)-Pt(5)	2.793(1)	S(23)=O(231)	1.44(2)
		S(23)=O(232)	1.44(2)
Pt-P		S(45) - O(451)	1.45(2)
Pt(1) - P(1)	2.344(6)	S(45)-O(452)	1.45(2)
Pt(2) - P(2)	2.274(6)		
Pt(4) - P(4)	2.275(6)	Pt-S	
Pt(5)–P(5)	2.283(7)	Pt(1)-S(21)	2.313(6)
		Pt(2) - S(21)	2.244(6)
Pt-C		Pt(2) - S(23)	2.274(7)
Pt(3)-C(3)	1.81(3)	Pt(3) - S(23)	2.227(7)
Pt(1)-C(14)	2.18(3)	Pt(4) - S(45)	2.305(6)
Pt(1)-C(15)	2.27(2)	Pt(5)-S(45)	2.264(7)
Pt(4)-C(14)	1.91(3)		
Pt(5)-C(15)	1.97(2)		

(PPh₃)₄] which are summarised in Table 6. Indeed, the Pt(3)–Pt(5) and Pt(3)–Pt(4) bond lengths [2.808(1) and 2.877(1) Å respectively] are sufficiently similar to the remaining Pt–Pt bonds in [Pt₅(CO)(μ -CO)₂(μ -SO₂)₃(PPh₃)₄] to warrant an unambiguous description of the cluster as *edge-bridged tetrahedral*. In [Pt₅(CO)(μ -CO)₅(PPh₃)₄] the relatively long Pt(3)–Pt(5) and Pt(3)–Pt(4) bond lengths [average 2.918(1) Å] led to the suggestion ¹⁸ that the cluster may be more correctly described in terms of two orthogonal *triangulo*-clusters which share a common metal atom. The 70-electron count in these two pentanuclear clusters is consistent with our recent theoretical analysis of the bonding in platinum clusters.²²

It is noteworthy that the reaction of $[Pt_5(CO)(\mu-CO)_5-(PPh_3)_4]$ with SO₂ leads only to the replacement of carbonyl ligands which are attached to Pt(2) or the opposite edge of the tetrahedron. The inertness of the carbonyl ligands which bridge Pt(1)-Pt(5) and Pt(1)-Pt(4), even under more forcing reaction conditions (3 h reflux in toluene under SO₂), could arise from steric rather than electronic grounds since these carbonyl ligands are well shielded by the ligand atoms on adjacent metal atoms and Pt(3).

The presence of bridging CO and SO₂ ligands within the same molecule does present an internal check on the effects of replacing CO by SO₂ on the Pt-Pt bond lengths. In [Pt₅(CO)(μ -CO)₂(μ -SO₂)₃(PPh₃)₄] the Pt-Pt bond lengths bridged by CO do not differ significantly from those in [Pt₅(CO)(μ -CO)₅-(PPh₃)₄]. Those bonds which are bridged by SO₂ are consistently 0.1 Å longer than the corresponding bond lengths in the parent carbonyl. This effect can be attributed either to the lower π -acidity of SO₂ or to its greater steric requirements. The Pt-Pt bonds bridged by SO₂ in [Pt₅(CO)(μ -CO)₂(μ -SO₂)₃-(PPh₃)₄] are also approximately 0.1 Å longer than those in [Pt₃(μ -SO₂)₃(PPh₃)₃].⁶ Again this could be a consequence of either steric or electronic factors or a combination of the two.

A definite measure of the lower π -acidity of sulphur dioxide relative to carbon monoxide is provided by a comparison of the i.r. spectra of [Pt₅(CO)(μ -CO)₂(μ -SO₂)₃(PPh₃)₄] and [Pt₅-(CO)(μ -CO)₅(PPh₃)₄]. The terminal v_{co} band in the former occurs some 50 cm⁻¹ higher than the corresponding band in the parent carbonyl.

Synthesis and Characterisation of [Pt₅(CO)(µ-CO)₅(As-

Ph₃)₄] and its Reaction with SO₂ to give $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(AsPh_3)_4]$.—In 1970, Chatt and Chini²³ reported that the reduction of $[Pt(AsPh_3)_2Cl_2]$ with hydrazine under CO gave a red cluster which they formulated as $[Pt_4(CO)_5(AsPh_3)_4]$ on the basis of analytical data. An analogous cluster has recently been prepared by Goel *et al.*²⁴ by reaction of *trans*- $[PtH_2(AsBu^1_3)_2]$ with CO.

A sample of $[Pt_4(CO)_5(AsPh_3)_4]$ was prepared by the literature method ²³ in order to attempt to characterise it more fully. This was in fact relatively straightforward since the i.r. spectrum of the sample was almost identical to that of $[Pt_5(CO)(\mu-CO)_5(PPh_3)_4]$. This strongly suggested that the arsine cluster should be reformulated as $[Pt_5(CO)(\mu-CO)_5(AsPh_3)_4]$ ·C₆H₆. (The analytical data do not adequately discriminate between the two structures.)

Confirmatory evidence was obtained by reaction of the proposed $[Pt_5(CO)(\mu-CO)_5(AsPh_3)_4]$ with SO_2 in toluene solution at 60 °C. A red solid analysing for $[Pt_5(CO)_3(SO_2)_3(AsPh_3)_4]$ with an i.r. spectrum very similar to that of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$ was isolated, which strongly suggested that the arsine and phosphine clusters are isostructural.

