Template Preparation of a Nickel(II) Pyridinophane Complex; Crystal and Molecular Structure of cis-dichloro\{2,11-dithia[3,3](2,6)pyridinophane\}nickel(II) \dagger

Edwin C. Constable, Jack Lewis, ${ }^{*}$ Victoria E. Marquez, and Paul R. Raithby University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

Abstract

The crystal and molecular structure of the nickel(II) complex of a novel $\mathbf{N}_{2} \mathrm{~S}_{2}$ pyridinophane macrocycle is reported. The complex is prepared by a template condensation about nickel(II) and possesses a distorted octahedral geometry.

In the past two decades, numerous examples of macrocyclic ligands and their transition-metal complexes have been reported. ${ }^{1}$ Macrocyclic ligands which incorporate heterocyclic moieties within their polydentate donor set have been particularly widely investigated. ${ }^{2}$ Although a range of pyridinophanes of various types have been reported, their co-ordination chemistry has scarcely been investigated. ${ }^{2,3}$ 2,11-Dithia[3,3]$(2,6)$ pyridinophane (L^{1}) is a potentially tetradentate $\mathrm{N}_{2} \mathrm{~S}_{2}$ ligand, but although a number of conformational studies on the free pyridinophane have been reported, ${ }^{4-9}$ no metal complexes have been described. This note reports the template synthesis of transition-metal complexes of 2,11-dithia[3,3](2,6)pyridinophane, and the crystal and molecular of the nickel(II) complex $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right.$].

Results and Discussion

The ligand, 2,11-dithia $[3,3](2,6)$ pyridinophane (L^{1}) possesses a 12 -membered macrocyclic ring similar to that observed in cyclen (1,4,7,10-tetra-azacyclododecane). Molecular models, and a knowledge of the co-ordination chemistry of cyclen, suggested that the macrocyclic hole in L^{1} is too small for the ligand to act as an $\mathrm{N}_{2} \mathrm{~S}_{2}$ ligand occupying the equatorial plane of an octahedral transition-metal complex. Our current interests in the chemical consequences of metal ion-ligand mismatch ${ }^{10-12}$ led us to consider the preparation of L^{1} by template condensation about a transition-metal ion. The free ligand has been prepared by the reaction of 2,6 -bis(halogenomethyl)pyridines with 2,6-bis(mercaptomethyl)pyridine $\left(\mathrm{H}_{2} \mathrm{~L}^{2}\right),{ }^{5}$ thiourea, ${ }^{7}$ or sodium sulphide. ${ }^{4,9}$ An extension of these syntheses led us to investigate the template reaction of 2,6-bis(bromomethyl)pyridine with the nickel(II) complex of 2,6 -bis(mercaptomethyl)pyridine (Scheme). The possible consequences of the mismatch between the nickel(II) and the 2,11-dithia[3,3](2,6)pyridinophane are (i) that the metal ion is located above the $\mathrm{N}_{2} \mathrm{~S}_{2}$ donor set in some form of square-based pyramidal five-co-ordinate environment; (ii) that the metal ion is labilised, such that the free ligand is obtained via a transient template effect; ${ }^{11,12}$ (iii) that a $[2+1]$ condensation occurs to give a larger, more flexible, macrocyclic ligand; (iv) that the ligand folds in such a way that an octahedral nickel(II) complex may form; or (v) that no reaction occurs.
2,6-Bis(mercaptomethyl)pyridine ($\mathrm{H}_{2} \mathrm{~L}^{2}$) reacts rapidly with

