Second-sphere Co-ordination of Cationic Rhodium Complexes [Rh(L)($\left.\left.\mathrm{NH}_{3}\right)_{2}\right]^{+}$ by Dibenzo-3n-crown-n Ethers [$n=6-12 ;$ L = cyclo-octa-1,5-diene (cod) or norbornadiene (nbd)]. Solution 'H Nuclear Magnetic Resonance Spectroscopic Studies and X-Ray Crystal Structures of [Rh(cod) $\left.\left(\mathrm{NH}_{3}\right)_{2} \cdot d b-21-c-7\right]\left[\mathrm{PF}_{6}\right]$, $\left[R h(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot d b-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$, $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]\left[\mathrm{PF}_{6}\right]$. $\left[\mathbf{R h}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$, and $\left[\left\{\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot d b-36-\mathrm{c}-12\right]\left[\mathrm{PF}_{6}\right]_{2}{ }^{*}$

Howard M. Colquhoun
New Science Group, Imperial Chemical Industries PLC, The Heath, Runcorn WA7 4QE Simon M. Doughty and J. Fraser Stoddart
Department of Chemistry, The University, Sheffield S3 7HF
Alexandra M. Z. Slawin and David J. Williams
Department of Chemistry, Imperial College, London SW7 2AY

Abstract

Cationic rhodium (।) complexes of the form [Rh(L) $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right][\mathrm{L}=$ cyclo-octa-1,5-diene (cod) or norbornadiene (nbd)] are solubilised in halocarbon solvents by the addition of equimolar quantities of crown ethers such as 18-crown-6 (18-c-6) or dibenzo-3n-crown-n ($n=6-12$) ethers ($\mathrm{db}-3 n-\mathrm{c}-n$). Solubilisation is a result of the formation of stable, highly structured, secondsphere co-ordination complexes in which a macrocyclic polyether interacts with the ammine ligands on rhodium via multiple hydrogen-bond formation. ${ }^{1} \mathrm{H}$ N.m.r. spectroscopic investigations in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ show that the resonances of protons associated with the diene ligands (L) undergo significant upfield shifts ($\Delta \delta$ values of up to 0.75 p.p.m.) when certain of the db-3n-c-n ethers ($n=7-10$) are used in preference to 18-c-6, suggesting that the dienes are experiencing anisotropic ring-current shielding by the crown ether benzo rings. The close proximity of coordinated diene and $\mathrm{db}-3 n-\mathrm{c}-n$ ether aromatic rings, which this shielding requires, is confirmed by single-crystal X-ray studies of the isolated $1: 1$ adducts. [$\left.\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot d b-21-\mathrm{c}-7\right]\left[\mathrm{PF}_{6}\right]$ is monoclinic, space group $P 2_{1} / c, a=9.121(1), b=23.405(2), c=16.705(3) \AA, \beta=96.30(1)^{\circ}$, $Z=4, R=0.047$. $\left.\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$ is monoclinic, $P 2_{1} / c, a=9.195(3)$, $b=29.380(9), c=13.900(6) \AA, \beta=93.04(3)^{\circ}, Z=4, R=0.043$. $\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-$ 10] $\left[P F_{6}\right]$ is monoclinic, $P 2, / c, a=9.268(2), b=34.335(7), c=13.421(3) A, \beta=93.92(2)^{\circ}$, $Z=4, R=0.034$. $\left.\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$ is orthorhombic, $P b c a, a=15.427(3)$, $b=18.739(3), c=25.458(5) \AA, Z=8, R=0.047$. In all these supramolecular structures the crown ether adopts a V-shaped conformation with the ammine ligands forming hydrogen bonds to ether oxygens and with the co-ordinated diene sandwiched between the benzo rings of the $\mathrm{db}-3 n-\mathrm{c}-n$ ethers. In addition to electrostatic stabilisation, there are also a large number of other longer range contacts (C...H, Rh…C, Rh…O) at about van der Waals' distances which probably make a small contribution to the binding energy and possibly help to define the structures of the adducts. In contrast to the 1:1 adducts, the 2:1 adduct, $\left[\left\{\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot d b-36-\mathrm{c}-12\right]\left[\mathrm{PF}_{6}\right]_{2}[$ triclinic, $P \overline{1}, a=9.020(2), b=12.241(3), c=14.196(3) \AA, \alpha=100.20(2), \beta=99.00(2), \gamma=98.11(2)^{\circ}$, $Z=1, R=0.040]$ has a relatively flat structure in which a complex ion is hydrogen bonded to each face of the crown ether.

Macrocyclic polyethers (crown ethers) are known to afford crystalline adducts with a variety of transition metal complexes as a result of multiple hydrogen bond formation from protic

[^0]ligands such as ammonia, ${ }^{1}$ ethylenediamine, ${ }^{1.2}$ acetonitrile, ${ }^{3}$ and water ${ }^{4}$ to crown ether oxygen atoms as evidenced by X-ray crystallographic studies in the solid state and by i.r. and n.m.r. spectroscopy in solution. In some cases, the adducts derive additional stability from other non-covalent interactions, including aromatic $\pi-\pi$ charge transfer between electron-rich and electron-deficient π-systems present ${ }^{5}$ in crown and complex, respectively.

The formation of a highly structured stable 'supercomplex' or adduct, which is dependent for its existence not only on strong covalent or ionic bonds, but also on the additive effect of a large number of weak interactions between ligands in the first and second co-ordination spheres of a metal, provides a potentially valuable tool for the investigation of non-covalent bonding in general. There seems no reason why the whole range of secondary bonding forces, including polarisation and dispersion forces, should not be as important in second-sphere co-ordination ${ }^{6}$ as they are, for example, in solvation and crystal packing.

We now describe an extensive study of the interactions between a range of dibenzo- $3 n$-crown- n ethers ${ }^{7}$ where $n=6$ 12* and the novel rhodium(1) ammines $\left[\mathrm{Rh}(\mathrm{L})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}[\mathrm{L}=$ cyclo-octa-1,5-diene (cod) or norbornadiene (nbd)]. It was anticipated that the [$\mathrm{N}-\mathrm{H} \cdot \mathrm{O}$] hydrogen bonding might not by itself provide the main driving force for adduct formation, but that the allylic methine hydrogen atoms and electrondeficient co-ordinated double bonds of the dienes might provide additional sites for weak non-covalent binding to the macrocyclic ligands. Part of this investigation and developments from it have already been communicated in preliminary forms. ${ }^{8.9}$

Results and Discussion

The rhodium(I) ammines were prepared by dissolving the corresponding chloride-bridged dimers, ${ }^{10}\left[\{\mathrm{Rh}(\mathrm{L}) \mathrm{Cl}\}_{2}\right]$ in a slight excess of dilute aqueous ammonia, followed by precipitation of the crystalline hexafluorophosphate salts, $\left[\mathrm{Rh}(\mathrm{L})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$. The pale yellow complexes were insoluble in hydrocarbon and halocarbon solvents. However, on additon of an equimolar amount of crown ether [18-crown-6 or one of the $\mathrm{db}-3 n-\mathrm{c}-n$ ethers $(n=6-12)$], they dissolved readily in dichloromethane. The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the complexes in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions, containing equimolar amounts of the db-3n-c-n ethers, particularly $\mathrm{db}-21-\mathrm{c}-7$ and $\mathrm{db}-24-\mathrm{c}-8$, revealed marked upfield shifts ($\Delta \delta$ of up to 0.75 p.p.m.) of resonances associated with the diene ligands, relative to their chemical shifts when 1 mol equiv. of 18 -crown- 6 was used as the solubilising agent. These data (δ and $\Delta \delta$), which are listed in Tables 1 and 2 for $\left[R h(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot d b-3 n-\mathrm{c}-n\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-3 n-\mathrm{c}-n\right]\left[\mathrm{PF}_{6}\right]$ respectively, strongly suggest that $1: 1$ adduct formation in solution results in the diene ligands being positioned within the aromatic ring-current shielding zone of one or both of the catechol-derived units of the $\mathrm{db}-3 n-\mathrm{c}-n$ ethers. This is known to be the case for the $2,2^{\prime}$ bipyridyl ligand (bipy) of $\left[\mathrm{Pt}(\text { bipy })\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$ in its $1: 1$ crystalline adducts ${ }^{5}$ with db-24-c-8 and db-30-c-10, and also for the bipyridinium portion of diquat ${ }^{2+}$ in its $1: 1$ crystalline complexes with $\mathrm{db}-30-\mathrm{c}-10^{7}$ and derivatives. ${ }^{11}$ In agreement with this proposal, the resonances arising from the equatorial methylene protons $\left(\mathrm{H}_{\mathrm{e}}\right)$ of the cyclo-octadiene ligand and the bridging methine protons $\left(\mathrm{H}_{\mathrm{b}}\right)$ of the norbornadiene ligand are shifted to a rather greater extent than are the resonances for the

[^1]
other ligand protons. This observation can be anticipated if the aromatic rings of the $\mathrm{db}-3 n-\mathrm{c}-n$ ethers are assumed to approach these ligands face-on along the sterically unhindered z axis of the complexes as shown in Figure 1, i.e. perpendicular to the co-ordination plane of the metal.

Further evidence of a close association between the aromatic systems of the $\mathrm{db}-3 n-\mathrm{c}-n$ ethers and the cyclo-octadiene ligand was provided by a series of double-resonance experiments with $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$ in which positive throughspace nuclear Overhauser effects (n.O.e.) were observed (Figure 2) for $H_{c}(\delta 1.62)$ and $H_{0}(\delta 3.54)$ though not for $H_{a}(\delta 1.41)$ on irradiation at the aromatic proton frequency ($\delta 7.03$). Corresponding n.O.e. enhancement of the aromatic signal intensity was observed on irradiation at the H_{c} and H_{o} frequencies, but, as anticipated, not on irradiation of the H_{a} frequency.

As indicated by inspection of Figure 3, the upfield shifts of cod and nbd proton signals on adduct formation attain a maximum with $\mathrm{db}-24-\mathrm{c}-8$ as do the modest downfield shifts observed for the aromatic protons of the $\mathrm{db}-3 n-\mathrm{c}-n$ ethers. Thus, it would appear that $\mathrm{db}-24-\mathrm{c}-8$ permits the closest possible approach, with this type of receptor, of the arene and diene moieties. We therefore attempted to obtain crystalline 1:1 adducts of $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ with $\mathrm{db}-24-\mathrm{c}-8$ for full crystallographic characterisation of the solidstate structure. Suitable crystals were obtained from solutions containing equimolar amounts of the complexes and $\mathrm{db}-24-\mathrm{c}-8$ in dichloroethane by addition of diethyl ether. They were found, by elemental analysis and ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy (Tables 1 and 2), to have the anticipated $1: 1$ stoicheiometry. I.r. spectra of the solid adducts showed marked shifts to lower frequencies of bands in the $v(\mathrm{~N}-\mathrm{H})$ region compared with the values observed for the free ammines. This observation is consistent ${ }^{12}$ with hydrogen bond formation between the co-ordinated ammonia ligands and oxygen atoms in the $\mathrm{db}-3 n-\mathrm{c}-n$ ethers.