Experimental

Reactions were routinely carried out, using standard Schlenkline procedures, under an atmosphere of pure, dry dinitrogen and using dry dioxygen-free solvents. Microanalyses (C and H) were carried out by Mr. M. Gascoyne and his staff of this laboratory. Infrared spectra were recorded as Nujol mulls using a Pye-Unicam SP2000 spectrometer.

Proton-decoupled ³¹P n.m.r. spectra were recorded using Bruker WH-90 and AM-250 spectrometers and referenced with respect to external trimethyl phosphate in D₂O. The machine operating frequencies were 36.43 and 101.26 MHz respectively for ³¹P. All samples were run in deuteriated solvents.

The following compounds were prepared by literature procedures: $[Pt_3(\mu-CO)_3{P(C_6H_{11})_3}],^{12} [Pt_3(\mu-CO)_3(PBu^n_3)_3],^{13} [Pt_3(\mu-CO)_3{P(CH_2CH_2CN)_3}],^{13} [Pt_3(\mu-CO)_3(PPh_3)_4],^{23} [Pt_4(\mu-CO)_5(PMe_2Ph)_4],^{23} and [Pt_5(CO)(\mu-CO)_5(PPh_3)_4].^{18}$

Synthesis of $[Pt_3(\mu-SO_2)_3\{P(C_6H_{11})_3\}_3]$.—A solution of $[Pt_3(\mu-CO)_3\{P(C_6H_{11})_3\}_3]$ (0.20 g, 0.13 mmol) in toluene (25 cm³) was heated to 60 °C and SO₂ bubbled through for 20 min. Concentration of the solution followed by addition of hexane precipitated $[Pt_3(\mu-SO_2)_3\{P(C_6H_{11})_3\}_3]$ as an orange microcrystalline solid. Yield 0.12 g (56%) (Found: C, 41.0; H, 6.4. $C_{54}H_{99}O_6P_3Pt_3S_3$ requires C, 40.0; H, 6.1%). I.r. (cm⁻¹): v_{SO_2} 1 248mw, 1 082vs, and 1 072s. ³¹P-{¹H} N.m.r. in C_6D_6 : $\delta(^{31}P)$ 35.3 p.p.m. with ¹J(¹⁹⁵Pt-³¹P) = 3 760, ²J(¹⁹⁵Pt-³¹P) = 330, and ³J(³¹P-³¹P) = 49 Hz.

Synthesis of $[Pt_3(\mu-SO_2)_3(PBu^n_3)_3]$.—A solution of $[Pt_3(\mu-CO)_3(PBu^n_3)_3]$ (0.25 g, 2.0 mmol) in toluene (25 cm³) was heated to 60 °C and SO₂ bubbled through for 20 min. Concentration of the solution to very low volume, addition of a small amount of methanol followed by cooling to -40 °C led to the formation of $[Pt_3(\mu-SO_2)_3(PBu^n_3)_3]$ as an orange crystalline solid. Yield 0.18 g (66%) (Found: C, 31.9; H, 6.3. C₃₆H₈₁O₆P₃Pt₃S₃ requires C, 31.2; H, 5.9%). I.r. (cm⁻¹): v_{SO}, 1 262ms, 1 255s, and 1 085vs. ³¹P-{¹H} N.m.r. in C₆D₆: $\delta(^{31}P)$ 28.9 p.p.m. with ¹J(¹⁹⁵Pt-³¹P) = 3 673, ²J(¹⁹⁵Pt-³¹P) = 361, and ³J(³¹P-³¹P) = 49 Hz.

