Preparation and Crystal Structure of Quasi-cylindrical Crown Ether Complexes with Dimethyl- and Diethyl-thallium(III) Perchlorates \dagger

Kazuya Kobiro,* Shigeki Takada, Yoshinobu Odaira, and Yoshikane Kawasaki
Department of Applied Fine Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Complexes of quasi-cylindrical crown ethers with dimethyl- and diethyl-thallium (III) perchlorates have been prepared and their spin-spin coupling constants between the thallium nucleus and protons measured. The molecular structure of $\left[\mathrm{TIMe}_{2}\left(\mathrm{~L}^{1}\right)\right] \mathrm{CIO}_{4}\left\{L^{1}=1,4,7,18,21,24\right.$-hexaoxaperhydro[7.7] (4a,8a)naphthalenophane $\}$ has been determined by X-ray diffraction methods.

Although thousands of crown ethers have been synthesized and their complexes with spherical cations, such as alkali and alkaline-earth metal ions, have been widely investigated, little is known about the influence of topological changes of crown ethers on complexation with rod-like cations such as diorganothallium(III) ions. The present paper describes the preparation of quasi-cylindrical crown ether complexes with dimethyl- and diethyl-thallium(iII) perchlorates and the structure determination of the complex $\left[\mathrm{TlMe}_{2}\left(\mathrm{~L}^{1}\right)\right] \mathrm{ClO}_{4}$.

Results and Discussion

The desired complexes were easily obtained by a method similar to that described before. ${ }^{1,2}$ Irrespective of the ring size of the constituent bicycloalkane, all the quasi-cylindrical crown ethers $\mathrm{L}^{1}-\mathrm{L}^{4}$ gave crystalline complexes with dimethylthallium(III) in good yield, as summarized in Table 1. With diethylthallium(iII), bearing sterically bulkier groups, $\mathrm{L}^{2}, \mathrm{~L}^{3}$, and L^{4} gave complexes effectively, while L^{1} did not form a complex at all even after a long reaction time, indicating that L^{1} has selectivity for the molecular size of the guest molecule.

As shown in Table 2, ${ }^{1} \mathrm{H}$ n.m.r. spectra of these complexes show larger spin-spin coupling constants between the thallium nucleus and protons $\left[J\left(\mathrm{Tl}-\mathrm{CH}_{3}\right), J\left(\mathrm{Tl}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)\right.$, and $\left.J\left(\mathrm{Tl}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)\right]$ than those of L^{5}. In the case of L^{2}, the two methyl groups are not magnetically equivalent, as is observed in the complex cis,syn,cis-[T1Me $\left.\left(\mathrm{L}^{6}\right)\right]\left[\mathrm{OC}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3}-2,4,6\right] .{ }^{1,3}$ It is well known that larger coupling constants reflect stronger co-ordination of ligands surrounding the thallium nucleus. ${ }^{4}$ As a result, it is clear that thallium(iiI) ions are coordinated more strongly by the oxygen atoms of quasicylindrical crown ethers, $L^{1}-L^{4}$, than by those of L^{5}. From these data, we expect the thallium(III) ions to be situated in the centre of the quasi-cylindrical crown ethers.

The crystal structure analysis of $\left[\mathrm{TlMe}_{2}\left(\mathrm{~L}^{1}\right)\right] \mathrm{ClO}_{4}$ was performed to confirm the above reasoning. As shown in the Figure this complex has an approximate plane of symmetry, through $\mathrm{O}(2), \mathrm{O}(5)$, and $\mathrm{C}(29)-\mathrm{Tl}-\mathrm{C}(30)$, analogous to the complex cis,syn,cis-[TlMe $\left.{ }_{2}\left(\mathrm{~L}^{6}\right)\right]\left[\mathrm{OC}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3}-2,4,6\right] .{ }^{3}$ The Tl atom is situated in the O_{6} plane $[\mathrm{O}(1)-\mathrm{O}(6)]$ and the TlC_{2} unit is perpendicular to this plane (88.7 and 87.2°). The bond angle of the TlC_{2} unit is approximately linear $\left(179^{\circ}\right)$. The conformation of the two decalin moieties, forming side walls, takes a chair form; torsion angles, $\mathrm{O}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$ and $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(4)$, are in a

[^0]