The solid-state structures of the cationic adducts, $[\mathrm{Rh}(\mathrm{cod})-$ $\left.\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]^{+}$and $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]^{+}$, are shown respectively in Figures 4 and 5 as framework diagrams, with the corresponding space-filling representations portrayed in Figure 6. Selected adduct contact distances and relevant hydrogen contact distances and angles in order of increasing N... O distances are listed in Tables 3 and 4. Torsional angles are shown with the relevant bonds in Figures 4 and 5. The conformation of the $\mathrm{db}-24-\mathrm{c}-8$ receptor is very different from that adopted by the free macrocycle where a relatively extended conformation is found. ${ }^{13}$ It also differs from those observed in

Figure 1. The cyclo-octa-1,5-diene (cod) and norbornadiene (nbd) ligands with respect to a Cartesian frame of reference

Figure 2. The results of n.O.e. experiments carried out on the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2} . \mathrm{The}^{2 r r o w s}$ indicate the signals that were irradiated in four separate experiments, $(a)-(d)$. A large positive sign indicates a large signal intensity enhancement; a small positive sign indicates a small signal intensity enhancement; a zero indicates no noticeable change in signal intensity
the alkali-metal ion complexes $2 \mathrm{KSCN} \cdot \mathrm{db}-24-\mathrm{c}-8^{14}$ and $2 \mathrm{Na}-$ $\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-o\right) \cdot \mathrm{db}-24-\mathrm{c}-8,{ }^{15}$ and in the Ba^{2+} complexes, $\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8 \quad\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}=\text { picrate }\right)^{16} \quad$ and $\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8,{ }^{17}$ where extended, ${ }^{*}$ and occasionally slightly twisted, conformations are observed rather than the V-shaped conformations adopted by $\mathrm{db}-24-\mathrm{c}-8$ in $[\mathrm{Rh}(\mathrm{cod})-$ $\left.\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]-$ $\left[\mathrm{PF}_{6}\right]$. This conformation was also observed ${ }^{5}$ in the $1: 1$ adduct $\left[\mathrm{Pt}(\right.$ bipy $\left.)\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]_{2}$, although, in this last case, there are some differences of detail as a consequence of $\pi-\pi$ charge-transfer interactions between the bipyridyl ligand and one of the benzo rings of the dibenzo-crown ether. Nevertheless, it now seems probable that a transition-metal complex containing two cis ammine ligands will normally induce in db-24-c-8 a

* It has been shown recently (H. M. Colquhoun, S. M. Doughty, J. F Stoddart, A. M. Z. Slawin, and D. J. Williams, J. Chem. Soc., Perkin Trans. 2, 1986, 253) by X-ray crystallography that db-24-c-8 adopts an extended conformation in the $2: 1$ crystalline complex formed between picric acid and db-24-c-8.

V-shaped conformation on binding. However, there are slight differences between the two adducts. The receptor adopts a more open V-shape in the adduct with $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$than it does in the corresponding adduct with $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$. This presumably is a result of the greater steric requirement of the cyclo-octadiene ligand. This point is highlighted in the spacefilling representations of these superstructures as shown in Figure 6. It is also reflected in the differences in torsional angles about $\mathrm{C}(8)-\mathrm{C}(9), \mathrm{C}(9)-\mathrm{O}(10), \mathrm{O}(10)-\mathrm{C}(11), \mathrm{C}(12)-\mathrm{O}(13)$, and $\mathrm{O}(19)-\mathrm{C}(20)$ (cf. Figures 4 and 5). There is a notable departure from their customary coplanarity ${ }^{18}$ with their associated benzo rings of one of the four phenolic oxymethylene units. The $\mathrm{C}(9)-\mathrm{O}(10)$ bond is twisted out of plane in both structures and clearly facilitates the formation of a hydrogen bond to one of the cis ammine ligands with an approximately trigonal approach to the oxygen atom. The pattern of hydrogen bonding in both $1: 1$ adducts is essentially the same. As in the platinum adduct, ${ }^{5}$ $\left[\mathrm{Pt}(\text { bipy })\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]^{2+}$, one ammine ligand is bound within the macrocycle while the other is oriented over one edge and lies slightly outside the macrocycle. Hydrogen bond

Figure 3. The partial ${ }^{1} \mathrm{H}$ n.m.r. line spectra for the complexes $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-3 n-\mathrm{c}-n\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-3 n-\mathrm{c}-n\right]\left[\mathrm{PF}_{6}\right]$. The ligand protons are designated in Figures 1 and 6 and the signals (singlets) for the benzo protons refer to $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-3 n-\mathrm{c}-n\right]\left[\mathrm{PF}_{6}\right]$ only

Table 1. Selected ${ }^{1} \mathrm{H}$ n.m.r. chemical shifts $(\delta)^{a}$ for the $1: 1$ adducts $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-3 n-\mathrm{c}-n\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Crown	$\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$				$\mathrm{db}-3 n-\mathrm{c}-n^{\text {b }}$	
	$\mathrm{H}_{\text {o }}$	$\mathrm{H}_{\text {c }}$	Ha_{3}	$\left(\mathrm{NH}_{3}\right)_{2}$	$\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$	$\mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OCH} 2$
18-crown-6	4.06	2.39	1.86	2.39		
db -18-c-6	3.70	2.13	1.68	2.21	6.97	4.19
	(-0.36)	(-0.26)	(-0.18)		$(+0.09)$	$(+0.05)$
$\mathrm{db}-21-\mathrm{c}-7$	3.55	1.64	1.41	2.29	7.04	4.31, 4.19
	(-0.51)	(-0.75)	(-0.45)		$(+0.14)$	$(+0.16,+0.04)$
db-24-c-8	3.54	1.62	1.38	2.22	7.02	4.25
	(-0.52)	(-0.77)	(-0.48)		$(+0.14)$	$(+0.12)$
db-27-c-9	3.73	2.06	1.62	2.35	6.98	4.27
	(-0.33)	(-0.33)	(-0.24)		$(+0.11)$	$(+0.13)$
db-30-c-10	3.80	2.10	1.66	2.38	6.96	4.23
	(-0.26)	(-0.29)	(-0.20)		$(+0.08)$	$(+0.11)$
db-33-c-11	3.86	2.13	1.67	2.36	6.94	4.20
	(-0.20)	(-0.26)	(-0.19)		$(+0.05)$	$(+0.06)$
db-36-c-12	3.88	2.14	1.67	2.33	6.95	4.19
	(-0.18)	(-0.25)	(-0.19)		$(+0.05)$	$(+0.07)$
db-36-c-12 ${ }^{\text {c }}$	3.91 (-0.14)	$\begin{gathered} 2.27 \\ (-0.15) \end{gathered}$	$\begin{gathered} 1.75 \\ (-0.11) \end{gathered}$	2.10	$\begin{array}{r} 6.96 \\ (+0.06) \end{array}$	$\begin{array}{r} 4.18 \\ (+0.06) \end{array}$
	(-0.14)	(-0.15)	(-0.11)		$(+0.06)$	$(+0.06)$

[^2]distances are comparable with those reported ${ }^{1}$ for other metal-ammine-crown ether adducts. We have chosen, somewhat arbitrarily, to define the criteria for hydrogen bonds ${ }^{12}$ as $[\mathrm{N} \cdots \mathrm{O}]<3.4 \AA$, $[\mathrm{H} \cdots \mathrm{O}]<2.5 \AA$, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}>$ 140°. On this basis, each adduct contains only four well-defined hydrogen bonds (Tables 3 and 4 and Figures 4 and 5). The formally square planar Rh^{1} ion is potentially capable of interacting with donor atoms, particularly along the sterically
unhindered z axis (Figure 1). In fact, there are several contacts in this direction at about the van der Waals distance [estimating the van der Waals' radius of $R h^{\mathrm{I}}$ to be $2.2 \AA$ and assuming those of O and aromatic C to be 1.4 and $1.7 \AA$, respectively] between the aromatic $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ units and the rhodium atoms. In $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]^{+}$, there are $\mathrm{Rh} \ldots \mathrm{C}$ contacts of $3.87,3.87,4.06$, and $4.12 \AA$ (cf. $3.9 \AA$ for the calculated sum of van der Waals' radii of Rh and C) and $\mathrm{Rh} \cdots \mathrm{O}$ distances of

Table 2. Selected ${ }^{1} \mathrm{H}$ n.m.r. chemical shifts $(\delta)^{a}$ for the $1: 1$ adducts $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-3 n-\mathrm{c}-n\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Crown	$\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$					
	H_{0}	H_{b}	CH_{2}	$\left(\mathrm{NH}_{3}\right)_{2}$	$\overparen{\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}}$	$\mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}$
18-Crown-6	4.04	3.87	1.29	2.17		
db-18-c-6	3.67	3.67	1.13	1.93	6.94	4.17
	(-0.37)	(-0.20)	(-0.16)		$(+0.06)$	$(+0.03)$
db-21-c-7	3.47	3.28	0.97	2.09	6.95	4.18
	(-0.57)	(-0.59)	(-0.33)		$(+0.05)$	$(+0.03)$
db-24-c-8	3.32	3.12	0.90	1.88	7.08	4.22
	(-0.72)	(-0.75)	(-0.39)		$(+0.20)$	$(+0.09)$
db-27-c-9	3.57	3.44	1.02	2.10	7.01	4.32, 4.26
	(-0.47)	(-0.43)	(-0.27)		(+ 0.14)	$(+0.18,+0.12)$
db-30-c-10	3.70	3.54	1.08	2.11	6.97	4.23
	(-0.34)	(-0.33)	(-0.21)		$(+0.09)$	$(+0.11)$
db-33-c-11	3.72	3.60	1.10	2.17	6.95	4.20
	(-0.32)	(-0.27)	(-0.19)		$(+0.06)$	$(+0.06)$
db-36-c-12	3.75	3.62	1.10	2.16	6.96	4.21
	(-0.29)	(-0.25)	(-0.19)		$(+0.06)$	$(+0.09)$

${ }^{a}$ Unless otherwise stated, the spectra were recorded at room temperature on a $220-\mathrm{MHz}$ spectrometer (Perkin-Elmer R34) using SiMe ${ }_{4}$ as internal standard and lock. Some of the δ values in this Table are plotted against n in Figure 3. The values ($\Delta \delta$) in parentheses indicate the extent to which the respective signals in the $1: 1$ adducts are shifted relative either to those for $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot 18 \text {-crown-6][PF}\right]_{6}$] or to those for the free db-3n-c-n ethers. The protons of $\mathrm{H}_{\mathrm{o}}, \mathrm{H}_{\mathrm{b}}$, and CH_{2} in the nbd ligand are defined in Figure $1 .{ }^{b}$ See refs. 5 and 11 for the δ values for these protons in the free db- $3 n-\mathrm{c}-n$ ethers.

Figure 4. The supramolecular structure of $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right.$. $\mathrm{db}-24-\mathrm{c}-8]^{+}$with atomic numbering scheme and torsional angles (${ }^{\circ}$) ($\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$) associated with the 24 -membered ring. Shortest Rh...O(catechol) distances (\AA): $O(1)$, 3.65; $O(10)$, 3.59. Distance between centroids of benzo rings: $9.00 \AA$. 'Cleft angle' between planes of benzo rings: 70°. No significant $\mathrm{N}-\mathrm{H} \cdot \mathrm{F} \cdot \mathrm{F}$ contacts
$3.59,3.65,4.01$, and $4.07 \AA$ (cf. $3.6 \AA$ for the calculated sum of van der Waals radii of Rh and O). The corresponding norbornadiene complex adduct, $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]^{+}$, shows $\mathrm{Rh} \cdots \mathrm{C}$ contacts of $3.68,3.86,3.86$, and $4.06 \AA$ and $\mathrm{Rh} \cdots \mathrm{O}$ distances of $3.50,3.74,3.78$, and $4.08 \AA$.