Synthesis of $[Pt_3(\mu-SO_2)_3\{P(CH_2CH_2CN)_3\}_3]$.—A solution of $[Pt_3(\mu-CO)_3\{P(CH_2CH_2CN)_3\}_3]$ (0.20 g, 0.16 mmol) in acetone (35 cm³) was heated to 50 °C and SO₂ was bubbled through for 20 min when an orange-red solution was obtained. Concentration of the solution followed by addition of propan-2**Table 4.** Interbond angles (°) in $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-Pt(1)-C(15) 14 $C(terminal)-Pt-S C(3)-Pt(3)-S(23) 9$ $C(bridging)-Pt-S C(14)-Pt(1)-S(21) 10 C(15)-Pt(1)-S(21) 9 C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)$	45.0(9))7.9(9))8.4(7))8.5(6) 52.7(8) ;4.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(terminal)-Pt-S C(3)-Pt(3)-S(23) 9 C(bridging)-Pt-S C(14)-Pt(1)-S(21) 10 C(15)-Pt(1)-S(21) 9 C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)	97.9(9) 98.4(7) 98.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(terminal)-Pt-S C(3)-Pt(3)-S(23) 9 C(bridging)-Pt-S C(14)-Pt(1)-S(21) 10 C(15)-Pt(1)-S(21) 9 C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)	97.9(9) 98.4(7) 98.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)-Pt(3)-S(23) 9 C(bridging)-Pt-S C(14)-Pt(1)-S(21) 10 C(15)-Pt(1)-S(21) 9 C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)	97.9(9) 98.4(7) 98.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)-T((5)-S(25) C(bridging)-Pt-S C(14)-Pt(1)-S(21) C(15)-Pt(1)-S(21) C(14)-Pt(4)-S(45) C(15)-Pt(5)-S(45) S-Pt-S S(21)-Pt(2)-S(23) Pt-C-O(terminal))8.4(7))8.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(bridging)-Pt-S C(14)-Pt(1)-S(21) 10 C(15)-Pt(1)-S(21) 9 C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal))8.4(7))8.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-Pt(1)-S(21) 10 C(15)-Pt(1)-S(21) 9 C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S $S(21)-Pt(2)-S(23)$ 15 Pt-C-O(terminal) 15)8.4(7))8.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-Pt(1)-S(21) = 10 C(15)-Pt(1)-S(21) = 9 C(14)-Pt(4)-S(45) = 16 C(15)-Pt(5)-S(45) = 16 S-Pt-S S(21)-Pt(2)-S(23) = 15 Pt-C-O(terminal))8.4(7) 98.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)-Pt(1)-S(21) 9 C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)	98.5(6) 52.7(8) 54.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-Pt(4)-S(45) 16 C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)	52.7(8) 54.7(7)
$\begin{array}{cccccccc} Pt(2)-Pt(3)-Pt(5) & 117.09(4) & Pt(5)-Pt(4)-C(14) & 111.1(8) \\ Pt(4)-Pt(3)-Pt(5) & 58.84(3) & Pt(1)-Pt(5)-C(15) & 54.1(7) \\ Pt(1)-Pt(4)-Pt(3) & 58.34(3) & Pt(3)-Pt(5)-C(15) & 75.6(7) \\ Pt(1)-Pt(4)-Pt(5) & 59.72(3) & Pt(4)-Pt(5)-C(15) & 112.7(7) \\ Pt(3)-Pt(4)-Pt(5) & 59.35(3) \\ Pt(1)-Pt(5)-Pt(3) & 59.13(3) & Pt-S-Pt \\ Pt(1)-Pt(5)-Pt(4) & 59.60(3) & Pt(1)-S(21)-Pt(2) & 76.6(2) \\ \end{array}$	C(15)-Pt(5)-S(45) 16 S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)	54.7(7)
$\begin{array}{cccccccc} Pt(4)-Pt(3)-Pt(5) & 58.84(3) & Pt(1)-Pt(5)-C(15) & 54.1(7) \\ Pt(1)-Pt(4)-Pt(3) & 58.34(3) & Pt(3)-Pt(5)-C(15) & 75.6(7) \\ Pt(1)-Pt(4)-Pt(5) & 59.72(3) & Pt(4)-Pt(5)-C(15) & 112.7(7) \\ Pt(3)-Pt(4)-Pt(5) & 59.35(3) \\ Pt(1)-Pt(5)-Pt(3) & 59.13(3) & Pt-S-Pt \\ Pt(1)-Pt(5)-Pt(4) & 59.60(3) & Pt(1)-S(21)-Pt(2) & 76.6(2) \\ \end{array}$	S–Pt–S S(21)–Pt(2)–S(23) 15 Pt–C–O(terminal)	
$\begin{array}{ccccccc} Pt(1)-Pt(4)-Pt(3) & 58.34(3) & Pt(3)-Pt(5)-C(15) & 75.6(7) \\ Pt(1)-Pt(4)-Pt(5) & 59.72(3) & Pt(4)-Pt(5)-C(15) & 112.7(7) \\ Pt(3)-Pt(4)-Pt(5) & 59.35(3) \\ Pt(1)-Pt(5)-Pt(3) & 59.13(3) & Pt-S-Pt \\ Pt(1)-Pt(5)-Pt(4) & 59.60(3) & Pt(1)-S(21)-Pt(2) & 76.6(2) \\ \end{array}$	S-Pt-S S(21)-Pt(2)-S(23) 15 Pt-C-O(terminal)	
$\begin{array}{ccccccc} Pt(1)-Pt(4)-Pt(5) & 59.72(3) & Pt(4)-Pt(5)-C(15) & 112.7(7) & 11$	S(21)–Pt(2)–S(23) 15 Pt–C–O(terminal)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pt-C-O(terminal)	59.6(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pt-C-O(terminal)	
Pt(1)-Pt(5)-Pt(4) 59.60(3) $Pt(1)-S(21)-Pt(2)$ 76.6(2)		
1(1) - 5(21) - 1(2) - 5(31)	Pt(3) = C(3) = O(3) 17	74 ()(24)
Pt(3)-Pt(4) 61.81(3) $Pt(2)-S(23)-Pt(3)$ 76.4(2)		4.0(24)
$P_{1}(A) = S_{1}(A) = S_{1}(A)$	Pt-C-O(bridging)	
Pt-Pt-P		
Pt(2) = Pt(1) = P(1) 140.9(2) $Pt = Pt = S$	Pt(1) = C(14) = O(14) 12	26.3(20)
P(2) = P(1) = P(1) (1) (170.72) (170.72)	Pt(4) = C(14) = O(14) 14	18.5(21)
P(4) = P(1) = P(2) = P(1) = S(21) (3)	Pt(1) = C(15) = O(15) 12	27.8(20)
P(5) = P(1) = P(1) = 1011(2) P(5) = P(1) = S(21) = 108.1(2)	Pt(5) = C(15) = O(15) 13	s1.0(22)
P(1) = P(2) = P(1) = S(21) $S(21) = S(21)$ $S(21)$ $S(21) = S(21)$ $S(21)$ $S(21) = S(21)$ $S(21)$ $S(21) = S(21)$ $S(21)$		
P(3) - P(2) - P(2) = 1500(2) $P(5) - P(1) - S(21) = 142.7(2)$	Pt-S-O	
F(1) = F(2) =	Pt(1)-S(21)-O(211) 11	15.4(8)
P(3) = P(4) = P(4) 126.2(2) $P(1) = P(2) = S(2.3)$ 106.9(2)	Pt(1)-S(21)-O(212) 11	13.7(7)
P(5) = P(4) = P(2) $P(1) = P(2) = P(2) = P(2)$ $P(2) = P(2) = P(2)$ $P(3) = P(4) = P(2)$ $P(3) = P(4) = P(3)$ $P(4) = P(4) = P(4)$ $P(4) = P(4)$ $P(4)$ $P(4) = P(4)$ $P(4)$ $P(4) = P(4)$ $P(4)$	Pt(2)–S(21)–O(211) 11	17.3(8)
F(3) =	Pt(2)-S(21)-O(212) 11	13.2(7)
P(1) -	Pt(2)-S(23)-O(231) 11	19.4(10)
P(4) = P(5) = P(2) = P(2) = P(3) =	Pt(2)–S(23)–O(232) 11	15.6(10)
Pt(4) - Pt(3) - S(23) 121.6(2)	Pt(3)-S(23)-O(231) 11	16.1(10)
Pt $Pt (3) - Pt(3) - S(23) = 169.6(2)$	Pt(3)-S(23)-O(232) 10)7.1(10)
Pt(1)-Pt(4)-S(45) 111.2(2)	Pt(4)-S(45)-O(451) 11	15.5(8)
Pt(1)-Pt(3)-C(3) 151.0(8) $Pt(3)-Pt(4)-S(45)$ 88.8(2)	Pt(4)-S(45)-O(452) 11	(4.7(9)
Pt(2)-Pt(3)-C(3) 146.5(8)	Pt(5)–S(45)–O(451) 11	(5.2(8)
P(4) - P(3) - C(3) 104.0(8) $P - P(-C(bridging))$	Pt(5)–S(45)–O(452) 11	16.2(9)
Pt(5)-Pt(3)-C(3) 91.7(8) $P(1)-Pt(1)-C(14)$ 95.8(7)		
P(1)-P(1)-C(15) 104.5(6)	O-S-O	
Pt-CO(bridging)-Pt P(4)-Pt(4)-C(14) 98.6(8)	O(211) = S(21) = O(212) 11	15.1(11)
Pt(1)-C(14)-Pt(4) 84.6(10) $P(5)-Pt(5)-C(15)$ 94.4(7)	O(231) - S(23) - O(232) 11	15.4(14)
Pt(1)–C(15)–Pt(5) 81.1(8)	O(451)-S(45)-O(452) 11	14.4(12)
P-Pt-S		
P(1) - P(1) - S(21) 93.8(2)		
P(2)-Pt(2)-S(21) 100 3(2)		
P(2)-Pt(2)-S(23) 100 0(2)		
P(4) - P((4) - S(45)) = 98.4(7)		
P(5) - P(15) - S(45) 100 5(2)		

