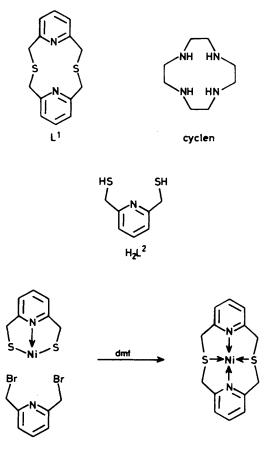
Template Preparation of a Nickel(II) Pyridinophane Complex; Crystal and Molecular Structure of *cis*-dichloro{2,11-dithia[3,3](2,6)pyridinophane}nickel(II)[†]

Edwin C. Constable, Jack Lewis,* Victoria E. Marquez, and Paul R. Raithby University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW


The crystal and molecular structure of the nickel(\mathfrak{n}) complex of a novel N₂S₂ pyridinophane macrocycle is reported. The complex is prepared by a template condensation about nickel(\mathfrak{n}) and possesses a distorted octahedral geometry.

In the past two decades, numerous examples of macrocyclic ligands and their transition-metal complexes have been reported.¹ Macrocyclic ligands which incorporate heterocyclic moieties within their polydentate donor set have been particularly widely investigated.² Although a range of pyridinophanes of various types have been reported, their co-ordination chemistry has scarcely been investigated.^{2,3} 2,11-Dithia[3,3]-(2,6)pyridinophane (L¹) is a potentially tetradentate N₂S₂ ligand, but although a number of conformational studies on the free pyridinophane have been reported, ⁴⁻⁹ no metal complexes have been described. This note reports the template synthesis of transition-metal complexes of 2,11-dithia[3,3](2,6)pyridinophane, and the crystal and molecular of the nickel(11) complex [Ni(L¹)Cl₂].

Results and Discussion

The ligand, 2,11-dithia[3,3](2,6)pyridinophane (L¹) possesses a 12-membered macrocyclic ring similar to that observed in cyclen (1,4,7,10-tetra-azacyclododecane). Molecular models, and a knowledge of the co-ordination chemistry of cyclen, suggested that the macrocyclic hole in L¹ is too small for the ligand to act as an N₂S₂ ligand occupying the equatorial plane of an octahedral transition-metal complex. Our current interests in the chemical consequences of metal ion-ligand mismatch $^{10-12}$ led us to consider the preparation of $L^{\overline{1}}$ by template condensation about a transition-metal ion. The free ligand has been prepared by the reaction of 2,6-bis(halogenomethyl)pyridines with 2,6-bis(mercaptomethyl)pyridine (H_2L^2) ,⁵ thiourea,⁷ or sodium sulphide.^{4,9} An extension of these syntheses led us to investigate the template reaction of 2.6-bis(bromomethyl)pyridine with the nickel(11) complex of 2,6-bis(mercaptomethyl)pyridine (Scheme). The possible consequences of the mismatch between the nickel(11) and the 2,11-dithia[3,3](2,6)pyridinophane are (i) that the metal ion is located above the N₂S₂ donor set in some form of square-based pyramidal five-co-ordinate environment; (ii) that the metal ion is labilised, such that the free ligand is obtained via a transient template effect; 11,12 (iii) that a [2 + 1] condensation occurs to give a larger, more flexible, macrocyclic ligand; (iv) that the ligand folds in such a way that an octahedral nickel(II) complex may form; or (v)that no reaction occurs.

2,6-Bis(mercaptomethyl)pyridine (H_2L^2) reacts rapidly with

Scheme.

nickel(11) in the presence of aqueous ammonia to yield a very insoluble brown complex with a 1:1 stoicheiometry, Ni(L²)-H₂O. The mass spectrum of this material exhibited the highest mass peaks centred around m/z 456; this corresponds to a dimeric formulation $[Ni_2(L^2)_2]$, which has expected m/z 454, based on ⁵⁸Ni and ³²S. The precise structure of this complex is not known, but it is relevant to note that we have recently determined the crystal and molecular structure of the complex $[(H_2L^3)NiBr(\mu-Br)_2NiBr(H_2L^3)]$, which possesses a dimeric, bromo-bridged structure.¹³

The nickel(II) complex $[Ni_2(L^2)_2]\cdot 2H_2O$ reacted smoothly with 2,6-bis(bromomethyl)pyridine in warm dimethylformamide (dmf), to give a pale green solid, shown to possess the stoicheiometry $[Ni(L^1)Br_2]$. This complex readily underwent metathesis reactions upon treatment with aqueous solutions

[†] Supplementary data available (No. SUP 56550, 3 pp.): thermal parameters, H-atom co-ordinates. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii—xx. Structure factors are available from the editorial office.