Two additional adducts, $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]\left[\mathrm{PF}_{6}\right]$, with supramolecular structures closely related to that of $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]-$ [PF_{6}], have been characterised both spectroscopically (Table 1) and crystallographically. Crystals suitable for X-ray investigation were obtained from solutions containing equimolar amounts of either $\mathrm{db}-21-\mathrm{c}-7$ or $\mathrm{db}-30-\mathrm{c}-10$ and [Rh(cod)$\left.\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ in 1,2-dichloroethane by addition of diethyl ether. Both $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]^{+}$and $[\mathrm{Rh}(\operatorname{cod})-$ $\left.\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]^{+}$adopt supramolecular structures very similar to those already described for the db-24-c-8 adducts, i.e. with the metal complex bound in a V-shaped cavity, the cis

Figure 5. The supramolecular structure of $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2}\right.$. $\mathrm{db}-24-\mathrm{c}-8]^{+}$with atomic numbering scheme and torsional angles (${ }^{(}$) ($\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$) associated with the 24 -membered ring. Shortest $\mathrm{Rh} \cdots \mathrm{O}$ (catechol) distances (\AA): $\mathrm{O}(1), 3.74 ; \mathrm{O}(10), 3.50$. Distance between centroids of benzo rings: $8.66 \AA$. 'Cleft angle' between planes of benzo rings: 59°. No significant $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ contacts
ammine ligands straddling one of the polyether chains, and the $R h(c o d)$ fragment sandwiched between the two aromatic rings of the receptor molecules. Their structures are shown in Figures 7 and 8 and hydrogen-bond distances and angles and selected $\mathrm{N} \cdot . . \mathrm{O}$ contact distances are given in Tables 5 and 6. Torsional angles are shown with the relevant bonds in Figures 7 and 8 Figure 7 shows the first X-ray crystal structure of an adduct with a transition-metal complex containing a constitutionally unsymmetrical dibenzo-crown ether receptor. The conformation of the bound $\mathrm{db}-30-\mathrm{c}-10$ in $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]^{+}$ in Figure 8 is very different from the extended conformation adopted by this receptor in its free state. ${ }^{19}$ It also differs markedly from the contorted conformations assumed by the receptor in crystalline $\mathrm{KI} \cdot \mathrm{db}-30-\mathrm{c}-10,{ }^{19} \mathrm{RbSCN} \cdot \mathrm{db}-30-\mathrm{c}-$ $10 \cdot \mathrm{H}_{2} \mathrm{O},{ }^{20}$ and $2 \mathrm{NaSCN} \cdot \mathrm{db}-30-\mathrm{c}-10 \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{21}$ On account of stabilising charge-transfer interactions with [Pt(bipy)$\left.\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$ and diquat ${ }^{2+}$, db-30-c-10 adopts a U-shaped

Table 3. Selected adduct contact distances and relevant hydrogen contact distances and angles in order of increasing $\mathrm{N} \ldots \mathrm{O}$ distance for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$

$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$	$R(\mathrm{~N} \cdots \mathrm{O})^{a} / R(\mathrm{H} \cdots \mathrm{O})^{b} /$				
$\mathrm{or} \mathrm{N} \cdots \mathrm{O}$	\AA	\AA	$\theta^{c} /{ }^{\circ}$	$\varphi_{\mathrm{H}}{ }^{d} /{ }^{\circ}$	$\varphi_{\mathrm{N}}{ }^{e} /{ }^{\circ}$
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{a}} \cdots \mathrm{O}(4)$	3.03	2.16	150	20	18
$\mathrm{~N}(1)-\mathrm{H}_{\mathrm{b}} \cdots \mathrm{O}(10)$	3.13	2.31	143	11	3
$\mathrm{~N}(1) \cdots \mathrm{O}(7)$	3.19				
$\mathrm{~N}(2) \cdots \mathrm{O}(19)$	3.20				
$\mathrm{~N}(2)-\mathrm{H}_{\mathrm{a}} \cdots \mathrm{O}(22)$	3.21	2.43	138	21	33
$\mathrm{~N}(2)-\mathrm{H}_{\mathrm{b}} \cdots \mathrm{O}(16)$	3.34	2.42	161	40	45
$\mathrm{~N}(2) \cdots \mathrm{O}(1)$	3.41				
$\mathrm{~N}(2) \cdots \mathrm{O}(10)$	3.43				
$\mathrm{~N}(1) \cdots \mathrm{O}(1)$	3.45				
$\mathrm{~N}(2) \cdots \mathrm{O}(7)$	3.46				
$\mathrm{~N}(2) \cdots \mathrm{O}(13)$	3.50				

${ }^{a}$ Estimated standard deviation (e.s.d.) $0.02 \AA .{ }^{b}$ E.s.d. $0.2 \AA .{ }^{c} \mathrm{~N}-\mathrm{H} \cdot \mathrm{O}$ angles at H atoms; e.s.d. 5°. ${ }^{d}$ Angles between COC planes and HO vectors; e.s.d. 5° Angles between COC planes and NO vectors; e.s.d. 1°.

Table 4. Selected adduct contact distances and relevant hydrogen contact distances and angles in order of increasing $\mathrm{N} \ldots \mathrm{O}$ distance for $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$

$\begin{aligned} & \mathrm{N}-\mathrm{H} \cdots \mathrm{O} \\ & \text { or } \mathrm{N} \cdots \mathrm{O} \end{aligned}$	$R_{\AA}^{(N)}$	\AA	$\theta^{c} /{ }^{\text {c }}$	$\varphi_{H}{ }^{\text {d }}$	$\varphi_{\mathrm{N}}{ }^{2 /}$
$\mathrm{N}(2)-\mathrm{H}_{\mathrm{b}} \cdots \mathrm{O}(10)$	2.95	2.07	152	8	16
$\mathrm{N}(2)-\mathrm{H}_{\mathrm{c}} \cdots \mathrm{O}(4)$	3.01	2.07	166	12	7
$\mathrm{N}(2) \cdots \mathrm{O}(7)$	3.23				
$\mathrm{N}(1) \cdot \ldots \mathrm{O}(19)$	3.24				
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{a}} \cdots \mathrm{O}(16)$	3.27	2.35	171	43	45
$\mathrm{N}(1) \cdot \mathrm{O}$ (13)	3.30				
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{b}} \cdots \mathrm{O}(22)$	3.38	2.45	164	40	44
$\mathrm{N}(1) \cdots \mathrm{O}(7)$	3.41				
$\mathrm{N}(1) \cdots \mathrm{O}(1)$	3.46				
${ }^{a-e}$ See footnotes to Table 3.					

Figure 7. The supramolecular structure of $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right.$. $\mathrm{db}-21-\mathrm{c}-7]^{+}$with atomic numbering scheme and torsional angles (${ }^{\circ}$) ($\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$) associated with the $21-$ membered ring. Shortest Rh... O(catechol) distances $(\AA): O(1), 3.87 ; O(10), 3.80$. Distance between centroids of benzo rings: $8.78 \AA$. 'Cleft angle' between planes of benzo rings: $82^{\prime \prime}$. There is one $\mathrm{N}-\mathrm{H} \cdot \mathrm{F}$ F contact of $3.16 \AA$ between $\mathrm{N}(2)-\mathrm{H}_{\mathrm{b}}$ and $\mathrm{F}(2)$ with an $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ angle of 164°
conformation ${ }^{5.7}$ in fulfilling its receptor properties in $\left[\mathrm{Pt}(\text { bipy })\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10 \cdot 0.6 \mathrm{H}_{2} \mathrm{O}\right]^{2+}$ and [diquat $\cdot \mathrm{db}-30-\mathrm{c}-$ $10]^{2+}$, respectively.

In both $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]^{+}$and $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot\right.$ db-30-c-10] ${ }^{+}$, the customary coplanarity ${ }^{18}$ of the phenolic oxymethylene units with their associated benzo rings is

Table 5. Selected adduct contact distances and relevant hydrogen contact distances and angles in order of increasing $\mathrm{N} \ldots \mathrm{O}$ distance for $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]\left[\mathrm{PF}_{6}\right]$

$\begin{aligned} & \mathrm{N}-\mathrm{H} \cdot \mathrm{C} \cdot \mathrm{O} \\ & \text { or } \mathrm{N} \cdot \mathrm{O} \end{aligned}$	$\underset{\AA}{R(N}$	\AA	θ^{c} / \sim	$\varphi_{H}{ }^{\text {d/u}}$	$\varphi_{N}{ }^{2}{ }^{\mu}$
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{c}} \cdots \mathrm{O}(7)$	2.96	2.06	155	42	37
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{b}} \cdots \mathrm{O}(28)$	3.16	2.37	139	45	52
$\mathrm{N}(2)-\mathrm{H}_{\mathrm{a}} \ldots \mathrm{O}(19)$	3.18	2.29	155	40	39
$\mathrm{N}(2) \cdots \mathrm{O}(22)$	3.18				
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{a}} \cdots \mathrm{O}(22)$	3.19	2.30	154	3	7
$\mathrm{N}(1) \ldots \mathrm{O}(4)$	3.20				
$\mathrm{N}(1) \cdots \mathrm{O}(25)$	3.26				
$\mathrm{N}(1) \cdots \mathrm{O}(1)$	3.30				
$\mathrm{N}(2) \cdots \mathrm{O}(25)$	3.35				
${ }^{a}$ E.s.d. $0.01 \AA{ }^{\circ}{ }^{b}$ E.s.d. $0.1 \AA$. ${ }^{c} \mathrm{~N}-\mathrm{H} \cdot \mathrm{O} \mathrm{O}$ angles at H atoms; e.s.d. 3° ${ }^{d}$ Angles between COC planes and HO vectors; e.s.d. 3°. ${ }^{e}$ Angle between COC planes and NO vectors; e.s.d. 1°.					

Table 6. Selected adduct contact distances and relevant hydrogen contact distances and angles in order of increasing N ... O distance for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]\left[\mathrm{PF}_{6}\right]$

${ }^{a \cdot e}$ See footnotes to Table 3.

Figure 8. The supramolecular structure of $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right.$. $\mathrm{db}-30-\mathrm{c}-10]^{+}$with atomic numbering scheme and torsional angles (${ }^{\circ}$) ($\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$) associated with the 30 -membered ring. Shortest Rh... O(catechol) distances (\AA): $O(16), 4.84 ; O(28), 4.13$. Distance between centroids of benzo rings: $10.24 \AA$. 'Cleft angle’ between planes of benzo rings: 36°. No significant N-H . . F F contacts
observed. Adopting the same criteria for hydrogen bonds as enuniciated previously, the $1: 1$ adduct with db-30-c-10 contains four well defined hydrogen bonds (Table 5) with a fifth possible much weaker ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) hydrogen bond between $\mathrm{N}(2)$ and $\mathrm{O}(25)(\mathrm{N} \cdots \mathrm{O} 3.35 \AA)$. In $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]^{+}$, it should be noted that for one of the ammine ligands [$\mathrm{N}(1)]$ there are two discrete orientations for the three ammine hydrogen

Figure 9. The supramolecular structure of $\left[\left\{\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot \mathrm{db}-36-\mathrm{c}-12\right]\left[\mathrm{PF}_{6}\right]_{2}$ with atomic numbering scheme and torsional angles (${ }^{\circ}$) ($\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$) associated with the 36 -membered ring

Table 7. Selected adduct contact distances and relevant hydrogen contact distances and angles in order of increasing $\mathrm{N} \ldots \mathrm{O}$ distance for $\left[\left\{\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot \mathrm{db}-36-\mathrm{c}-12\right]\left[\mathrm{PF}_{6}\right]_{2}$

$\begin{aligned} & \mathrm{N}-\mathrm{H} \cdots \mathrm{O} \\ & \text { or } \mathrm{N} \cdots \mathrm{O} \end{aligned}$	$\mathrm{R}_{\AA}^{(\mathrm{N} \ldots \mathrm{O})^{a} /}$	$R(\mathrm{H} \underset{\AA}{\ldots \mathrm{O}})^{\mathrm{b}} /$	$0^{\circ} /^{\circ}$	$\varphi_{\mathrm{H}}{ }^{\text {d }}{ }^{\circ}$	$\varphi_{N}{ }^{2}{ }^{\circ}$
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{a}} \cdots \mathrm{O}(16)$	3.05	2.14	158	21	25
$\mathrm{N}(2)-\mathrm{H}_{\mathrm{b}} \ldots \mathrm{O}\left(7^{\prime}\right)$	3.07	2.15	160	20	22
$\mathrm{N}(1) \ldots \mathrm{O}\left(1^{\prime}\right)$	3.13				
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{b}} \cdots \mathrm{O}\left(7^{\prime}\right)$	3.14	2.33	141	42	35
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{b}} \cdots \mathrm{O}\left(4^{\prime}\right)$	3.20	2.38	143	72	76
$\mathrm{N}(1) \cdots \mathrm{O}\left(10^{\prime}\right)$	3.22				
$\mathrm{N}(2) \cdots \mathrm{O}\left(10^{\prime}\right)$	3.22				
$\mathrm{N}(1)-\mathrm{H}_{\mathrm{c}} \cdots \mathrm{O}\left(13^{\prime}\right)$	3.24	2.34	155	61	56

${ }^{a-e}$ See footnotes to Table 3.
atoms. Both orientations of $\mathrm{N}(1) \mathrm{H}_{3}$ experience two single and one bifurcated hydrogen bonds to the polyether chains, while $\mathrm{N}(2) \mathrm{H}_{3}$ is involved in only one bifurcated hydrogen bond, to $\mathbf{O}(4)$ and $\mathrm{O}(7)$. Whereas in $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]^{+}$, there are $R h \ldots O$ distances of less than $4 \AA$ (i.e. 3.80 and $3.87 \AA$), in $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]^{+}$, because of the larger ring size of the macrocycle, there are no contacts of less than $4 \AA$ between the aromatic $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ units and the rhodium atom.