ol led to the precipitation of $[Pt_3(\mu-SO_2)_3\{P(CH_2CH_2CN)_3\}_3]$ as an orange solid. Yield 0.17 g (78%) (Found: C, 25.3; H, 3.0; N, 8.9. $C_{27}H_{36}N_9O_6P_3Pt_3S_3$ requires C, 23.9; H, 2.7; N, 9.3%). I.r. (cm⁻¹): 1 253m and 1 085s. ³¹P-{¹H} N.m.r. in (CD₃)₂CO: $\delta(^{31}P)$ 24.3 p.p.m. with ¹J(¹⁹⁵Pt-³¹P) = 3 785, ²J(¹⁹⁵Pt-³¹P) = 367, and ³J(³¹P-³¹P) = 51 Hz.

Synthesis of $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ ·SO₂·C₇H₈.—[Pt₃(μ -CO)₃(PPh₃)₄] (0.2 g, 0.12 mmol) was dissolved in the minimum volume of toluene at 60 °C. SO₂ was bubbled through the solution for 20 min which became a lighter red colour and slowly deposited orange crystals of $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ ·SO₂·C₇H₈. The mixture was cooled, the orange crystals filtered off, washed with a little cold toluene and dried *in vacuo*. Yield 0.16 g (80%) (Found: C, 42.9; H, 3.0. C₆₁H₅₃O₈P₃Pt₃S₄ requires C, 42.6; H, 3.1%). I.r. (cm⁻¹): v_{SO₂} (solvation) 1 325m, 1 140m; v_{SO₂} (bridging) 1 275s, 1 260ms, 1 085vs. ³¹P-{¹H} N.m.r. in CH₂Cl₂ solution with D₂O lock: $\delta(^{31}P)$ 57.1 p.p.m. with

 ${}^{1}J({}^{195}\text{Pt}-{}^{31}\text{P}) = 4\,073, {}^{2}J({}^{195}\text{Pt}-{}^{31}\text{P}) = 425, \text{ and } {}^{3}J({}^{31}\text{P}-{}^{31}\text{P}) = 51 \text{ Hz}.$