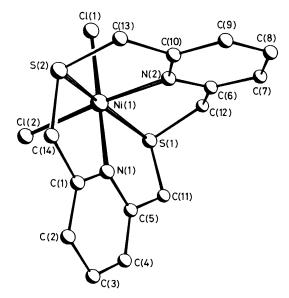
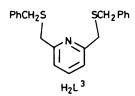



Figure. The molecular structure of $[Ni(L^1)Cl_2]$. Hydrogen atoms are omitted for clarity

of NaX (X = Cl, I, SCN, or N₃), to yield the appropriate $[Ni(L^1)X_2]$ complexes. In no case could a satisfactory mass spectrum be obtained for these complexes, and in order to elucidate the structure of the products a crystal-structure determination was undertaken.

The molecular structure of the complex $[Ni(L^1)Cl_2]$ is shown in the Figure together with the atom-numbering scheme. Selected bond lengths and angles are presented in Table 1. The nickel(II) atom displays a slightly distorted octahedral co-ordination geometry. The two chlorine atoms occupy *cis* equatorial positions. The macrocyclic ligand, L¹, chelates the other four-co-ordination sites, bonding through the two nitrogen and two sulphur atoms. This ligand is folded in such a way that the sulphur atoms occupy mutually *trans* diaxial sites, while the pyridine nitrogen atoms occupy *cis* sites in the equatorial plane. This folding of the 12-membered macrocyclic ring is reminiscent of the conformation of the tetranitrogen donor, 12-membered cyclen rings in the complexes *cis*-[Co(cyclen)(NO₂)₂]Cl¹⁴ and *cis*-[Co(cyclen)(CO)₃]ClO₄· H₂O.¹⁵

The cis conformation of two chlorine atoms in combination with a trans sulphur-sulphur arrangement, for a N_2S_2 donor set macrocycle, in a Ni^{II} octahedral complex has not been crystallographically characterised previously. In the related species dichloro(6,7,14,15,16,17,18,19-octahydro-13*H*-dibenzo-[e,n][1,4,8,12]dithiadiazapentadecine)nickel(II)¹⁶ the chlorine atoms occupy trans axial sites and the sulphur donors take up cis equatorial positions. In the latter complex ¹⁶ the two Ni–Cl bond lengths (2.417 and 2.465 Å) differ by ca. 0.05 Å compared to a difference of ca. 0.08 Å in [Ni(L¹)Cl₂], while the mean Ni–Cl distance for chlorine trans to chlorine is 2.441 Å compared to a mean value of 2.403 Å for chlorine trans to a **Table 1.** Bond lengths (Å) and interbond angles (°) for $[Ni(L^1)Cl_2]$