It is noticeable and possibly significant that in all four crystalline $1: 1$ adducts discussed in this paper the diene ligands are invariably sandwiched between the two aromatic rings of the crown so that, as predicted by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopic studies (Tables 1 and 2), a number of allylic and vinylic $\mathrm{C}-\mathrm{H}$ groups are brought into close proximity with the π-arene systems of the dibenzo-crown ethers. It is possible that these contacts enhance the stability of the adducts to a significant extent since the distances from the hydrogen atoms to the planes of the aromatic rings lie in the range $2.6-3.3 \AA$ and thus differ only slightly from a calculated van der Waals' contact distance of $2.9 \AA$. In this context, it should be remembered that the
polarisation and dispersion forces between molecules at the van der Waals' distance in molecular crystals are normally attractive in nature and provide a substantial fraction of the crystal packing and solvation energies for systems of low polarity. ${ }^{22}$ Indeed, much evidence for a specific $\mathrm{CH} \ldots$ arene interaction of this type has been presented in the literature ${ }^{23}$ on the basis of conformational studies, X-ray crystallography, gas-liquid chromatography, and molecular mechanics calculations on the whole range of different systems containing both aromatic and aliphatic units. In addition to the known, attractive, dipole-induced-dipole interactions between phenyl and 1,3-dioxane rings, ${ }^{24}$ it is clear that stabilising interactions occur between aromatic rings which are oriented with their planes orthogonal to one another. ${ }^{25}$ In particular, the most stable geometry of benzene dimer is found, from long-range perturbation theory, to be 'perpendicular' or 'T-shaped'. ${ }^{26}$ The binding energy of $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for this dimer is derived almost entirely from dispersion forces between the CH groups of one ring and the carbon atoms of the other. Moreover, at the equilibrium ring centre-ring plane separation of $5.0 \AA$, the closest H-ring plane contacts are in the range $2.5-3.7 \AA$, just as observed in this paper.

The crystalline adduct obtained after layering diethyl ether on a dichloromethane solution containing equimolar amounts of dibenzo-36-crown-12 and $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ proved unexpectedly to have $2: 1$ (metal complex:crown) stoicheiometry. As shown in Table 1 and Figure 2, the positions of ${ }^{1} \mathrm{H}$ resonances of the diene ligands were virtually unchanged relative to their chemical shifts when 18 -crown- 6 was used as the solubilising agent. This observation is readily explained in terms of the supramolecular structure indicated by the X-ray analysis (Figure 9 and Table 7) of the 2:1 adduct. It reveals a flattened, slightly S-shaped conformation for the macrocycle with two $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$cations each bound via three long ($>3.0 \AA$) [$\mathrm{N}-\mathrm{H} \ldots \mathrm{O}$] hydrogen bonds. The planes of the aromatic rings of the receptor are virtually parallel and do not even begin to approach the metal complex, consistent with the virtual absence

Table 8. Crystal data and summary of intensity data refinement and structural refinement

Molecular formula	$\begin{gathered} {\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right.} \\ \mathrm{db}-24-\mathrm{c}-8]\left[\mathrm{PF}_{6}\right] \\ \mathrm{C}_{32} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PRh} \end{gathered}$	$\begin{gathered} {\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2^{\cdot}}\right.} \\ \mathrm{db}-24-\mathrm{c}-8]\left[\mathrm{PF}_{6}\right] \\ \mathrm{C}_{31} \mathrm{H}_{46} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PRh} \end{gathered}$	$\begin{gathered} {\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2^{\circ}}\right.} \\ \mathrm{db}-21-\mathrm{c}-7]\left[\mathrm{PF}_{6}\right] \\ \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PR} \end{gathered}$	$\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right.$. $\mathrm{db}-30-\mathrm{c}-10]\left[\mathrm{PF}_{6}\right]$ $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{PRh}$	$\left[\left\{\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2}\right.$ $\mathrm{db}-36-\mathrm{c}-12]\left[\mathrm{PF}_{6}\right]_{2}$ $\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Rh}_{2}$
M	839	823	795	927	1405
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Triclinic
a / \AA	9.195(3)	15.427(3)	9.121(1)	9.268(2)	9.020(2)
b / \AA	29.380(9)	18.739(3)	23.405(2)	34.335(7)	12.241(3)
c / \AA	13.900(6)	25.458(5)	16.705(3)	13.421(3)	14.196(3)
x					100.20(2)
β	93.04(3)		96.30(1)	93.92(2)	99.00(2)
γ					98.11(2)
U / \AA^{3}	3750	7360	3545	4261	1501
Space group	$P 2_{1} / c$	Pbca	$P 2_{1} / \mathrm{c}$	$P 2 / 1 / c$	PI
Z	4	8	4	4	1
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.49	1.49	1.50	1.45	1.56
Observed data ${ }^{a}$	3401	2984	3110	3915	3864
Absorption correction	Empirical	Empirical	Empirical	Empirical	Numerical
μ / cm^{-1}	49	49	51	44	59
$\theta_{\text {max }}$.	50	50	50	50	58
R	0.043	0.047	0.047	0.034	0.040
$R^{\prime \prime}$	0.049	0.047	0.049	0.037	0.045
g	0.0004	0.0003	0.0006	0.0003	0.0005

${ }^{a}$ Unique observed reflections $\left|F_{\mathrm{o}}\right|>3 \sigma\left(\left|F_{\mathrm{o}}\right|\right) \cdot{ }^{b}{ }^{w^{-1}}=\sigma^{2}(F)+g F^{2}$.

Table 9. Atomic co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$

Atom	x	y	z	Atom	x	y	z
Rh	$1919(1)$	$1304(1)$	$2157(1)$	C(18)	-2 243(8)	152(3)	317(5)
P	4 762(2)	$1295(1)$	$7009(1)$	O(19)	-2 241(5)	299(1)	$1238(3)$
F(1)	$6475(5)$	$1297(2)$	6 968(3)	C(20)	-2 288(8)	-52(2)	$1926(5)$
F(2)	4900 (7)	$1295(2)$	$8118(3)$	C(21)	-976(8)	- 143(2)	2 460(5)
$F(3)$	3 060(5)	$1308(2)$	$7017(4)$	O(22)	-436(5)	236(1)	2 963(3)
F(4)	4 649(6)	$1306(2)$	$5884(3)$	C(23)	708(7)	185(2)	3 631(4)
F(5)	4710 (6)	$1827(2)$	7 030(4)	C(24)	899(6)	533(2)	4 272(4)
$F(6)$	4716 (8)	774(2)	6 954(4)	C(25)	$2016(7)$	513(2)	4 981(4)
$\mathrm{O}(1)$	-79(5)	886(1)	4 176(3)	C(26)	2 933(8)	147(3)	5 027(5)
C(2)	-304(9)	$1152(2)$	4 994(5)	C(27)	2760 (7)	- 191(2)	4 392(5)
C(3)	- $1718(8)$	1390 (2)	$4814(5)$	C(28)	1 648(7)	-179(2)	3 686(5)
$\mathrm{O}(4)$	-1551(4)	$1747(1)$	$4137(3)$	C(29)	$2321(7)$	2 618(2)	521(5)
C(5)	-2870(7)	$1937(3)$	3 798(5)	C(30)	3 438(8)	2 631(3)	-101(6)
C(6)	-2676(7)	$2323(2)$	$3178(5)$	C(31)	3 396(8)	2 333(3)	-863(6)
$\mathrm{O}(7)$	-1995(5)	2 193(2)	$2361(3)$	C(32)	2 285(7)	2030 (2)	$-1017(4)$
C(8)	-1938(8)	2 561(2)	$1701(5)$	C(33)	3 975(6)	$1284(2)$	2 904(4)
C(9)	- $1075(14)$	2 429(4)	928(8)	C(34)	4 593(7)	812(2)	2930 (5)
$\mathrm{O}(10)$	169(5)	2 277(1)	$1054(3)$	C(35)	3 940(7)	493(2)	2 209(5)
$\mathrm{C}(11)$	1220 (6)	2310 (2)	392(4)	C(36)	2 595(6)	649(2)	$1696(4)$
C(12)	1 182(7)	$2013(2)$	-378(4)	C(37)	2 574(7)	952(2)	936(4)
O(13)	61(4)	$1708(1)$	-428(3)	C(38)	3 928(9)	$1161(3)$	565(5)
C(14)	-15(8)	1413(2)	-1 224(4)	C(39)	4 761(8)	1463 (3)	$1213(6)$
C(15)	- $1359(8)$	$1137(2)$	-1175(4)	C(40)	4 026(6)	$1580(2)$	2 147(4)
O(16)	- $1208(4)$	802(1)	-423(3)	N(1)	$1183(5)$	$1837(1)$	3 026(3)
C(17)	-2415(7)	519(3)	-390(5)	N(2)	-328(5)	$1177(2)$	$1799(4)$

of ring-current shifts in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum. The structure has a crystallographic centre of symmetry. It is strongly reminiscent of the disodium and dilithium complexes $2 \mathrm{NaPF}_{6}$. $\mathrm{db}-36-\mathrm{c}-12^{27}$ and $2 \mathrm{Li}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right) \cdot \mathrm{db}-36-\mathrm{c}-12 \cdot 2 \mathrm{H}_{2} \mathrm{O}^{28}$ respectively, in which the sodium or lithium ions are bound in essentially the same positions as the two symmetry related ammine ligands which are oriented towards the opposite sides of the macrocycle in $\left[\left\{\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot \mathrm{db}-36-\mathrm{c}-12\right]^{2+}$. Once again, the cis ammine ligands of both the $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ complexes straddle the polyether chains of $\mathrm{db}-36-\mathrm{c}-12$.

It is clear that transition metal complexes containing cis ammine ligands can induce via hydrogen-bond formation and
other stabilising electrostatic interactions a previously unknown V-shaped conformation in $\mathrm{db}-3 n-\mathrm{c}-\mathrm{n}$ ethers when $n=7-10$. This conformation is retained both in solution as well as in the solid state and may be stabilised by additional non-covalent attractive interactions between the benzo groups of the $\mathrm{db}-3 n-\mathrm{c}-n(n=7-10)$ ethers and the transition-metal complex. This conformation is not accessible to $\mathrm{db}-3 n-\mathrm{c}-n$ ethers when $n=6$ (by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy as shown in Figure 9). The situation when $n=11$ is uncertain, since, although modest upfield shifts are observed upon adduct formation, crystals suitable for X-ray structural analysis could not be obtained.

The primary binding force between $\mathrm{db}-3 n-\mathrm{c}-n(n=7-10)$

Table 10. Atom co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right]$

Atom	x	y	z	Atom	x	y	z
Rh	$2355(1)$	$1176(1)$	$1395(1)$	C(25)	576(4)	$1583(4)$	2 759(3)
O(1)	1 075(3)	393(2)	2 503(2)	C(26)	22(4)	$2144(4)$	2 676(3)
C(2)	$1578(4)$	357(3)	2 965(2)	C(27)	- 556(4)	$2107(4)$	2 273(3)
C(3)	1996 (5)	-365(4)	2 972(3)	C(28)	- 599(4)	$1517(4)$	$1955(3)$
$\mathrm{O}(4)$	2 690(3)	-387(2)	2 613(2)	C(29)	4926 (4)	$1331(4)$	670(3)
C(5)	3 023(6)	-1078(3)	$2520(3)$	C(30)	4 980(5)	$1833(4)$	281(3)
C(6)	3 883(6)	-1039(4)	2 280(3)	C(31)	4429(4)	$1772(4)$	-139(3)
O(7)	$3809(3)$	-776(2)	1760 (2)	C(32)	3840 (4)	$1230(4)$	-184(3)
C(8)	4616 (5)	-751(4)	$1502(3)$	C(33)	2 198(4)	2 251(3)	1613 (3)
C(9)	4 514(5)	-390(4)	980(3)	C(34)	2867 (4)	2 198(3)	$1256(3)$
O(10)	4 298(3)	325(2)	$1068(2)$	C(35)	2 454(4)	$2301(3)$	720(3)
C(11)	$4337(4)$	780(3)	644(3)	C(36)	$1944(4)$	$1617(4)$	672(2)
C(12)	3 794(4)	726(4)	203(3)	C(37)	$1274(4)$	$1660(4)$	$1038(2)$
$\mathrm{O}(13)$	3 225(3)	163(2)	224(2)	C(38)	$1380(4)$	$2374(4)$	$1306(3)$
C(14)	2831 (5)	-43(4)	-250(3)	C(39)	$1730(4)$	$2837(4)$	851(3)
C(15)	$2314(5)$	-692(4)	- 183(3)	N(1)	2 023(3)	85(3)	1 293(2)
$\mathrm{O}(16)$	$1596(3)$	- 557(3)	128(2)	N(2)	3 279(3)	868(3)	$1965(2)$
C(17)	$1021(6)$	- $1088(4)$	183(4)	P	2 265(1)	2480 (1)	$-1157(1)$
C(18)	269(6)	-991(5)	456(4)	F(1)	2056 (4)	2 407(3)	- 564(2)
O(19)	199(3)	-483(3)	818(2)	F(2)	2 465(3)	2 567(3)	-1759(2)
C(20)	- 557(4)	-474(4)	$1124(3)$	F(3)	2 506(4)	1 679(3)	-1171(2)
C(21)	-673(4)	235(4)	$1372(3)$	F(4)	$1978(4)$	3 285(3)	-1144(2)
O (22)	-14(3)	333(2)	1746 (2)	F(5)	3 197(3)	2 705(3)	-993(2)
C(23)	-40(4)	956(3)	2039(2)	F(6)	$1312(3)$	2 279(3)	-1321(2)
C(24)	562(4)	986(3)	2 445(3)				