Reaction of $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ with CO.— $[Pt_3(\mu-SO_2)_3(PPh_3)_3]$ (0.15 g, 0.096 mmol) was heated with toluene (50 cm³) to 60 °C and CO bubbled through the mixture for 30 min to give a darker red solution. Reduction of the volume of the solution followed by addition of hexane gave $[Pt_5(CO)(\mu-CO)_5(PPh_3)_4]$ as a red-brown solid which was recrystallised from benzenemethanol. Yield 0.1 g (88%) (Found: C, 42.1; H, 2.9. $C_{78}H_{60}O_6P_4Pt_5$ requires C, 42.7; H, 2.7%). I.r. (cm⁻¹): v_{CO} 2 005s, 1 902mw, 1 867s, 1 802vs, and 1 780vs (lit.,¹⁸ 1 998vs, 1 899m, 1 858s, 1 812s, and 1 788vs).

Synthesis of $[Pt_3(\mu-SO_2)_3(PMe_2Ph)_3]$.— $[Pt_4(\mu-CO)_5(PMe_2-Ph)_4]$ (0.20 g, 0.14 mmol) was dissolved in toluene at 60 °C. SO₂ was bubbled through the solution for 30 min. The solution became darker red and addition of hexane gave a red-brown

HAUNC 5. I lactional atomic co-ordinates for $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} (a = 0) / (a $	Tał	ble	5.	Fractional	atomic	co-ordinates	for	[Pt	,(CO)(μ-	·CO)	$_2(\mu$	-SO	2)3(F	Ph ₂	,),	J
---	-----	-----	----	------------	--------	--------------	-----	-----	------	------	------	----------	-----	-------	-----------------	-----	---