Cl(1)-Ni(1)	2.363(1)	Cl(2)–Ni(1)	2.443(1)
S(1)-Ni(1)	2.407(1)	S(2)–Ni(1)	2.385(1)
C(11)-S(1)	1.825(3)		1.814(3)
C(13)-S(2)	1.801(4)	C(14) - S(2)	1.812(3)
C(1) - N(1)	1.335(4)	C(5) - N(1)	1.366(4)
C(2)-C(1)	1.389(5)	C(14)-C(1)	1.507(5)
C(3)-C(2)	1.392(5)	C(4)-C(3)	1.378(5)
C(5)-C(4)	1.369(5)	C(11) - C(5)	1.500(4)
C(6) - N(2)	1.357(4)	C(10) - N(2)	1.334(4)
C(7)-C(6)	1.372(5)	C(12)-C(6)	1.496(4)
C(8)-C(7)	1.392(5)	C(9)-C(8)	1.387(5)
C(10)-C(9)	1.385(4)	C(13)-C(10)	1.527(4)
Cl(2)-Ni(1)-Cl(1)	93.7(1)	S(1)-Ni(1)-Cl(1)	97.4(1)
S(1)-Ni(1)-Cl(2)	94.6(1)	S(2)-Ni(1)-Cl(1)	94.6(1)
S(2)-Ni(1)-Cl(2)	95.6(1)	S(2)-Ni(1)-S(1)	163.7(1)
N(1)-Ni(1)-Cl(1)	178.3(1)	N(1)-Ni(1)-Cl(2)	87.0(1)
N(1)-Ni(1)-S(1)	84.1(1)	N(1)-Ni(1)-S(2)	83.8(1)
N(2)-Ni(1)-Cl(1)	91.1(1)	N(2)–Ni(1)–Cl(2)	175.1(1)
N(2)-Ni(1)-S(1)	84.1(1)	N(2)-Ni(1)-S(2)	84.8(1)
N(2)-Ni(1)-N(1)	88.2(1)	C(11)–S(1)–Ni(1)	97.5(1)
C(12)-S(1)-Ni(1)	94.9(1)	C(12)–S(1)–C(11)	101.3(2)
C(13)-S(2)-Ni(1)	97.9(1)	C(14)–S(2)–Ni(1)	98.1(1)
C(14)-S(2)-C(13)	103.4(2)	C(1)-N(1)-Ni(1)	119.5(2)
C(5)-N(1)-Ni(1)	120.1(2)	C(5)-N(1)-C(1)	118.7(3)
C(2)-C(1)-N(1)	122.2(3)	C(14)-C(1)-N(1)	119.3(3)
C(14)-C(1)-C(2)	118.5(3)	C(3)-C(2)-C(1)	118.4(3)
C(4)-C(3)-C(2)	119.3(3)	C(5)-C(4)-C(3)	119.5(3)
C(4)-C(5)-N(1)	121.7(3)	C(11)-C(5)-N(1)	117.6(3)
C(11)-C(5)-C(4)	120.6(3)	C(6)-N(2)-Ni(1)	120.1(2)
C(10)-N(2)-Ni(1)	120.9(2)	C(10)-N(2)-C(6)	118.9(3)
C(7)-C(6)-N(2)	121.9(3)	C(12)-C(6)-N(2)	117.7(3)
C(12)-C(6)-C(7)	120.4(3)	C(8)-C(7)-C(6)	119.1(3)
C(9)-C(8)-C(7)	119.1(3)	C(10)-C(9)-C(8)	118.6(3)
C(9)-C(10)-N(2)	122.5(3)	C(13)-C(10)-N(2) 119.0(3)
C(13)-C(10)-C(9)	118.5(3)	C(5)-C(11)-S(1)	115.6(2)
C(6)-C(12)-S(1)	114.9(2)	C(10)-C(13)-S(2)	115.8(2)
C(1)-C(14)-S(2)	116.0(2)		

nitrogen donor. In $[Ni(L^1)Cl_2]$ the two Ni–N bond lengths differ by *ca*. 0.02 Å, with the slightly shorter Ni–N bond *trans* to the longer Ni–Cl bond. The average of these two Ni–N distances (2.084 Å) is not significantly different from the value of 2.095 Å for the two Ni–N bonds in dichloro(6,7,14,15,-16,17,18,19-octahydro-13*H*-dibenzo[*e,n*][1,4,8,12]dithiadi-

azapentadecine)nickel(II),¹⁶ where the nitrogen atoms are trans to sulphur donor atoms. The two Ni-S bond lengths in $[Ni(L^1)Cl_2]$ differ by ca. 0.02 Å, and the average Ni–S distance is 2.396 Å. This average bond length is somewhat shorter than the distance of 2.418 Å in bis(1-thia-4,7-diazacyclononane-S,N,N')nickel dinitrate¹⁷ where the two sulphur donors are crystallographically constrained to occupy trans co-ordination sites. The bond parameters within L^1 itself do not deviate significantly from the expected values. A consequence of the folding of L^1 in $[Ni(L^1)Cl_2]$ is that the pyridine rings make an angle of 94.4° with each other. Although this near perpendicularity does not correspond to the equilibrium solution conformation of the free ligand, dithia[3,3]cyclophanes have been shown to be conformationally mobile in solution.¹⁸ It is probably this flexibility in the ligand which allows the template synthesis about the Ni^{II} atom to proceed so readily.

Experimental

2,6-Bis(bromomethyl)pyridine 19 and 2,6-bis(mercaptomethyl)pyridine 20,21 were prepared by the literature methods.