[^0]
L'
cyclen

$\mathrm{H}_{2} \mathrm{~L}^{2}$

dmf

Scheme.
nickel(II) in the presence of aqueous ammonia to yield a very insoluble brown complex with a 1:1 stoicheiometry, $\mathrm{Ni}\left(\mathrm{L}^{2}\right) \cdot \mathrm{H}_{2} \mathrm{O}$. The mass spectrum of this material exhibited the highest mass peaks centred around $m / z 456$; this corresponds to a dimeric formulation $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)_{2}\right]$, which has expected $m / z 454$, based on ${ }^{58} \mathrm{Ni}$ and ${ }^{32} \mathrm{~S}$. The precise structure of this complex is not known, but it is relevant to note that we have recently determined the crystal and molecular structure of the complex $\left[\left(\mathrm{H}_{2} \mathrm{~L}^{3}\right) \mathrm{NiBr}(\mu-\mathrm{Br})_{2} \mathrm{NiBr}\left(\mathrm{H}_{2} \mathrm{~L}^{3}\right)\right]$, which possesses a dimeric, bromo-bridged structure. ${ }^{13}$

The nickel(II) complex $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ reacted smoothly with 2,6-bis(bromomethyl)pyridine in warm dimethylformamide (dmf), to give a pale green solid, shown to possess the stoicheiometry $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Br}_{2}\right]$. This complex readily underwent metathesis reactions upon treatment with aqueous solutions

Figure. The molecular structure of $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$. Hydrogen atoms are omitted for clarity

$\mathrm{H}_{2} \mathrm{~L}^{3}$
of $\mathrm{NaX}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{I}, \mathrm{SCN}\right.$, or $\left.\mathrm{N}_{3}\right)$, to yield the appropriate [$\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{X}_{2}$] complexes. In no case could a satisfactory mass spectrum be obtained for these complexes, and in order to elucidate the structure of the products a crystal-structure determination was undertaken.

The molecular structure of the complex $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$ is shown in the Figure together with the atom-numbering scheme. Selected bond lengths and angles are presented in Table 1. The nickel(II) atom displays a slightly distorted octahedral co-ordination geometry. The two chlorine atoms occupy cis equatorial positions. The macrocyclic ligand, L^{1}, chelates the other four-co-ordination sites, bonding through the two nitrogen and two sulphur atoms. This ligand is folded in such a way that the sulphur atoms occupy mutually trans diaxial sites, while the pyridine nitrogen atoms occupy cis sites in the equatorial plane. This folding of the 12 -membered macrocyclic ring is reminiscent of the conformation of the tetranitrogen donor, 12 -membered cyclen rings in the complexes cis$\left[\mathrm{Co}(\right.$ cyclen $\left.)\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}^{14}$ and cis- $\left[\mathrm{Co}(\right.$ cyclen $\left.)(\mathrm{CO})_{3}\right] \mathrm{ClO}_{4}$. $\mathrm{H}_{2} \mathrm{O} .{ }^{15}$

The cis conformation of two chlorine atoms in combination with a trans sulphur-sulphur arrangement, for a $\mathrm{N}_{2} \mathrm{~S}_{2}$ donor set macrocycle, in a $\mathrm{Ni}^{1 \mathrm{I}}$ octahedral complex has not been crystallographically characterised previously. In the related species dichloro(6,7,14,15,16,17,18,19-octahydro-13H-dibenzo$[e, n][1,4,8,12]$ dithiadiazapentadecine)nickel(II) ${ }^{16}$ the chlorine atoms occupy trans axial sites and the sulphur donors take up cis equatorial positions. In the latter complex ${ }^{16}$ the two $\mathrm{Ni}-\mathrm{Cl}$ bond lengths (2.417 and $2.465 \AA$) differ by ca. $0.05 \AA$ compared to a difference of $c a .0 .08 \AA$ in $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$, while the mean $\mathrm{Ni}-\mathrm{Cl}$ distance for chlorine trans to chlorine is $2.441 \AA$ compared to a mean value of $2.403 \AA$ for chlorine trans to a

Table 1. Bond lengths (\AA) and interbond angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$