Atom	X/a	Y/b	Z/c	Atom	X/a	Y/b	Z/c
Pt(1)	0.253 43(7)	0.206 56(7)	0.177 15(5)	C(135)	0.520(3)	0.303(3)	-0.033(2)
Pt(2)	0.063 66(7)	0.21547(7)	0.138 82(5)	C(136)	0.467(2)	0.324(2)	0.026(1)
Pt(3)	0.12546(7)	0.129 64(8)	0.256 66(5)	P(5)	0.452 6(5)	-0.084 4(5)	0.289 1(3)
C(3)	0.101(2)	0.056(2)	0.326(1)	C(5(1))	0.541(2)	-0.122(2)	0.220(1)
O(3)	0.090(2)	0.000(2)	0.370(1)	C(512)	0.574(2)	-0.216(2)	0.203(1)
Pt(4)	0.070(2)	0.25234(7)	0.302.24(5)	C(513)	0.639(3)	-0.242(3)	0.147(2)
C(14)	0.162(2)	0.330(2)	0.230(1)	C(514)	0.670(3)	-0.170(3)	0.112(2)
O(14)	0.102(2)	0.350(2)	0.210(1)	C(515)	0.641(3)	-0.077(3)	0.132(2)
Dt(5)	0.335(1)(7)	0.064 21(7)	0.270.02(5)	C(516)	0.575(2)	-0.054(2)	0.184(1)
C(15)	0.335(2)	0.043(2)	0.181(1)	C(521)	0.394(2)	-0.180(2)	0.311(1)
O(15)	0.325(2)	-0.008(1)	0.101(1)	C(522)	0.304(2)	-0.174(2)	0.293(2)
S(45)	0.308 7(5)	0.122.5(5)	0.367.3(3)	C(523)	0.257(3)	-0.245(3)	0.309(2)
O(451)	0.308(1)	$0.122 \ 3(3)$	0.391 5(9)	C(524)	0.302(3)	-0.324(3)	0.349(2)
O(451)	0.376(1)	0.131(1)	0.3713(7)	C(525)	0.396(3)	-0.332(3)	0.369(2)
S(21)	0.2 + + (2) 0.199 $A(5)$	0.229.7(5)	0.714(1)	C(525)	0.550(3)	-0.259(3)	0.357(2)
O(211)	0.199 + (3)	0.2297(3)	0.070 5(5)	C(520)	0.536(2)	-0.099(2)	0.351(1)
O(211)	0.171(1) 0.248(1)	0.324(1) 0.148(1)	0.038 2(8)	C(531)	0.336(2) 0.496(2)	-0.094(2)	0.331(1) 0.415(1)
D(212)	0.240(1)	0.146(1)	0.0582(8)	C(532)	0.559(3)	-0.110(2)	0.413(1)
$\Gamma(2)$	-0.0304(3)	0.203(3)	-0.006(1)	C(534)	0.557(3)	-0.132(3)	0.449(2)
C(221)	-0.023(2)	0.323(2)	-0.000(1)	C(535)	0.001(3)	-0.142(3)	0.389(2)
C(222)	-0.000(2)	0.420(2)	-0.020(1)	C(535)	0.703(3)	-0.123(2)	0.337(2)
C(223)	-0.023(2)	0.408(2)	-0.122(1)	S(23)	-0.0327(5)	0.123(2)	0.2279(3)
C(224)	0.033(2)	0.408(2)	-0.122(1)	O(231)	-0.086(2)	0.119(2)	0.227 (3)
C(225)	0.071(2)	0.304(2)	-0.052(1)	O(231)	-0.085(2)	0.772(2)	0.220(1)
C(220)	0.047(2)	0.202(2)	-0.052(1)	P(4)	0.005(2)	0.361.7(5)	0.201(1)
C(211)	-0.077(2)	0.185(2)	-0.013(1)	C(411)	0.1512(5)	0.301 ((3))	0.348(1)
C(212)	-0.170(2)	0.100(2)	-0.030(2)	C(412)	0.004(2)	0.534(2)	0.348(1)
C(213)	-0.173(3)	0.107(3)	0.009(2)	C(412)	0.036(3)	0.534(2)	0.277(2)
C(215)	-0.107(3)	0.025(3)	0.063(2)	C(413)	-0.064(3)	0.624(3)	0.293(2)
C(215)	-0.077(2)	0.081(2)	0.081(1)	C(415)	-0.107(3)	0.585(3)	0.338(2)
C(231)	-0.171(2)	0.349(2)	0.001(1)	C(416)	-0.039(3)	0.495(3)	0.364(2)
C(232)	-0.267(2)	0.347(2)	0.081(1)	C(431)	0.037(3)	0.406(2)	0.301(2)
C(232)	-0.354(3)	-0.335(2)	0.001(1)	C(432)	0.192(2)	0.484(2)	0.457(2)
C(234)	-0.343(3)	0.497(3)	0.109(2) 0.148(2)	C(432)	0.250(3)	0.516(3)	0.491(2)
C(235)	-0.343(3)	0.497(3)	0.140(2) 0.167(2)	C(434)	0.352(3)	0.510(3)	0.491(2)
C(235)	-0.162(2)	0.400(3)	0.167(2) 0.143(1)	C(435)	0.398(3)	0.384(3)	0.457(2)
P(1)	0 389 6(5)	0.717(2)	0.146(1)	C(436)	0.339(3)	0 353(3)	0.417(2)
	0.503(2)	0.210(2)	0.191(1)	C(421)	0.081(2)	0.309(2)	0.438(1)
C(112)	0.509(2)	0.189(2)	0.158(1)	C(422)	0.085(2)	0.312(2)	0.503(1)
C(112)	0.683(3)	0.156(2)	0.193(2)	C(423)	0.029(3)	0.267(2)	0.548(2)
C(114)	0.674(3)	0.138(3)	0.259(2)	C(424)	-0.035(3)	0.225(3)	0.525(2)
C(115)	0.576(2)	0.163(2)	0.291(1)	C(425)	-0.040(3)	0.220(3)	0.464(2)
C(116)	0.492(2)	0.202(2)	0.254(1)	C(426)	0.013(2)	0.267(2)	0.415(2)
C(121)	0.354(2)	0.202(2)	0.154(1)	C(1)	0.974(4)	0.898(4)	0.256(3)
C(122)	0.394(2)	0.429(2)	0.200(1)	Clún	0.858(1)	0.899(4)	0.230 1(7)
C(123)	0.374(3)	0.529(3)	0.203(2)	Cl(12)	1.066(1)	0.866(1)	0.190 9(8)
C(124)	0.298(3)	0.595(2)	0.166(2)	C(2)	0.765(6)	0.042(6)	0.473(4)
C(125)	0.251(3)	0.559(3)	0.129(2)	CI(21)	0.838(1)	0.049(1)	0.401 1(9)
C(126)	0.278(2)	0.459(2)	0.122(1)	Cl(22)	0.731(2)	0.153(2)	0.508(1)
C(131)	0.444(2)	0.249(2)	0.065(1)	O(100)	0.7041	0.3165	0.3865
C(132)	0.472(2)	0.155(2)	0.044(1)	C(101)	0.6833	0.3802	0.3289
C(133)	0.530(2)	0.135(2)	-0.014(2)	C(102)	0.7106	0.4698	0.3356
C(134)	0.551(3)	0.209(3)	-0.054(2)	C(103)	0.5699	0.4085	0.3189
· · ·				· ·			

solid. This was recrystallised from dichloromethane-hexane to give $[Pt_3(\mu-SO_2)_3(PMe_2Ph)_3]$ as red crystals. Yield 0.12 g (71%) (Found: C, 25.0; H, 2.7. $C_{24}H_{33}O_6P_3Pt_3S_3$ requires C, 24.2; H, 2.8%). I.r. (cm⁻¹): v_{SO}, 1 252m, 1 246m, and 1 071vs. ³¹P-{¹H} N.m.r. in CD₂Cl₂: $\delta(^{31}P)$ 18.0 p.p.m. with ¹J(¹⁹⁵Pt-³¹P) = 3 974, ²J(¹⁹⁵Pt-³¹P) = 388, and ³J(³¹P-³¹P) = 50 Hz.

Reaction of $[Pt_3(\mu-SO_2)_3(PMe_2Ph)_3]$ with CO.— $[Pt_3(\mu-SO_2)_3(PMe_2Ph)_3]$ (0.15 g, 0.13 mmol) was dissolved in toluene (40 cm³) and warmed to 60 °C. CO was bubbled through the mixture for 30 min to give a red solution. Reduction of the volume of the solution followed by addition of hexane and standing gave $[Pt_5(CO)(\mu-CO)_5(PMe_2Ph)_4]$ as a red-brown

microcrystalline solid. Yield 0.08 g (59%) (Found: C, 27.9; H, 2.8. $C_{38}H_{44}O_6P_4Pt_5$ requires C, 26.9; H, 2.6%). I.r. (cm⁻¹): v_{CO} 1 992ms, 1 895w, 1 860ms, 1 798s, and 1 775vs.