Table 2. Atomic fractional co-ordinates $(\times 10^4)$ for $[Ni(L^1)Cl_2]$

Atom	X/b	Y/b	Z/c
Ni(1)	2 648(1)	2 766(1)	7 666(1)
	1 716(1)	2 027(1)	9 326(1)
Cl(2)	1 202(1)	1 097(1)	6 780(1)
S(1)	32(1)	5 643(1)	7 313(1)
S(2)	5 728(1)	382(1)	7 812(1)
N(1)	3 559(4)	3 376(3)	6 208(2)
C(1)	5 055(4)	2 131(4)	5 791(3)
C(2)	5 405(5)	2 221(5)	4 736(3)
C(3)	4 170(5)	3 686(5)	4 104(2)
C(4)	2 686(5)	5 020(4)	4 545(2)
C(5)	2 409(4)	4 848(4)	5 588(2)
N(2)	3 912(4)	4 269(3)	8 294(2)
C(6)	2 893(4)	6 043(4)	8 410(2)
C(7)	3 717(5)	7 129(4)	8 721(2)
C(8)	5 644(5)	6 375(4)	8 957(2)
C(9)	6 681(5)	4 553(5)	8 859(2)
C(10)	5 754(4)	3 547(4)	8 531(2)
C(11)	882(5)	6 333(4)	6 100(3)
C(12)	802(5)	6 775(4)	8 234(3)
C(13)	6 871(5)	1 519(4)	8 490(3)
C(14)	6 430(5)	583(4)	6 482(3)

Preparation of $[Ni_2(L^2)_2]$.—Hexa-aquanickel(II) sulphate (6.0 g, 0.0226 mol) was dissolved in concentrated ammonia solution (d = 0.880 g cm⁻³, 20 cm³) and water (75 cm³). To this solution was added, with stirring, 2,6-bis(mercaptomethyl)pyridine (3.86 g, 0.0226 mol) in methanol (15 cm³). A light brown precipitate was formed immediately. The solid was separated by filtration and dried *in vacuo* over sulphuric acid for 24 h. The product was powdered, washed with water, methanol, and diethyl ether, and dried again over sulphuric acid to yield the title complex as a dihydrate (4.6 g, 85%) (Found: C, 34.2; H, 3.0; N, 5.9. C₁₄H₁₈N₂Ni₂O₂S₄ requires C, 34.2; H, 3.4; N, 5.9%); m/z 454 ($M - 2H_2O$).

Preparation of $[Ni(L^1)Br_2]$.—To a suspension of $[Ni_2(L^2)_2]$ ·2H₂O (0.492 g, 1 mmol) in dmf (10 cm³) was added 2,6-bis(bromomethyl)pyridine (0.530 g, 2 mmol). The dark brown nickel(II) complex turned dark green upon the addition of the bromide. The mixture was heated to reflux and then stirred at 70 °C until all the dark green solid had vanished leaving a very light green material. This solid was collected by filtration, washed with cold absolute ethanol, and dried *in vacuo* over phosphorus pentoxide (0.42 g, 86%) (Found: C, 34.2; H, 3.0; Br, 30.5; N, 5.4; Ni, 12.0. C₁₄H₁₄Br₂N₂NiS₂ requires C, 34.1; H, 2.8; Br, 30.45; N, 5.4; Ni, 12.0%).

Crystal Structure Determination of $[Ni(L^1)Cl_2]$.—Suitable single crystals were obtained as blue blocks by slow evaporation of a methanolic solution, and a crystal with dimensions *ca*. $0.36 \times 0.31 \times 0.20$ mm was sealed in a 0.5-mm glass capillary. Space group and approximate cell parameters were determined *via* Weissenberg (Cu-K_a radiation) photography.

Crystal data. $C_{14}H_{14}Cl_2N_2NiS_2$, M = 404.0, triclinic, a = 7.754(1), b = 8.148(1), c = 12.945(2) Å, $\alpha = 85.08(1)$, $\beta = 89.08(1)$, $\gamma = 65.98(1)^{\circ}$, U = 744.1(2) Å³ (by least-squares refinement for 15 automatically centred reflections in the range $50 < 2\theta < 60^{\circ}$), space group PI (no. 2), D_m not measured, Z = 2, $D_c = 1.803$ g cm⁻³, F(000) = 412, Cu- K_{α} radiation, $\lambda = 1.541$ 8 Å, μ (Cu- K_{α}) = 75.33 cm⁻¹.