Table 11. Atom co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]\left[\mathrm{PF}_{6}\right]$

Atom	x	y	z	Atom	x	y	z
Rh	9770 (1)	- $1397(1)$	-1539(1)	O(28)	$11868(4)$	-2319(1)	-97(2)
$\mathrm{O}(1)$	$12024(3)$	-1812(1)	$1294(2)$	C(29)	$10749(6)$	-2323(1)	515(3)
C(2)	$12177(6)$	-1511(1)	2 028(3)	C(30)	10 847(5)	-2052(1)	$1288(3)$
C(3)	13 408(5)	-1256(1)	1770 (4)	C(31)	$9771(7)$	-2033(1)	$1959(3)$
O(4)	$12907(3)$	-1001(1)	989(2)	C(32)	8 602(7)	-2 279(2)	$1837(4)$
C(5)	14 004(5)	-742(2)	705(3)	C(33)	$8494(7)$	-2 538(2)	$1074(4)$
C(6)	13 392(5)	-465(1)	-56(3)	C(34)	9 557(6)	- 2563 (1)	408(4)
O(7)	$13090(3)$	-665(1)	-956(2)	C(35)	7 809(5)	322(1)	-2 837(3)
C(8)	$12310(5)$	-443(1)	-1723(3)	C(36)	6 419(5)	230(1)	-3210(3)
C(9)	$13178(5)$	-115(1)	-2 109(3)	C(37)	6 215(5)	-73(1)	-3860(3)
$\mathrm{O}(10)$	$13040(3)$	234(1)	- 1 555(2)	C(38)	7370 (4)	-287(1)	-4150(3)
C(11)	12330 (5)	546(1)	-2071(4)	C(39)	$9422(4)$	-954(1)	-483(3)
C(12)	$10730(5)$	511(1)	-2181(3)	C(40)	$9038(4)$	- $1307(1)$	-82(3)
$\mathrm{O}(13)$	10389 (3)	195(1)	-2839(2)	C(41)	7 504(5)	-1441(1)	-2(3)
C(14)	8 972(4)	118(1)	-3131(3)	C(42)	6 929(5)	-1 673(2)	--905(4)
C(15)	8 756(4)	- 192(1)	-3788(3)	C(43)	7 579(4)	-1553(2)	-1859(4)
$\mathrm{O}(16)$	9986 (3)	-380(1)	-4026(2)	C(44)	7 762(4)	-1176(2)	-2188(3)
C(17)	$9823(5)$	-695(1)	-4 701(3)	C(45)	7 254(5)	-827(2)	-1670(3)
C(18)	11 285(5)	-827(1)	-4942(3)	C(46)	8 379(5)	-655(1)	-922(3)
O(19)	12026 (3)	$-1000(1)$	-4092(2)	N(1)	$11959(3)$	-1472(1)	-1006(3)
C(20)	13 460(5)	$-1100(2)$	-4 319(4)	N(2)	$10368(4)$	-1643(1)	-2901(3)
C(21)	14 296(5)	-1217(2)	- 3 394(4)	P	$3065(2)$	$1519(1)$	5 976(1)
O(22)	13 783(3)	-1557(1)	-2923(2)	F(1)	$2755(5)$	$1536(1)$	$4822(2)$
C(23)	13 968(6)	- 1904 (2)	-3437(4)	F(2)	3 368(4)	$1498(1)$	7 139(2)
C(24)	14 191(6)	- 2 232(2)	-2731(4)	F(3)	4 698(4)	1 608(1)	$5872(3)$
$\mathrm{O}(25)$	$13012(3)$	-2 257(1)	-2110(2)	F(4)	3 386(5)	$1080(1)$	5 864(3)
C(26)	$13194(5)$	-2 563(1)	-1419(4)	F(5)	1 468(4)	$1428(2)$	6 101(3)
C(27)	$11861(6)$	-2608(1)	-867(3)	F(6)	2750 (5)	$1963(1)$	$6083(3)$

ethers and the rhodium cis diammines undoubtedly arises from hydrogen-bond formation and associated electrostatic interactions. However, there also exists a large number of other longer range contacts ($\mathrm{C} \cdots \mathrm{H}, \mathrm{Rh} \cdots \mathrm{C}, \mathrm{Rh} \cdots \mathrm{O}$) at about van der Waals' distances which may provide additional binding and perhaps even contribute to the overall stabilisation of these novel supramolecular adducts.

Experimental

Materials and Methods.-Literature procedures were used to prepare the dimers $\left[\{\mathrm{Rh}(\mathrm{L}) \mathrm{Cl}\}_{2}\right]\left(\mathrm{L}=\mathrm{nbd}^{10}\right.$ or $\left.\operatorname{cod}^{29}\right)$. 18-Crown-6, db-18-c-6, and db-24-c-8 were commercial samples obtained from the Aldrich Chemical Company. The other crown ether derivatives, db-3n-c-n ($n=7,9-12$) were synthesised from catechol monobenzyl ether ${ }^{30}$ using standard

Table 12. Atom co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]\left[\mathrm{PF}_{6}\right]$

Atom	x	y	z	Atom	x	y	z
Rh	$1757(1)$	1168(1)	2076 (1)	C(22)	5 032(9)	2943 (3)	$2826(4)$
N(1)	4069 (5)	$1305(2)$	2 290(3)	$\mathrm{O}(23)$	4 542(5)	2 651(2)	$2100(2)$
N(2)	$2157(6)$	607(2)	$1122(3)$	C(24)	3 326(8)	$2862(3)$	$1627(4)$
$\mathrm{O}(1)$	3 938(6)	2141(2)	755(2)	C(25)	2 476(9)	3 309(3)	$1832(4)$
C(2)	3 694(11)	1843(3)	13(4)	C(26)	$1247(11)$	3 473(4)	$1333(6)$
C(3)	$4965(11)$	$1462(3)$	-59(4)	C(27)	907(11)	$3181(4)$	632(6)
$\mathrm{O}(4)$	4 974(5)	$1003(2)$	471(2)	C(28)	$1759(9)$	$2730(4)$	402(4)
C(5)	6 267(9)	696(4)	585(5)	C(29)	2 974(8)	$2571(3)$	906(4)
C(6)	6 287(9)	194(4)	$1060(4)$	C(31)	-466(7)	$1275(3)$	$1591(4)$
$\mathrm{O}(7)$	5 408(6)	160(2)	1630 (3)	C(32)	- $1059(10)$	$1841(4)$	$1805(7)$
C(8)	5660 (10)	-302(3)	2 144(5)	C(33)	-140(9)	$2170(3)$	$2396(5)$
C(9)	4541 (11)	- 333(3)	$2718(5)$	C(34)	1 277(7)	$1905(3)$	$2750(4)$
$\mathrm{O}(10)$	4 482(6)	132(2)	$3176(3)$	C(35)	$1393(8)$	$1439(3)$	3 249(4)
C(11)	$3671(9)$	116(3)	3816 (5)	C(36)	102(8)	$1127(4)$	3 531(4)
C(12)	2 663(9)	-297(3)	3 955(5)	C(37)	-814(11)	813(5)	$2919(5)$
C(13)	1 983(10)	-274(4)	4 656(6)	C(38)	-373(7)	806(3)	2094(4)
C(14)	2 259(9)	152(4)	5 193(5)	P	-387(2)	$1092(1)$	- $1269(1)$
C(15)	$3254(9)$	577(4)	5 049(5)	F(1)	- $1129(8)$	$1441(3)$	-1958(4)
$\mathrm{C}(16)$	3 951(8)	561(3)	4 357(4)	$F(2)$	349(11)	739(4)	-592(4)
$\mathrm{O}(17)$	4 946(5)	968(2)	4 153(3)	F(3)	-682(10)	$1509(3)$	-625(4)
C(18)	5 273(9)	1434 (3)	4 692(4)	F(4)	- 187(10)	639(3)	-1890(3)
C(19)	6 200(8)	$1859(3)$	$4301(4)$	F(5)	$1045(7)$	$1364(4)$	-1 398(4)
$\mathrm{O}(20)$	$5321(5)$	$2152(3)$	3 698(2)	F(6)	$-1887(7)$	846(4)	-1174(4)
C(21)	$6104(8)$	$2581(3)$	3 326(4)				

Table 13. Atom co-ordinates $\left(\times 10^{4}\right)$ for $\left[\left\{\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot \mathrm{db}-36-\mathrm{c}-12\right]\left[\mathrm{PF}_{6}\right]_{2}$

Atom	x	$\underline{ }$	z	Atom	x	y	z
Rh	$3159(1)$	$1812(1)$	2540 (1)	C(18)	-12 576(6)	3 340(4)	9 516(3)
N(1)	781(4)	$1800(3)$	2 279(2)	C(19)	-13156(7)	4 324(4)	$9473(4)$
N(2)	$2835(5)$	987(4)	3 716(3)	C(20)	-12625(7)	5 248(4)	10 197(4)
$\mathrm{O}(1)$	-10044(4)	-4100(2)	$8170(2)$	C(21)	- 11 549(6)	5 208(4)	10 985(4)
C(2)	- 10 500(6)	-5049(4)	7 375(3)	C(22)	- 10 993(5)	4 232(3)	11 052(3)
C(3)	- 11 473(6)	-4713(4)	6 555(3)	C(23)	3 351(6)	$2017(4)$	$1113(3)$
O(4)	- 10 545(4)	-3961(3)	$6152(2)$	C(24)	3 589(6)	$3071(4)$	$1712(3)$
C(5)	- $11352(8)$	-3732(5)	5 278(4)	C(25)	5 122(7)	3 806(5)	$2089(4)$
C(6)	- 10304 (9)	-2878(5)	4 962(4)	C(26)	$6051(8)$	3 475(7)	2 888(7)
O (7)	-10048(5)	-1844(3)	5 625(3)	C(27)	5 503(5)	$2357(5)$	$3125(4)$
C(8)	- $8748(7)$	$-1110(6)$	5 637(5)	C(28)	5 315(6)	$1329(5)$	$2512(4)$
C(9)	-8438(8)	-136(6)	6 345(7)	C(29)	$5721(8)$	$1223(9)$	$1508(5)$
$\mathrm{O}(10)$	-9321(7)	261(4)	6 833(4)	C(30)	4 582(7)	$1450(5)$	754(4)
C(11)	-8996(8)	$1369(5)$	$7386(5)$	P	- $5612(2)$	-2 218(1)	3 554(1)
C(12)	-8542(7)	$1416(4)$	8 460(4)	F(1)	-6 084(6)	-2711(4)	4 414(3)
O(13)	-9627(4)	790(3)	$8858(3)$	F(2)	- $5904(6)$	-3416(3)	$2928(3)$
C(14)	- 11049 (7)	$1166(5)$	8 801(4)	F(3)	- 3 909(4)	- 2 247(4)	3 957(4)
C(15)	- 11 527(6)	$1311(4)$	$9773(3)$	F(4)	-5 143(6)	-1712(5)	$2688(3)$
O(16)	- 10 846(4)	$2357(2)$	$10417(2)$	F(5)	-7 299(5)	-2158(5)	$3165(4)$
C(17)	- $11496(5)$	3 287(4)	$10307(3)$	F(6)	- 5 314(7)	-999(4)	$4182(4)$

procedures. ${ }^{7}$ I.r. spectra were determined using Perkin-Elmer PE197 and PE580 instruments. ${ }^{1}$ H N.m.r. spectra were obtained on JEOL FX100, Perkin-Elmer R34, and Bruker WH400 spectrometers at 100,220 , and 400 MHz , respectively. Elemental analyses were performed by the Microanalytical Departments of I.C.I. Mond Division and Sheffield University. Melting points were determined in air using a hot-stage microscope and are uncorrected.