Synthesis of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$.— $[Pt_5-(CO)(\mu-CO)_5(PPh_3)_4]$ (0.3 g, 0.14 mmol) was dissolved in toluene (25 cm³) at 60 °C and SO₂ bubbled through for 20 min. Addition of diethyl ether gave an orange solid. This was recrystallised from dichloromethane–diethyl ether to give red microcrystals of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(PPh_3)_4]$. Yield 0.21 g (67%) (Found: C, 39.9; H, 2.6. $C_{75}H_{60}O_9P_4Pt_5S_3$ requires C, 39.1; H, 2.6%). I.r. (cm⁻¹): v_{CO} 2 050ms, 1 940 (sh), and 1 909s; v_{SO}, 1 240mw, 1 087vs, and 1 070vs.

Table 6. Metal-metal bond lengths (Å) in $[Pt_5(CO)_6(PPh_3)_4]$

Pt(1)Pt(2)	2.726(1)	Pt(2)-Pt(3)	2.699(1)
Pt(1) - Pt(3) Pt(1) - Pt(4)	2.804(1) 2.760(1)	Pt(3)-Pt(4) Pt(3)-Pt(5)	2.917(1) 2.919(1)
Pt(1)-Pt(5)	2.737(1)	Pt(4)-Pt(5)	2.683(1)

Table 7. Crystal data, details of data collection, and structure analysis for $[Pt_5(CO)_3(SO_2)_3(PPh_3)_4]$ -2CH₂CH₂CH₀OH)

Formula		C80H72C	l₄O ₁₀ P₄Pt	₅ S ₃
М		2 530.8		
Crystal system		Triclinic		
a/A	13.991(6)		a /°	84.07(2)
b/Å	14.625(5)		β/°	83.34(3)
c/\mathbf{A}	21.285(4)		$\gamma/^{\circ}$	70.76(4)
$U/Å^3$	4 074(3)			
Space group		ΡĪ		
z		2		
$D_c/g \text{ cm}^{-3}$		2.06		
F(000)		2 396		
Linear absorption coel	ficient (cm ⁻¹)	93.4		
Data collection				
Mo- K_{α} radiation, λ/λ	Å	0.710 69		
$\theta_{\min}, \theta_{\max}/^{\circ}$		1.5, 22.5		
Total data		13 323		
Total unique data		10 756		
Observed data $[F^2]$	$\geq 3\sigma(F^2)$]	7 033		
Merging R		0.0386		
Refinement		Large blo	ock-matrix	least squares
No. of parameters		487		•
Weighting scheme, (Chebyshev			
coefficients	2	30.09, 37.	32, 10.19	
Final $R = \Sigma \Delta F / \Sigma F$.		0.0594		
$R' = [\Sigma w \Delta F^2 / \Sigma]$	[wF ₀ ²]	0.0791		

Synthesis of $[Pt_5(CO)(\mu-CO)_5(AsPh_3)_4]$ and its Reaction with SO₂ to give $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(AsPh_3)_4]$.—Red crystals of $[Pt_5(CO)(\mu-CO)_5(AsPh_3)_4]$ were obtained following the method reported by Chatt and Chini²³ for [Pt₄(CO)₅- $(AsPh_3)_4$] as follows. A solution of $K_2[PtCl_4]$ (1.03 g, 2.5 mmol) in water (5 cm³) was added to a solution of AsPh₃ (1.53 g, 5 mmol) in warm ethanol (50 cm³). The mixture was warmed on a water-bath for 1 h giving a white precipitate. Hydrazine hydrate (1 cm³) was added. The suspension was boiled for 10 min giving a clear yellow solution which was filtered whilst hot. The filtrate was saturated with CO. Potassium hydroxide (1 g) in water (5 cm³) was added after which a red-brown solid was obtained. The mixture was warmed at 50-60 °C under CO for 30 min, boiled for a short time and filtered whilst hot. The resulting redbrown residue was dissolved in benzene (20 cm³) and methanol (15 cm³) added. On standing, red crystals of [Pt₅(CO)(µ- $CO_{5}(AsPh_{3})_{4}]$ - $C_{6}H_{6}$ were precipitated. Yield 0.35 g (29%) (Found: C, 41.4; H, 2.5. $C_{84}H_{66}As_{4}O_{6}Pt_{5}$ requires C, 41.2; H, 2.7%). I.r. (Nujol mull) (cm⁻¹): v_{CO} 2008vs, 1 905w, 1 867s, 1 802vs, and 1 792vs.