$\mathrm{Cl}(1)-\mathrm{Ni}(1)$	2.363(1)	$\mathrm{Cl}(2)-\mathrm{Ni}(1) \quad 2$.	$2.443(1)$
$\mathrm{S}(1)-\mathrm{Ni}(1)$	$2.407(1)$	$\mathrm{S}(2)-\mathrm{Ni}(1) \quad 2$.	2.385(1)
$\mathrm{C}(11)-\mathrm{S}(1)$	1.825(3)	$\mathrm{C}(12)-\mathrm{S}(1) \quad 1.8$	1.814(3)
$\mathrm{C}(13)-\mathrm{S}(2)$	1.801(4)	$\mathrm{C}(14)-\mathrm{S}(2) \quad 1.8$	1.812(3)
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.335(4)$	$\mathrm{C}(5)-\mathrm{N}(1) \quad 1$.	1.366(4)
$\mathrm{C}(2)-\mathrm{C}(1)$	1.389(5)	$\mathrm{C}(14)-\mathrm{C}(1) \quad 1$.	1.507(5)
$\mathrm{C}(3)-\mathrm{C}(2)$	1.392(5)	$\mathrm{C}(4)-\mathrm{C}(3) \quad 1.3$	1.378 (5)
$\mathrm{C}(5)-\mathrm{C}(4)$	1.369(5)	$\mathrm{C}(11)-\mathrm{C}(5) \quad 1.5$	$1.500(4)$
$\mathrm{C}(6)-\mathrm{N}(2)$	1.357(4)	$\mathrm{C}(10)-\mathrm{N}(2) \quad 1.3$	$1.334(4)$
$\mathrm{C}(7)-\mathrm{C}(6)$	$1.372(5)$	$\mathrm{C}(12)-\mathrm{C}(6) \quad 1.4$	$1.496(4)$
$\mathrm{C}(8)-\mathrm{C}(7)$	1.392(5)	$\mathrm{C}(9)-\mathrm{C}(8) \quad 1.3$	1.387(5)
$\mathrm{C}(10)-\mathrm{C}(9)$	1.385(4)	$\mathrm{C}(13)-\mathrm{C}(10)$	1.527(4)
$\mathrm{Cl}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	93.7(1)	$\mathrm{S}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	97.4(1)
$\mathrm{S}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(2)$	94.6(1)	$\mathrm{S}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	94.6(1)
$\mathrm{S}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(2)$	95.6(1)	$\mathrm{S}(2)-\mathrm{Ni}(1)-\mathrm{S}(1)$	163.7(1)
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	178.3(1)	$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{Cl}(2)$	87.0(1)
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{S}(1)$	84.1(1)	$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{S}(2)$	83.8(1)
$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(1)$	$91.1(1)$	$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{Cl}(2)$	175.1(1)
$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{S}(1)$	84.1(1)	$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{S}(2)$	84.8(1)
$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{N}(1)$	88.2(1)	$\mathrm{C}(11)-\mathrm{S}(1)-\mathrm{Ni}(1)$	97.5(1)
$\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{Ni}(1)$	94.9(1)	$\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{C}(11)$	101.3(2)
$\mathrm{C}(13)-\mathrm{S}(2)-\mathrm{Ni}(1)$	97.9(1)	$\mathrm{C}(14)-\mathrm{S}(2)-\mathrm{Ni}(1)$	98.1(1)
$\mathrm{C}(14)-\mathrm{S}(2)-\mathrm{C}(13)$	103.4(2)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Ni}(1)$	119.5(2)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Ni}(1)$	120.1(2)	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	118.7(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$122.2(3)$	$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{N}(1)$	119.3(3)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)$	118.5(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	118.4(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.3(3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.5 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	121.7(3)	$\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{N}(1)$	117.6 (3)
$\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{C}(4)$	120.6(3)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Ni}(1)$	120.1(2)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Ni}(1)$	120.9(2)	$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	118.9(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)$	121.9(3)	$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{N}(2)$	117.7(3)
$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{C}(7)$	120.4(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.1(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	119.1(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	118.6(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	122.5(3)	$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{N}(2)$	119.0(3)
$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{C}(9)$	118.5(3)	$\mathrm{C}(5)-\mathrm{C}(11)-\mathrm{S}(1)$	115.6(2)
$\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{S}(1)$	114.9(2)	$\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{S}(2)$	115.8(2)
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{S}(2)$	116.0(2)		