Diammine $\left(\eta^{4}\right.$-cyclo-octa-1,5-diene)rhodium(1) Hexafluoro-phosphate.-The $\left[\{\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}\}_{2}\right]$ dimer ${ }^{29}(3.0 \mathrm{~g})$ was suspended in water ($100 \mathrm{~cm}^{3}$) and stirred whilst aqueous ammonia (specific gravity 0.88) was added dropwise until dissolution of the dimer was just complete (excess of ammonia leads to a reduction in yield). A filtered solution of ammonium hexafluorophosphate (3.0 g) in water ($20 \mathrm{~cm}^{3}$) was added to the filtered solution of the rhodium complex. Bright yellow crystals formed immediately
and were filtered off, washed with water ($2 \times 30 \mathrm{~cm}^{3}$), and diethyl ether ($2 \times 20 \mathrm{~cm}^{3}$), and dried in vacuo for 1 h . The product, $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$, was collected as very fine bright yellow crystals ($3.5 \mathrm{~g}, 73 \%$), m.p. $209-215^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 24.6 ; \mathrm{H}, 4.8 ; \mathrm{N}, 7.3 . \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{~N}_{2}$ PRh requires $\mathrm{C}, 24.6$; H, 4.7; N, 7.2\%). I.r. (Nujol): 3 400s and 3 300s ($\mathrm{N}-\mathrm{H}$ str.), 1625 s ($\mathrm{N}-\mathrm{H}$ def.), and $850 \mathrm{br} \mathrm{cm}^{-1}$ (P-F str.).

Diammine ($\boldsymbol{\eta}^{4}$-bicyclo[2.2.1]hepta-1,5-diene)rhodium(1) Hexa-fluorophosphate.-The dimer $\left[\left\{\mathrm{Rh}(\mathrm{nbd}) \mathrm{Cl}_{\}}\right\}^{10}(1.5 \mathrm{~g})\right.$ was suspended in water ($15 \mathrm{~cm}^{3}$) and aqueous ammonia (s.g. 0.88) was added dropwise until dissolution of the orange product was complete. A filtered solution of ammonium hexafluorophosphate (1.5 g) in water $\left(10 \mathrm{~cm}^{3}\right)$ was added to this filtered solution. Bright yellow crystals of the product, $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$, precipitated within a few minutes, and were filtered off, washed with water ($30 \mathrm{~cm}^{3}$) and diethyl

Table 14. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2^{*}}\right.$ $\mathrm{db}-24-\mathrm{c}-8]\left[\mathrm{PF}_{6}\right]$

Rh-C(33)	$2.110(5)$	$2.130(5)$	
Rh-C(37)	$2.102(6)$	2.101(5)	
Rh-N(1)	2.114(4)	$\mathbf{R h - N (2) ~ 2 . 1 3 2 (4) ~}$	
3)-Rh-C(36)	81.7(2)	$\mathrm{C}(33)-\mathrm{Rh}-\mathrm{C}(37)$	95.5(2)
)-Rh-C(37)	38.1(2)	$\mathrm{C}(33)-\mathrm{Rh}-\mathrm{C}(40)$	37.9(2)
)-Rh-C(40)	93.6(2)	$\mathrm{C}(37)-\mathrm{Rh}-\mathrm{C}(40)$	83.2(2)
)-Rh-N(1)	92.6(2)	$\mathrm{C}(36)-\mathrm{Rh}-\mathrm{N}(1)$	161.7(2)
)-Rh-N(1)	160.2(2)	$\mathrm{C}(40)-\mathrm{Rh}-\mathrm{N}(1)$	92.3(2)
)-Rh-N(2)	160.4(2)	$\mathrm{C}(36)-\mathrm{Rh}-\mathrm{N}(2)$	93.9(2)
)-Rh-N(2)	92.4(2)	$\mathrm{C}(40)-\mathrm{Rh}-\mathrm{N}(2)$	161.5(2)
-Rh-N(2)	85.8(2)	$\mathrm{Rh}-\mathrm{C}(33)-\mathrm{C}(40)$	70.7(3)
C(33)-C(34)	$111.5(4)$	Rh-C(36)-C(35)	112.8(4)
C(36)-C(37)	69.8(3)	Rh-C(37)-C(38)	110.7(4)
C(37)-C(36)	72.1(3)	$\mathrm{Rh}-\mathrm{C}(40)-\mathrm{C}(33)$	71.4(3)
$\mathrm{C}(40)-\mathrm{C}(39)$	111.5(4)		

Table 15. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2}\right.$. $\mathrm{db}-24-\mathrm{c}-8]\left[\mathrm{PF}_{6}\right]$

Rh-C(33)	$2.102(6)$	Rh-C(34) 2.10	2.101(6)
Rh-C(36)	$2.116(6)$	Rh-C(37) 2.10	2.104(6)
$\mathbf{R h - N (1) ~}$	2.123(5)	$\mathbf{R h - N (2) ~} 2.11$	$2.114(5)$
$\mathrm{C}(33)-\mathrm{Rh}-\mathrm{C}(34)$	38.3(3)	$\mathrm{C}(33)-\mathrm{Rh}-\mathrm{C}(36)$	79.7(3)
$\mathrm{C}(34)-\mathrm{Rh}-\mathrm{C}(36)$	67.0(3)	$\mathrm{C}(33)-\mathrm{Rh}-\mathrm{C}(37)$	67.0 (3)
$\mathrm{C}(34)-\mathrm{Rh}-\mathrm{C}(37)$	80.3(3)	$\mathrm{C}(36)-\mathrm{Rh}-\mathrm{C}(37)$	38.6(2)
$\mathrm{C}(33)-\mathrm{Rh}-\mathrm{N}(1)$	157.9(2)	$\mathrm{C}(34)-\mathrm{Rh}-\mathrm{N}(1)$	161.3(2)
$\mathrm{C}(36)-\mathrm{Rh}-\mathrm{N}(1)$	101.4(2)	$\mathrm{C}(37)-\mathrm{Rh}-\mathrm{N}(1)$	99.9(2)
$\mathrm{C}(33)-\mathrm{Rh}-\mathrm{N}(2)$	99.2(2)	$\mathrm{C}(34)-\mathrm{Rh}-\mathrm{N}(2)$	96.4(2)
$\mathrm{C}(36)-\mathrm{Rh}-\mathrm{N}(2)$	154.9(2)	$\mathrm{C}(37)-\mathrm{Rh}-\mathrm{N}(2)$	161.6(2)
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{N}(2)$	89.0(2)	Rh-C(33)-C(34)	70.8(4)
Rh-C(33)-C(38)	96.1(4)	Rh-C(34)-C(35)	96.3(4)
Rh-C(34)-C(33)	70.9(4)	Rh-C(36)-C(37)	70.3(4)
Rh-C(36)-C(35)	96.0(4)	Rh-C(37)-C(36)	71.2(4)
Rh-C(37)-C(38)	95.8(4)		

Table 16. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right.$. $\mathrm{db}-30-\mathrm{c}-10]\left[\mathrm{PF}_{6}\right]$

$\mathrm{Rh}-\mathrm{C}(39)$	$2.118(4)$	$\mathrm{Rh}-\mathrm{C}(40)$	$2.135(4)$
$\mathrm{Rh}-\mathrm{C}(43)$	$2.115(4)$	$\mathrm{Rh}-\mathrm{C}(44)$	$2.139(4)$
$\mathrm{Rh}-\mathrm{N}(1)$	$2.121(3)$	$\mathrm{Rh}-\mathrm{N}(2)$	$2.122(4)$
$\mathrm{C}(39)-\mathrm{Rh}-\mathrm{C}(40)$	$37.9(1)$	$\mathrm{C}(39)-\mathrm{Rh}-\mathrm{C}(43)$	$97.5(2)$
$\mathrm{C}(40)-\mathrm{Rh}-\mathrm{C}(43)$	$82.1(2)$	$\mathrm{C}(39)-\mathrm{Rh}-\mathrm{C}(44)$	$81.4(2)$
$\mathrm{C}(40)-\mathrm{Rh}-\mathrm{C}(44)$	$90.0(2)$	$\mathrm{C}(43)-\mathrm{Rh}-\mathrm{C}(44)$	$37.9(2)$
$\mathrm{C}(39)-\mathrm{Rh}-\mathrm{N}(1)$	$92.7(1)$	$\mathrm{C}(40)-\mathrm{Rh}-\mathrm{N}(1)$	$93.7(1)$
$\mathrm{C}(43)-\mathrm{Rh}-\mathrm{N}(1)$	$157.0(2)$	$\mathrm{C}(44)-\mathrm{Rh}-\mathrm{N}(1)$	$165.1(2)$
$\mathrm{C}(39)-\mathrm{Rh}-\mathrm{N}(2)$	$157.4(1)$	$\mathrm{C}(40)-\mathrm{Rh}-\mathrm{N}(2)$	$164.7(2)$
$\mathrm{C}(43)-\mathrm{Rh}-\mathrm{N}(2)$	$91.6(2)$	$\mathrm{C}(44)-\mathrm{Rh}-\mathrm{N}(2)$	$93.5(2)$
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{N}(2)$	$86.6(1)$	$\mathrm{Rh}-\mathrm{C}(39)-\mathrm{C}(40)$	$71.7(2)$
$\mathrm{Rh}-\mathrm{C}(39)-\mathrm{C}(46)$	$110.5(3)$	$\mathrm{Rh}-\mathrm{C}(40)-\mathrm{C}(41)$	$112.5(3)$
$\mathrm{Rh}-\mathrm{C}(40)-\mathrm{C}(39)$	$70.4(2)$	$\mathrm{Rh}-\mathrm{C}(43)-\mathrm{C}(42)$	$109.3(3)$
$\mathrm{Rh}-\mathrm{C}(43)-\mathrm{C}(44)$	$72.0(3)$	$\mathrm{Rh}-\mathrm{C}(44)-\mathrm{C}(45)$	$113.0(3)$
$\mathrm{Rh}-\mathrm{C}(44)-\mathrm{C}(43)$	$70.1(3)$		

ether ($30 \mathrm{~cm}^{3}$), and then dried under vacuum ($0.7 \mathrm{~g}, 28 \%$), m.p. $159-164^{\circ} \mathrm{C}$ (decomp.) (Found: C, 22.4; H, 3.9; N, 7.4. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{PRh}$ requires C, 22.5; H, 3.8; N, 7.5\%). I.r. (Nujol): 3 380s and 3290 s ($\mathrm{N}-\mathrm{H}$ str.), 1615 s ($\mathrm{N}-\mathrm{H}$ def.), and 840br cm^{-1} ($\mathrm{P}-\mathrm{F}$ str.).