Data collection and processing.¹⁰ Syntex P2₁ diffractometer,

96-step ω —20 scan mode with a scan range from 1° below $K_{\alpha 1}$ to 1° above $K_{\alpha 2}$, scan speed 3.0—29.3° min⁻¹, graphite-monochromated Cu- K_{α} radiation; 2 663 reflections measured (3.0 < 20 < 125°, + h, $\pm k$, $\pm l$), 2 320 unique [merging R 0.008 after empirical absorption correction based on 444 ψ scans from 15 unique reflections (maximum and minimum transmission factors 0.391 and 0.208)], giving 2 275 with $F > 4\sigma(F)$. No significant variation in standard reflections during data collection.

Structure analysis and refinement. Nickel atom position from a Patterson synthesis, followed by Fourier difference techniques. Full-matrix least squares with all non-hydrogen atoms anisotropic. Hydrogen atoms placed in idealised positions and allowed to ride 1.08 Å from the relevant C atoms during refinement; each type of H assigned a common isotropic thermal parameter. The weighting scheme $w = [\sigma^2(F) + 0.0008|F|^2]^{-1}$ gave satisfactory agreement analysis. Final R and R' values were 0.052 and 0.059. Complex neutral-atom scattering factors were employed,²² and all computations were performed on the IBM 3081 computer at the University of Cambridge using SHELX 76.²³ The final atomic fractional co-ordinates are listed in Table 2.

References

- 1 G. A. Melson (ed.), 'Co-ordination Chemistry of Macrocyclic Compounds,' Plenum, New York, 1979.
- 2 G. R. Newkome, J. D. Sauer, J. M. Roper, and D. C. Hager, Chem. Rev., 1977, 77, 513.
- 3 V. K. Majestic and G. R. Newkome, Top. Curr. Chem., 1982, 106, 79.
- 4 H. J. J-B. Martell and M. Rasmussen, Tetrahedron Lett., 1971, 3843.
- 5 H. J. J-B. Martell, S. McMahon, and M. Rasmussen, Aust. J. Chem., 1979, 32, 1241.
- 6 F. Vogtle and L. Schunder, Chem. Ber., 1969, 102, 2677.
- 7 F. Vogtle and F. Ley, Chem. Ber., 1983, 116, 3000.
- 8 H. A. Staab and W. K. Appel, Liebigs Ann. Chem., 1981, 1065.
- 9 V. Boekelheide and J. A. Lawson, Chem. Commun., 1970, 1558.
- 10 E. C. Constable, J. Lewis, M. C. Liptrot, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1984, 2177.
- 11 E. C. Constable, F. Khan, J. Lewis, M. C. Liptrot, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1985, 333.
- 12 L-Y. Chung, E. C. Constable, M. S. Khan, J. Lewis, P. R. Raithby, and M. D. Vargas, J. Chem. Soc., Chem. Commun., 1984, 1425.
- 13 E. C. Constable, J. Lewis, V. E. Marquez, P. R. Raithby, and M. D. Vargas, unpublished work.
- 14 Y. Itaka, M. Shina, and E. Kimura, Inorg. Chem., 1974, 13, 2886.
- 15 J. H. Loehlin and E. B. Fleischer, Acta Crystallogr., Sect. B, 1976, 32, 3063.
- 16 L. A. Drummond, K. Henrick, M. J. L. Kamagasumdaram, L. F. Lindroy, M. McPartlin, and P. A. Tasker, *Inorg. Chem.*, 1982, 21, 3923.
- 17 S. M. Hart, J. C. A. Boeynes, J. P. Michael, and R. D. Hancock, J. Chem. Soc., Dalton Trans., 1983, 1601.
- 18 T. Sato, M. Wakahayaski, K. Hata, and M. Kainosho, *Tetrahedron Lett.*, 1971, 27, 2737.
- 19 W. O. Baker, K. M. Buggle, J. F. W. McOmie, and D. A. M. Watkin, J. Chem. Soc., 1958, 3594.
- 20 Bristol-Myes Co., U.S.P. 3 290 319/1966; Chem. Abstr., 1967, 66, 115609K.
- 21 Banya Pharmaceutical Co. Ltd., Jap. P. 72 17 778/1972; Chem. Abstr., 1972, 77, 151979S.
- 22 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
- 23 G. M. Sheldrick, SHELX 76, Crystal Structure Solving Package, Cambridge, 1976.

Received 24th October 1985; Paper 5/1853