nitrogen donor. In $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right.$] the two $\mathrm{Ni}-\mathrm{N}$ bond lengths differ by $c a .0 .02 \AA$, with the slightly shorter $\mathrm{Ni}-\mathrm{N}$ bond trans to the longer $\mathrm{Ni}-\mathrm{Cl}$ bond. The average of these two $\mathrm{Ni}-\mathrm{N}$ distances ($2.084 \AA$) is not significantly different from the value of $2.095 \AA$ for the two $\mathrm{Ni}-\mathrm{N}$ bonds in dichloro($6,7,14,15$, 16,17,18,19-octahydro-13 H -dibenzo[$e, n][1,4,8,12]$ dithiadiazapentadecine)nickel(II), ${ }^{16}$ where the nitrogen atoms are trans to sulphur donor atoms. The two Ni-S bond lengths in $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right.$] differ by ca. $0.02 \AA$, and the average $\mathrm{Ni}-\mathrm{S}$ distance is $2.396 \AA$. This average bond length is somewhat shorter than the distance of $2.418 \AA$ in bis(1-thia-4,7-diazacyclononaneS, N, N^{\prime})nickel dinitrate ${ }^{17}$ where the two sulphur donors are crystallographically constrained to occupy trans co-ordination sites. The bond parameters within L^{1} itself do not deviate significantly from the expected values. A consequence of the folding of L^{1} in $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$ is that the pyridine rings make an angle of 94.4° with each other. Although this near perpendicularity does not correspond to the equilibrium solution conformation of the free ligand, dithia[3,3]cyclophanes have been shown to be conformationally mobile in solution. ${ }^{18}$ It is probably this flexibility in the ligand which allows the template synthesis about the $\mathrm{Ni}^{\mathrm{iI}}$ atom to proceed so readily.

Experimental

2,6-Bis(bromomethyl)pyridine ${ }^{19}$ and 2,6-bis(mercaptomethyl)pyridine ${ }^{20,21}$ were prepared by the literature methods.

Table 2. Atomic fractional co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$

Atom	X / b	Y / b	Z / c
$\mathrm{Ni}(1)$	$2648(1)$	$2766(1)$	$7666(1)$
$\mathrm{Cl}(1)$	$1716(1)$	$2027(1)$	$9326(1)$
$\mathrm{Cl}(2)$	$1202(1)$	$1097(1)$	$6780(1)$
$\mathrm{S}(1)$	$32(1)$	$5643(1)$	$7313(1)$
$\mathrm{S}(2)$	$5728(1)$	$382(1)$	$7812(1)$
$\mathrm{N}(1)$	$3559(4)$	$3376(3)$	$6208(2)$
$\mathrm{C}(1)$	$5055(4)$	$2131(4)$	$5791(3)$
$\mathrm{C}(2)$	$5405(5)$	$2221(5)$	$4736(3)$
$\mathrm{C}(3)$	$4170(5)$	$3686(5)$	$4104(2)$
$\mathrm{C}(4)$	$2686(5)$	$5020(4)$	$4545(2)$
$\mathrm{C}(5)$	$2409(4)$	$4848(4)$	$5588(2)$
$\mathrm{N}(2)$	$3912(4)$	$4269(3)$	$8294(2)$
$\mathrm{C}(6)$	$2893(4)$	$6043(4)$	$8410(2)$
$\mathrm{C}(7)$	$3717(5)$	$7129(4)$	$8721(2)$
$\mathrm{C}(8)$	$5644(5)$	$6375(4)$	$8957(2)$
$\mathrm{C}(9)$	$6681(5)$	$4553(5)$	$8859(2)$
$\mathrm{C}(10)$	$5754(4)$	$3547(4)$	$8531(2)$
$\mathrm{C}(11)$	$882(5)$	$6333(4)$	$6100(3)$
$\mathrm{C}(12)$	$802(5)$	$6775(4)$	$8234(3)$
$\mathrm{C}(13)$	$6871(5)$	$1519(4)$	$8490(3)$
$\mathrm{C}(14)$	$6430(5)$	$583(4)$	$6482(3)$