Diammine $\left(\eta^{4}\right.$-cyclo-octa-1,5-diene)rhodium(I$) \quad$ Hexafluoro-phosphate-Dibenzo-21-crown-7, $\quad\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]$ -$\left[\mathrm{PF}_{6}\right]$.-A solution of dibenzo-21-crown- $7(30.3 \mathrm{mg}, 0.75$ mmol) in 1,2 -dichloroethane ($3 \mathrm{~cm}^{3}$) was used to dissolve

Table 17. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2^{\circ}}\right.$ $\mathrm{db}-21-\mathrm{c}-7]\left[\mathrm{PF}_{6}\right]$

$\mathrm{Rh}-\mathrm{N}(1)$	$2.125(5)$	$\mathrm{Rh}-\mathrm{N}(2)$	$2.126(5)$
$\mathrm{Rh}-\mathrm{C}(31)$	$2.114(6)$	$\mathrm{Rh}-\mathrm{C}(34)$	$2.132(6)$
$\mathrm{Rh}-\mathrm{C}(35)$	$2.120(6)$	$\mathrm{Rh}-\mathrm{C}(38) \quad 2.123(7)$	
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{N}(2)$	$88.3(2)$	$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(31)$	$159.9(2)$
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(31)$	$91.3(2)$	$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(34)$	$92.6(2)$
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(34)$	$163.2(2)$	$\mathrm{C}(31)-\mathrm{Rh}-\mathrm{C}(34)$	$82.1(3)$
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(35)$	$93.0(2)$	$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(35)$	$159.2(2)$
$\mathrm{C}(31)-\mathrm{Rh}-\mathrm{C}(35)$	$94.4(3)$	$\mathrm{C}(34)-\mathrm{Rh}-\mathrm{C}(35)$	$37.6(3)$
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(38)$	$162.0(2)$	$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(38)$	$89.8(2)$
$\mathrm{C}(31)-\mathrm{Rh}-\mathrm{C}(38)$	$38.0(3)$	$\mathrm{C}(34)-\mathrm{Rh}-\mathrm{C}(38)$	$94.3(3)$
$\mathrm{C}(35)-\mathrm{Rh}-\mathrm{C}(38)$	$82.5(3)$	$\mathrm{Rh}-\mathrm{C}(31)-\mathrm{C}(38)$	$71.4(4)$
$\mathrm{Rh}-\mathrm{C}(31)-\mathrm{C}(32)$	$111.9(5)$	$\mathrm{Rh}-\mathrm{C}(34)-\mathrm{C}(33)$	$110.2(4)$
$\mathrm{Rh}-\mathrm{C}(34)-\mathrm{C}(35)$	$70.7(4)$	$\mathrm{Rh}-\mathrm{C}(35)-\mathrm{C}(36)$	$110.5(4)$
$\mathrm{Rh}-\mathrm{C}(35)-\mathrm{C}(34)$	$71.7(4)$	$\mathrm{Rh}-\mathrm{C}(38)-\mathrm{C}(31)$	$70.6(4)$

Table 18. Selected bond lengths (\AA) and angles (\%) for $[\{R h(\operatorname{cod})-$ $\left.\left.\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot \mathrm{db}-36-\mathrm{c}-12\right]\left[\mathrm{PF}_{6}\right]_{2}$

$\mathrm{Rh}-\mathrm{N}(1)$	$2.116(3)$	$\mathrm{Rh}-\mathrm{N}(2)$	$2.134(4)$
$\mathrm{Rh}-\mathrm{C}(23)$	$2.116(5)$	$\mathrm{Rh}(\mathrm{C}(24)$	$2.128(5)$
$\mathrm{Rh}-\mathrm{C}(27)$	$2.112(5)$	$\mathrm{Rh}-\mathrm{C}(28)$	$2.115(6)$
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{N}(2)$	$87.5(2)$	$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(23)$	$92.6(2)$
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(23)$	$159.3(2)$	$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(24)$	$92.9(2)$
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(24)$	$162.7(2)$	$\mathrm{C}(23)-\mathrm{Rh}-\mathrm{C}(24)$	$38.0(2)$
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(27)$	$160.0(2)$	$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(27)$	$91.8(2)$
$\mathrm{C}(23)-\mathrm{Rh}-\mathrm{C}(27)$	$95.0(2)$	$\mathrm{C}(24)-\mathrm{Rh}-\mathrm{C}(27)$	$81.9(2)$
$\mathrm{N}(1)-\mathrm{Rh}-\mathrm{C}(28)$	$162.2(2)$	$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(28)$	$91.6(2)$
$\mathrm{C}(23)-\mathrm{Rh}-\mathrm{C}(28)$	$82.0(2)$	$\mathrm{C}(24)-\mathrm{Rh}-\mathrm{C}(28)$	$93.2(2)$
$\mathrm{C}(27)-\mathrm{Rh}-\mathrm{C}(28)$	$37.8(2)$	$\mathrm{Rh}-\mathrm{C}(23)-\mathrm{C}(24)$	$71.4(3)$
$\mathrm{Rh}-\mathrm{C}(23)-\mathrm{C}(30)$	$111.6(4)$	$\mathrm{Rh}-\mathrm{C}(24)-\mathrm{C}(25)$	$112.2(4)$
$\mathrm{Rh}-\mathrm{C}(24)-\mathrm{C}(23)$	$70.5(3)$	$\mathrm{Rh}-\mathrm{C}(27)-\mathrm{C}(26)$	$110.5(4)$
$\mathrm{Rh}-\mathrm{C}(27)-\mathrm{C}(28)$	$71.2(3)$	$\mathrm{Rh}-\mathrm{C}(28)-\mathrm{C}(29)$	$112.0(4)$
$\mathrm{Rh}-\mathrm{C}(28)-\mathrm{C}(27)$	$71.0(3)$		

$\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](29.3 \mathrm{mg}, 0.75 \mathrm{mmol})$. The solution was filtered and diethyl ether was layered in dropwise until a faint permanent precipitate was evident. After 18 h , the $1: 1$ adduct had crystallised as bright yellow needles. The yield was 42 mg (68%), m.p. $150-160{ }^{\circ} \mathrm{C}$ (Found: C, $46.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.7$. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PRh}$ requires $\mathrm{C}, 45.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 3.5 \%$).

Diammine (η^{4}-cyclo-octa-1,5-diene)rhodium (1) Hexafluoro-phosphate-Dibenzo-24-crown-8, $\quad\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]$ [PF_{6}].-A solution of dibenzo-24-crown-8 ($112 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 1,2-dichloroethane ($3 \mathrm{~cm}^{3}$) was used to dissolve [$\mathrm{Rh}(\mathrm{cod})$ $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ ($97.5 \mathrm{mg}, 0.25 \mathrm{mmol}$). The solution was filtered and diethyl ether was allowed to diffuse into it from the vapour phase. After 16 h , the $1: 1$ adduct had crystallised as long rectangular yellow needles. The yield was $120 \mathrm{mg}(58 \%)$, m.p. 135-145 ${ }^{\circ} \mathrm{C}$ (Found: C, $45.7 ; \mathrm{H}, 6.3$; N, 3.3. $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{O}_{8}$ PRh requires $\mathrm{C}, 45.8 ; \mathrm{H}, 6.0 ; \mathrm{N}, 3.2 \%$).

Diammine $\left(\eta^{4}\right.$-cyclo-octa-1,5-diene)rhodium(1) Hexafluoro-phosphate-Dibenzo-30-crown-10, $\left[\mathrm{Rh}(\mathrm{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-30-\mathrm{c}-10\right]-$ [PF ${ }_{6}$].-A solution of dibenzo-crown-10 ($134 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 1,2 -dichloroethane ($3 \mathrm{~cm}^{3}$) was used to dissolve $[\mathrm{Rh}(\mathrm{cod})$ $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ ($97.5 \mathrm{mg}, 0.25 \mathrm{mmol}$). The solution was filtered and diethyl ether was allowed to diffuse into it slowly from the vapour phase. After 12 h , the $1: 1$ adduct had crystallised as bright yellow needles. The yield was $63 \mathrm{mg}(27 \%)$, m.p. $95-$ $100^{\circ} \mathrm{C}$ (Found: C, 46.9; H, 6.9; N, 3.0. $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{10}$ PRh requires $\mathrm{C}, 46.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 3.0 \%$).

Bis[diammine(η^{4}-cyclo-octa-1,5-diene)rhodium(1)] Bis(hexa-fluorophosphate)-Dibenzo-36-crown-12, $\quad\left[\left\{\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot\right.$ $\mathrm{db}-36-\mathrm{c}-12]\left[\mathrm{PF}_{6}\right]_{2}$--A solution of dibenzo-36-crown-12 (160 $\mathrm{mg}, 0.26 \mathrm{mmol}$) in dichloromethane ($4 \mathrm{~cm}^{3}$) was used to dissolve $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{5}\right](100 \mathrm{mg}, 0.26 \mathrm{mmol})$. The solution was filtered and diethyl ether was layered in dropwise until a faint permanent precipitate was evident. After 24 h , the $2: 1$ adduct had crystallised as long bright yellow needles. The yield was 82 $\mathrm{mg}\left(23 \%\right.$), m.p. $124-131^{\circ} \mathrm{C}$ (Found: C, 41.1; H, 6.1; N, 4.1. $\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{~F}_{12} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Rh}_{2}$ requires C, 41.0; $\mathrm{H}, 6.0 ; \mathrm{N}, 4.0 \%$).

Diammine (η^{4}-bicyclo[2.2.1] hepta-1,5-diene)rhodium(1) Hexa-fluorophosphate-Dibenzo-24-crown-8, [$\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-$ $\mathrm{c}-8]\left[\mathrm{PF}_{5}\right]$.-A solution of dibenzo-24-crown-8 $(112 \mathrm{mg}, 0.25$ mmol) in dichloromethane ($5 \mathrm{~cm}^{3}$) was used to dissolve $\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](94 \mathrm{mg}, 0.25 \mathrm{mmol})$. The solution was filtered and diethyl ether was layered in dropwise until a faint permanent precipitate was evident. After 16 h , the $1: 1$ adduct crystallised as bright yellow crystals. The yield was $29 \mathrm{mg}(14 \%)$, m.p. $118-129^{\circ} \mathrm{C}$ (Found: C, 44.1; H, 5.5; N, 3.4. $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{~F}_{6}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{8}$ PRh requires C, 45.3; $\mathrm{H}, 5.6 ; \mathrm{N}, 3.4 \%$).

X-Ray Data Collections, Structure Solutions, and Refine-ments.-Data for all the structures listed in Table 8 were measured on a Nicolet $R 3 m$ diffractometer with graphitemonochromated $\mathrm{Cu}-K_{\alpha}$ radiation ($\lambda=1.54178 \AA$) and using ω-scans. Structure solution was by the heavy-atom method in each case and all the non-hydrogen atoms were refined anisotropically. The ammine hydrogen atom positions were in all cases derived from ΔF maps and the groups were refined as idealised rigid bodies and, with the exception of $[\mathrm{Rh}(\mathrm{cod})$ $\left.\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-21-\mathrm{c}-7\right]\left[\mathrm{PF}_{6}\right]$, were assigned the thermal parameters $U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. In this adduct, one of the NH_{3} groups has two orientations of occupancy $c a .0 .3$ and 0.7 . In this instance, group thermal parameters were refined for each orientation. All the other hydrogen atoms in the adducts were idealised ($\mathrm{C}-\mathrm{H}$ $0.96 \AA$), assigned isotropic thermal parameters $U(\mathbf{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$, and allowed to ride on their parent carbon atoms. Refinement was by block-cascade full-matrix least-squares methods using the SHELXTL program system. ${ }^{31}$ Computations were carried out on an Eclipse S140 computer. The crystal data and refinement parameters are summarised in Table 8 and the atomic co-ordinates for the five structures are listed in Tables 9-13. Selected bond lengths and angles are recorded in Tables 14-18.

Acknowledgements

We thank the S.E.R.C. for support and I.C.I. (New Science Group, Runcorn) for a C.A.S.E. Studentship (to S. M. D.).