A sample of $[Pt_5(CO)(\mu-CO)_5(AsPh_3)_4]$ -C₆H₆ (0.2 g, 0.08 mmol) was dissolved in toluene (20 cm³) and warmed to 60 °C. SO₂ was bubbled through the solution for 20 min during which time it became a lighter red colour. Addition of hexane yielded an orange solid which was recrystallised from benzene-methanol to give orange-red crystals of $[Pt_5(CO)(\mu-CO)_2(\mu-SO_2)_3(AsPh_3)_4]$. Yield 0.15 g (74%) (Found: C, 36.5; H, 2.6. $C_{75}H_{60}As_4O_9Pt_5S_3$ requires C, 36.4; H, 2.4%). I.r. (cm⁻¹): v_{CO} 2 058s, 1 940 (sh), and 1 908s; v_{SO2} 1 241ms, 1 078vs, and 1 072vs.

Single-crystal X-Ray Crystallographic Structural Determination of [Pt₅(CO)₃(SO₂)₃(PPh₃)₄]·2CH₂Cl₂·Me₂CH(OH).---

Crystals of $[Pt_5(CO)_3(SO_2)_3(PPh_3)_4]$ suitable for X-ray analysis were grown by the slow diffusion of diethyl ether into a dichloromethane-propan-2-ol solution of the platinum complex and a suitable crystal sealed in a 0.5-mm Lindemann capillary. Unit-cell parameters were initially determined from oscillation and Weissenberg photographs and later refined using 25 highangle reflections automatically centred on an Enraf-Nonius CAD4 diffractometer. The crystal data and details of the structure refinement are summarised in Table 7. Intensity data were recorded on the CAD4 diffractometer using graphitemonochromated Mo- K_{α} radiation and an ω -2 θ scan technique. During data collection the crystal showed no sign of decomposition. The data were corrected for Lorentz and polarisation effects and for absorption. The structure was solved via Patterson and electron density maps, refined by large blocked-matrix least-squares techniques, anisotropic thermal parameters being assigned to the non-carbon atoms. Hydrogen atoms were not refined, but positioned in idealised positions (C-H = 1.00 Å). The final cycle of refinement led to a conventional R factor of 0.059. In the structure factor calculations, neutral scattering factors were taken from ref. 25 and corrected for anomalous dispersion using Δf and $\Delta f''$ values from ref. 26. All the calculations were performed on the Oxford University ICL 2980 Computer using the CRYSTALS²⁷ suite of programs.

Acknowledgements

We thank the S.E.R.C. for financial support and Johnson Matthey for a generous loan of platinum metal salts.

References

- 1 D. M. P. Mingos, Transition Met. Chem., 1978, 3, 1.
- 2 R. R. Ryan, G. J. Kubas, D. C. Moody, and P. G. Eller, Struct. Bonding (Berlin), 1981, 46, 47.
- 3 C. E. Briant, B. R. C. Theobald, and D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1981, 963.
- 4 Y. Tatsuno, M. Miki, T. Aoki, M. Matsumoto, H. Yoshioka, and K. Nakatsu, J. Chem. Soc., Chem. Commun., 1973, 445.
- 5 D. C. Moody and R. R. Ryan, Inorg. Chem., 1977, 16, 1052.
- 6 M. F. Hallam, N. D. Howells, D. M. P. Mingos, and R. W. M. Wardle, J. Chem. Soc., Dalton Trans., 1985, 845.
- 7 D. G. Evans, G. R. Hughes, D. M. P. Mingos, J-M. Bassett, and A. J. Welch, J. Chem. Soc., Chem. Commun., 1980, 1255.
- 8 C. E. Briant, D. G. Evans, and D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1982, 1144.
- 9 J. M. Ritchey and D. C. Moody, Inorg. Chim. Acta, 1983, 74, 271.
- 10 B. E. R. Schilling, R. Hoffman, and D. L. Lichtenberger, J. Am. Chem. Soc., 1979, 101, 585.
- 11 D. J. Underwood, R. Hoffmann, K. Tatsumi, A. Nakamura, and Y. Yamamoto, J. Am. Chem. Soc., 1985, 107, 5968.
- 12 A. B. Goel and S. Goel, Inorg. Chim. Acta, 1982, 65, L77.
- 13 D. G. Evans, M. F. Hallam, D. M. P. Mingos, and R. W. M. Wardle, Inorg. Chim. Acta, submitted.
- 14 Y. Koie, S. Shinoda, and Y. Saito, Inorg. Nucl. Chem. Lett., 1981, 17, 147.
- 15 A. Dedieu and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 2074.
- 16 D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1982, 240, 321.
- 17 M. Green, R. M. Mills, G. N. Pain, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1309.
- 18 J. P. Barbier, R. Bender, P. Braunstein, J. Fischer, and L. Ricard, J. Chem. Res., 1978, (S) 230, (M) 2913.
- 19 R. Bender, P. Braunstein, J. Fischer, A. Ricard, and A. Mitschler, Nouv. J. Chim., 1981, 5, 81.
- 20 R. Bender and P. Braunstein, J. Chem. Soc., Chem. Commun., 1983, 334.
- 21 A. Moor, P. S. Pregosin, L. M. Venanzi, and A. J. Welch, *Inorg. Chim.* Acta, 1984, **85**, 103.
- 22 D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1983, 251, C13.

- 23 J. Chatt and P. Chini, J. Chem. Soc. A, 1970, 1538.
- 24 R. G. Goel, W. O. Ognini, and R. C. Srivasta, Inorg. Chem., 1982, 21, 1627.
 25 D. T. Cromer and J. Waber, 'International Tables for X-Ray
- Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
- 26 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 1968.

Received 17th July 1985; Paper 5/1216