Preparation of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)_{2}\right]$.-Hexa-aquanickel(II) sulphate $(6.0 \mathrm{~g}, 0.0226 \mathrm{~mol})$ was dissolved in concentrated ammonia solution ($d=0.880 \mathrm{~g} \mathrm{~cm}^{-3}, 20 \mathrm{~cm}^{3}$) and water ($75 \mathrm{~cm}^{3}$). To this solution was added, with stirring, 2,6-bis(mercaptomethyl)pyridine ($3.86 \mathrm{~g}, 0.0226 \mathrm{~mol}$) in methanol ($15 \mathrm{~cm}^{3}$). A light brown precipitate was formed immediately. The solid was separated by filtration and dried in vacuo over sulphuric acid for 24 h . The product was powdered, washed with water, methanol, and diethyl ether, and dried again over sulphuric acid to yield the title complex as a dihydrate ($4.6 \mathrm{~g}, 85 \%$) (Found: C, $34.2 ; \mathrm{H}$, 3.0; $\mathrm{N}, 5.9 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Ni}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}$ requires $\mathrm{C}, 34.2 ; \mathrm{H}, 3.4 ; \mathrm{N}, 5.9 \%$); $m / z 454\left(M-2 \mathrm{H}_{2} \mathrm{O}\right)$.

Preparation of $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Br}_{2}\right]$.-To a suspension of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.492 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{dmf}\left(10 \mathrm{~cm}^{3}\right)$ was added 2,6-bis(bromomethyl)pyridine ($0.530 \mathrm{~g}, 2 \mathrm{mmol}$). The dark brown nickel(II) complex turned dark green upon the addition of the bromide. The mixture was heated to reflux and then stirred at $70^{\circ} \mathrm{C}$ until all the dark green solid had vanished leaving a very light green material. This solid was collected by filtration, washed with cold absolute ethanol, and dried in vacuo over phosphorus pentoxide ($0.42 \mathrm{~g}, 86 \%$) (Found: C, 34.2 ; H, 3.0; $\mathrm{Br}, 30.5 ; \mathrm{N}, 5.4 ; \mathrm{Ni}, 12.0 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{NiS}_{2}$ requires C , $34.1 ; \mathrm{H}, 2.8 ; \mathrm{Br}, 30.45 ; \mathrm{N}, 5.4 ; \mathrm{Ni}, 12.0 \%$).

Crystal Structure Determination of $\left[\mathrm{Ni}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]$.-Suitable single crystals were obtained as blue blocks by slow evaporation of a methanolic solution, and a crystal with dimensions $c a$. $0.36 \times 0.31 \times 0.20 \mathrm{~mm}$ was sealed in a $0.5-\mathrm{mm}$ glass capillary. Space group and approximate cell parameters were determined via Weissenberg ($\mathrm{Cu}-K_{\alpha}$ radiation) photography.

Crystal data. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NiS}_{2}, M=404.0$, triclinic, $a=$ 7.754(1), $b=8.148(1), c=12.945(2) \AA, \alpha=85.08(1), \quad \beta=$ 89.08(1), $\gamma=65.98(1)^{\circ}, \quad U=744.1(2) \AA^{3}$ (by least-squares refinement for 15 automatically centred reflections in the range $50<2 \theta<60^{\circ}$), space group $P \mathrm{~T}$ (no. 2), D_{m} not measured, $Z=2, D_{\mathrm{c}}=1.803 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=412, \mathrm{Cu}-K_{z}$ radiation, $\lambda=1.5418 \AA, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=75.33 \mathrm{~cm}^{-1}$.

Data collection and processing. ${ }^{10}$ Syntex $P 2_{1}$ diffractometer,

96-step $\omega-2 \theta$ scan mode with a scan range from 1° below $K_{a 1}$ to 1° above $K_{\alpha 2}$, scan speed $3.0-29.3^{\circ} \mathrm{min}^{-1}$, graphite-monochromated $\mathrm{Cu}-K_{\alpha}$ radiation; 2663 reflections measured ($3.0<$ $\left.2 \theta<125^{\circ},+h, \pm k, \pm l\right), 2320$ unique [merging $R 0.008$ after empirical absorption correction based on 444ψ scans from 15 unique reflections (maximum and minimum transmission factors 0.391 and 0.208$)$], giving 2275 with $F>4 \sigma(F)$. No significant variation in standard reflections during data collection.