References

1 H. M. Colquhoun and J. F. Stoddart, J. Chem. Soc., Chem. Commun., 1981, 612; H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, ibid., pp. 847, 849; H. M. Colquhoun, D. F. Lewis, J. F. Stoddart, and D. J. Williams, J. Chem. Soc., Dalton Trans., 1983, 607.
2 H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, J. Chem Soc., Chem. Commun., 1981, 851.
3 H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, J. Am. Chem. Soc., 1982, 104, 1426.
4 A. Knöchel, J. Klimes, J. Oehler, and G. Rudolph, Inorg. Nucl. Chem Lett., 1975, 11, 787; A. Knöchel, J. Kopf, J. Oehler, and G. Rudolph, ibid., 1978, 14, 61; P. G. Eller and R. A. Penneman, Inorg. Chem. 1976, 15, 2439; P. Charpin, R. M. Costes, G. Folcher, P. Plurien, A. Navaza, and C. de Rango, Inorg. Nucl. Chem. Lett., 1977, 13, 341; G Bombieri, G. de Paoli, A. Cassol, and A. Immirtzi, Inorg. Chim. Acta, 1976, 18, L23; J. Inorg. Nucl. Chem., 1978, 40, 799; T. B. Vance, E. M Holt, C. C. Pierpoint, and S. L. Holt, Acta Crystallogr., Sect. B, 1980,

36, 150; T. B. Vance, E. M. Holt, D. L. Varie, and S. L. Holt, ibid., p. 153; J. D. J. Backer-Dirks, J. E. Cooke, A. M. R. Galas, J. S. Ghotra, C. J. Gray, F. A. Hart, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1980, 2191; A. Elbasyouny, H. J. Brugge, K. von Deuten, M. Dickel, A. Knöchel, K. U. Koch, J. Kopf, D. Melzer, and G. Rudolf, J. Am. Chem. Soc., 1983, 105, 6568; P. A. Cusack, B. N. Patel, P. J. Smith, D. W. Allen, and I. W. Nowell, J. Chem. Soc., Dalton Trans., 1984, 1239; M. M. Amini, A. L. Rheingold, R. W. Taylor, and J. J. Zuckerman, J. Am. Chem. Soc., 1984, 106, 7289.
5 H. M. Colquhoun, J. F. Stoddart, D. J. Williams, J. B. Wolstenholme, and R. Zarzycki, Angew. Chem., Int. Ed. Engl., 1981, 20, 1051; H. M. Colquhoun, S. M. Doughty, J. M. Maud, J. F. Stoddart, D. J. Williams, and J. B. Wolstenholme, Isr. J. Chem., 1985, $25,15$.
6 A. Werner, 'Neuere Anschauungen auf dem Gebiete der anorganischen Chemie,' 3rd edn., Vieweg und Sohn, Braunschweig, 1913; J. Bjerrum, Adv. Chem. Ser., 1967, 62, 178; see also J. Chatt, L. A. Duncanson, and L. M. Venanzi, J. Chem. Soc., 1956, 2712; J. Chatt, G. L. Leigh, and N. Thankarajan, J. Chem. Soc. A, 1971, 3168; S. F. Mason and B. J. Norman, Chem. Commun., 1965, 335; W. A. Freeman, Inorg. Chem., 1976, 15, 2235.
7 H. M. Colquhoun, E. P. Goodings, J. M. Maud, J. F. Stoddart, D. J. Williams, and J. B. Wolstenholme, J. Chem. Soc., Chem. Commun., 1983, 1140; J. Chem. Soc., Perkin Trans. 2, 1985, 607.
8 H. M. Colquhoun, S. M. Doughty, J. F. Stoddart, and D. J. Williams, Angew: Chem., Int. Ed. Engl., 1984, 23, 235.
9 D. R. Alston, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1984, 23, 821.
10 J. Chatt and L. Venanzi, J. Chem. Soc., 1957, 4735; E. W. Abel, M. A. Bennett, and G. Wilkinson, ibid., 1959, 3178.
11 B. L. Allwood, F. H. Kohnke, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, J. Chem. Soc., Chem. Commun., 1985, 311 ; F. H. Kohnke and J. F. Stoddart, ibid., p. 314; F. H. Kohnke, J. F. Stoddart, B. L. Allwood, and D. J. Williams, Tetrahedron Lett., 1985, 26, 1681; F. H. Kohnke and J. F. Stoddart, ibid., p. 1685; B. L. Allwood, F. H. Kohnke, J. F. Stoddart, and D. J. Williams, Angew. Chem., Int. Edn. Engl., 1985, 24, 581.
12 G. C. Pimental and A. L. McClellan, 'The Hydrogen Bond,' W. H. Freeman, San Francisco, 1960, pp. 67 and 255.
13 I. R. Hanson, D. L. Hughes, and M. R. Truter, J. Chem. Soc., Perkin Trans. 2, 1976, 972.
14 M. Mercer and M. R. Truter, J. Chem. Soc., Dalton Trans., 1973, 2469.
15 D. L. Hughes, J. Chem. Soc., Dalton Trans., 1975, 2374.
16 D. L. Hughes, J. Chem. Soc., Chem. Commun., 1977, 804.
17 D. L. Hughes, C. L. Mortimer, and M. R. Truter, Acta Crystallogr., Sect. B, 1978, 34, 300.
18 G. M. Anderson, III, P. A. Kollman, L. N. Dommelsmith, and N. K. Houk, J. Am. Chem. Soc., 1979, 101, 2344; L. N. Dommelsmith, T. A. Eaton, N. K. Houk, G. M. Anderson, III, R. A. Glennon, A. T. Shulgin, N. Castagnoli, jun., and P. A. Kollman, J. Med. Chem., 1981, 24, 1414; A. Makriyannis and S. Fesik, J. Am. Chem. Soc., 1982, 104, 6462; L. I. Kruse and J. K. Cha, J. Chem. Soc., Chem. Commun., 1982, 1329; J. D. Mersh, J. K. M. Saunders, and S. A. Matlin, ibid., 1983, 306.
19 M. A. Bush and M. R. Truter, J. Chem. Soc., Perkin Trans. 2, 1972, 345.
20 J. Hasek, K. Huml, and D. Hlvata, Acta Crystallogr., Sect. B, 1979, 35, 330; 1980, 36, 1782; M. R. Truter, J. D. Owen, and J. N. Wingfield, Acta Crystallogr., Sect. C, 1984, 40, 1515.
21 N. S. Poonia and M. R. Truter, J. Chem. Soc., Dalton Trans., 1973, 2062; J. D. Owen and M. R. Truter, ibid., 1979, 1831.
22 J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, 'Valence Theory,' Wiley, London, 1965, p. 331.
23 A. E. P. Watson, I. A. McLure, J. E. Bennett, and G. C. Benson, J. Phys. Chem., 1965, 69, 2753; Y. Kosama, K. Nishihata, M. Nishio, and N. Nakagawa, Tetrahedron Lett., 1977, 2105; Y. Kodama, K. Nishihata, S. Zushi, M. Nishio, J. Uzawa, K. Sasamoto, and H. Iwamura, Bull. Chem. Soc. Jpn., 1979, 52, 2661; J. Uzawa, S. Zushi, Y. Kodama, Y. Fukuda, K. Nishihata, K. Umemura, M. Nishio, and M. Hirota, ibid., 1980, 53, 3623; S. Zushi, Y. Kodama, K. Nishihata, K. Umemura, M. Nishio, J. Uzawa, and H. Hirota, ibid., 1980, 53, 3631; S. Zushi, Y. Kodama, Y. Fukuda, K. Nishihata, M. Nishio, M. Hirota, and J. Uzawa, ibid., 1981, 54, 2113; Y. Hiraki and A. Tai, Chem. Lett., 1982, 341; N. Tanaka, Y. Tokuda, K. Iwaguchi, and M. Araki, J. Chromatogr., 1982, 239, 267; T. Endo, M. M. Ito, Y. Nishio, J. Chem. Soc., Chem. Commun., 1983, 1431.

24 J. E. Anderson, Tetrahedron Lett., 1965, 4713; R. C. Cookson, T. A. Crabb, and S. Vary, Tetrahedron, 1968, 24, 4559; K. D. Carlson, C. R.

Smith, jun., and I. A. Wolff, Carbohydrate Res., 1970, 13, 403; R. J. Abraham, H. D. Banks, E. L. Eliel, O. Hofer, and M. K. Kaloustain, J. Am. Chem. Soc., 1972, 93, 1913; N. S. Zefirov, V. V. Samoshin, O. A. Sabbotin, V. I. Baranenkov, and S. Wolfe, Tetrahedron, 1978, 34, 2953; J. F. Stoddart, Chem. Soc. Rev., 1979, 8, 85; in 'Enzymic and Non-Enzymic Catalysis,' eds. P. Dunnill, A. Wiseman, and N. Blakebrough, Ellis-Horwood, Chichester, 1980, p. 84; in 'Lectures in Heterocyclic Chemistry, eds. R. N. Castle and S. W. Schneller, 1980, vol. 5, p. S47; D. A. Laidler and J. F. Stoddart, Tetrahedron Lett., 1979, 453; R. B. Pettman and J. F. Stoddart, ibid., 457; S. E. Fuller, J. F. Stoddart, and D. J. Williams, J. Chem. Soc., Chem. Commun., 1982, 1093; S. E. Fuller, B. E. Mann, and J. F. Stoddart, ibid., p. 1096.
25 E. Dubler, U. K. Haring, K. H. Scheller, and P. Baltzer, Inorg. Chem., 1984, 23, 3785.
26 J. Pawliszyn, M. M. Szczesniak, and S. Scheiner, J. Phys. Chem., 1984, 88, 1726.

27 J. M. Maud, J. F. Stoddart, H. M. Colquhoun, and D. J. Williams, Polyhedron, 1984, 3, 675.
28 S. M. Doughty, J. F. Stoddart, H. M. Colquhoun, A. M. Z. Slawin, and D. J. Williams, Polyhedron, 1985, 4, 567.
29 J. Chatt and L. M. Venanzi, Nature, 1956, 177, 852.
30 J. Druey, Bull. Soc. Chim. Fr., 1935, 1737.
31 G. M. Sheldrick, SHELXTL, An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data, University of Göttingen, Federal Republic of Germany, 1978; revised version, 1984.

[^0]: * Diammine (η^{4}-cyclo-octa-1,5-diene)rhodium(I) hexafluorophosphate $6,7,9,10,17,18,20,21,23,24$-decahydrodibenzo $[b, k][1,4,7,10,13,16,19]$ heptaoxacyclohenicosin, $\quad 6,7,9,10,12,13,20,21,23,24,26,27$-dodecahydrodibenzo $[b, 7][1,4,7,10,13,16,19,22]$-octaoxacyclotetracosin, $-6,7,9$, $10,12,13,15,16,23,24,26,27,29,30,32,33$-hexadecahydrodibenzo[$b, q]$ -[1,4,7,10,13,16,19,22,25,28]-decaoxacyclotriacontin, diammine(η^{4}-bi-cyclo[2.2.1]hepta-1,5-diene)rhodium(1) hexafluorophosphate-6,7,9,10, $12,13,20,21,23,24,26,27$-dodecahydrodibenzo $[b, n][1,4,7,10,13,16,19$. 22]-octaoxacyclotetracosin, and bis[diammine(η^{4}-cyclo-octa-1,5-diene)rhodium(I)] bis(hexafluorophosphate)-6,7,9,10,12,13,15,16,18,19, $26,27,29,30,32,33,35,36$-octadecahydrodibenzo $[b, t][1,4,7,10,13,16,19$, $22,25,28,31,34]$-dodecaoxacyclohexatriacontin.
 Supplementary data available (No. SUP 56508, 20 pp.): thermal parameters, H -atom co-ordinates. See Instructions for Authors, J. Chem. Soc.., Dalton Trans., 1986, Issue I, pp. xvii-xx. Structure factors are available from the editorial office.

[^1]: * In this paper we employ the widely accepted notation of letters and numbers to identify the different dibenzo-crown ethers. Thus, in the general descriptor $\mathrm{db}-3 n-\mathrm{c}-n, \mathrm{db}$ represents fused dibenzo rings, the first number ($3 n$) represents the size of the macrocyclic ring, c, the crown ether constitution of repeating unit $-\mathrm{OCCO}-$, and the second number (n), the number of oxygen atoms in the ring.

[^2]: ${ }^{a}$ Unless otherwise stated, the spectra were recorded at room temperature on a $220-\mathrm{MHz}$ spectrometer (Perkin-Elmer R34) using SiMe ${ }_{4}$ as internal standard and lock. Some of the δ values in this Table are plotted against n in Figure 3. The values ($\Delta \delta$) in parentheses indicate the extent to which the respective signals in the $1: 1$ adducts are shifted relative either to those for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot 18\right.$-crown-6] $[\mathrm{PF} 6]$ or to those for the free $\mathrm{db}-3 n-\mathrm{c}-n$ ethers. The resonances for H_{c} and H_{a} on the cod ligand (Figure 1) were assigned on the basis of n.O.e. difference spectra obtained (Figure 2) for $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2} \cdot \mathrm{db}-24-\mathrm{c}-8\right]\left[\mathrm{PF}_{6}\right] \cdot{ }^{b}$ See refs. 5 and 11 for the δ values for these protons in the free $\mathrm{db}-3 n-\mathrm{c}-n$ ethers. ${ }^{\text {c }}$ These δ values for $\left[\left\{\mathrm{Rh}(\operatorname{cod})\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2} \cdot \mathrm{db}-36-\mathrm{c}-12\right]\left[\mathrm{PF}_{6}\right]_{2}$ were obtained by dissolving crystals of the $2: 1$ adduct in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and recording the ${ }^{1} \mathrm{H}$ n.m.r. spectrum on a Bruker WH400 spectrometer.