Structure analysis and refinement. Nickel atom position from a Patterson synthesis, followed by Fourier difference techniques. Full-matrix least squares with all non-hydrogen atoms anisotropic. Hydrogen atoms placed in idealised positions and allowed to ride $1.08 \AA$ from the relevant C atoms during refinement; each type of H assigned a common isotropic thermal parameter. The weighting scheme $w=\left[\sigma^{2}(F)+0.0008|F|^{2}\right]^{-1}$ gave satisfactory agreement analysis. Final R and R^{\prime} values were 0.052 and 0.059 . Complex neutral-atom scattering factors were employed, ${ }^{22}$ and all computations were performed on the IBM 3081 computer at the University of Cambridge using SHELX 76. ${ }^{23}$ The final atomic fractional co-ordinates are listed in Table 2.

References

1 G. A. Melson (ed.), 'Co-ordination Chemistry of Macrocyclic Compounds,' Plenum, New York, 1979.
2 G. R. Newkome, J. D. Sauer, J. M. Roper, and D. C. Hager, Chem. Rev., 1977, 77, 513.
3 V. K. Majestic and G. R. Newkome, Top. Curr. Chem., 1982, 106, 79. 4 H. J. J-B. Martell and M. Rasmussen, Tetrahedron Lett., 1971, 3843.
5 H. J. J-B. Martell, S. McMahon, and M. Rasmussen, Aust. J. Chem., 1979, 32, 1241.
6 F. Vogtle and L. Schunder, Chem. Ber., 1969, 102, 2677.
7 F. Vogtle and F. Ley, Chem. Ber., 1983, 116, 3000.
8 H. A. Staab and W. K. Appel, Liebigs Ann. Chem., 1981, 1065.
9 V. Boekelheide and J. A. Lawson, Chem. Commun., 1970, 1558.
10 E. C. Constable, J. Lewis, M. C. Liptrot, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1984, 2177.
11 E. C. Constable, F. Khan, J. Lewis, M. C. Liptrot, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1985, 333.

12 L-Y. Chung, E. C. Constable, M. S. Khan, J. Lewis, P. R. Raithby, and M. D. Vargas, J. Chem. Soc., Chem. Commun., 1984, 1425.
13 E. C. Constable, J. Lewis, V. E. Marquez, P. R. Raithby, and M. D. Vargas, unpublished work.
14 Y. Itaka, M. Shina, and E. Kimura, Inorg. Chem., 1974, 13, 2886.
15 J. H. Loehlin and E. B. Fleischer, Acta Crystallogr., Sect. B, 1976, 32, 3063.

16 L. A. Drummond, K. Henrick, M. J. L. Kamagasumdaram, L. F. Lindroy, M. McPartlin, and P. A. Tasker, Inorg. Chem., 1982, 21, 3923.

17 S. M. Hart, J. C. A. Boeynes, J. P. Michael, and R. D. Hancock, J. Chem. Soc., Dalton Trans., 1983, 1601.
18 T. Sato, M. Wakahayaski, K. Hata, and M. Kainosho, Tetrahedron Lett., 1971, 27, 2737.
19 W. O. Baker, K. M. Buggle, J. F. W. McOmie, and D. A. M. Watkin, J. Chem. Soc., 1958, 3594.

20 Bristol-Myes Co., U.S.P. 3290 319/1966; Chem. Abstr., 1967, 66, 115609 K .
21 Banya Pharmaceutical Co. Ltd., Jap. P. $7217778 / 1972$; Chem. Abstr., 1972, 77, 151979S.
22 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
23 G. M. Sheldrick, SHELX 76, Crystal Structure Solving Package, Cambridge, 1976.

[^0]: \dagger Supplementary data available (No. SUP 56550, 3 pp.): thermal parameters, H-atom co-ordinates. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii-xx. Structure factors are available from the editorial office.