L^{5}

L^{6}

ι^{7}
clockwise direction -56.3 and 56.2°, respectively. The $C(1)-C(20), C(2)-(16), C(7)-C(21)$, and $C(8)-C(25)$ bonds are approximately perpendicular to the O_{6} plane (87.6, 83.2, 82.8, and 85.5°, respectively). The distances of the methyl groups to the decalin wall are 3.81 from $\mathrm{C}(29)$ to $\mathrm{C}(16), 3.82$ from $\mathrm{C}(29)$ to $\mathrm{C}(21), 3.85$ from $\mathrm{C}(30)$ to $\mathrm{C}(20)$, and $3.97 \AA$ from $\mathrm{C}(30)$ to $\mathrm{C}(25)$. These distances are slightly shorter than the sum of the van der Waals radii of two methyl groups ($4.0 \AA$).

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b}$ Recrystallized from
acetone-light petroleum unless otherwise stated. ${ }^{c} \mathrm{~d}=$ Decomposition.
${ }^{d}$ Recrystallized from dichloromethane-n-hexane.

Figure. The structure of $\left[\mathrm{TlMe}_{2}\left(\mathrm{~L}^{1}\right)\right]^{+}$

Table 2. Coupling constants (in Hz) and proton chemical shifts for the complexes

${ }^{a}$ In $\mathrm{CD}_{3} \mathrm{CN}, 100-\mathrm{MHz}$ spectra. ${ }^{b}$ In $\mathrm{CD}_{3} \mathrm{CN}, 60-\mathrm{MHz}$ spectra unless otherwise stated. ${ }^{c}$ No complex was formed.

Table 3. Atomic co-ordinates, with estimated standard deviations in parentheses, for [$\left.\mathrm{TlMe}_{2}\left(\mathrm{~L}^{1}\right)\right] \mathrm{ClO}_{4}$

Atom	X / a	Y / b	Z/c	Atom	X/a	Y / b	Z/c
Tl	0	0.24179(7)	0	C(15)	$0.3214(23)$	$0.1721(31)$	$-0.1387(11)$
O(1)	0.2177(12)	0.4067(19)	-0.0135(6)	C(16)	$0.3041(23)$	$0.1996(30)$	-0.0757(13)
$\mathrm{O}(2)$	$0.1951(15)$	0.3191(22)	0.1079(7)	C(17)	0.3571(19)	$0.5296(27)$	-0.0665(11)
$\mathrm{O}(3)$	-0.0362(13)	0.1846(22)	0.1182(7)	C(18)	$0.2942(35)$	$0.7124(37)$	-0.0709(18)
$\mathrm{O}(4)$	-0.2269(12)	0.0768(20)	0.0087(8)	C(19)	$0.1873(30)$	$0.7476(19)$	-0.1213(13)
$\mathrm{O}(5)$	-0.2004(15)	0.1673(22)	-0.1113(8)	C(20)	0.0741(20)	0.6108(28)	-0.1304(9)
O(6)	0.0343 (13)	$0.3041(21)$	-0.1240(8)	C(21)	$-0.0843(21)$	$-0.1303(30)$	$0.1223(16)$
C(1)	$0.1287(19)$	0.4304(25)	-0.1300(8)	C(22)	-0.1749(38)	-0.2741(38)	0.1238(27)
C(2)	0.2505(21)	0.3918(26)	-0.0693(14)	C(23)	$-0.3074(30)$	-0.2381(26)	0.0627(13)
C(3)	$0.3264(18)$	0.4014(37)	0.0492(9)	C(24)	$-0.3541(24)$	-0.0471(31)	$0.0681(13)$
C(4)	$0.2823(19)$	0.4497(33)	0.1014(9)	C(25)	-0.3096(21)	$0.2686(22)$	$0.0704(12)$
C(5)	0.1598(22)	0.3380(37)	$0.1646(10)$	C(26)	-0.3281(24)	0.3151(35)	$0.1325(16)$
C(6)	$0.0915(21)$	0.1906(43)	$0.1732(12)$	C(27)	-0.1960(32)	$0.2817(39)$	$0.1950(16)$
C(7)	-0.1283(19)	0.0599(26)	$0.1254(13)$	C(28)	-0.1474(22)	$0.1055(28)$	0.1892(9)
C(8)	-0.2582(15)	0.0910(23)	0.0676(9)	C(29)	$0.0818(25)$	-0.0143(35)	0.0042(19)
C(9)	$-0.3315(28)$	0.0853(45)	-0.0518(12)	C(30)	-0.0761(25)	$0.4984(30)$	-0.0038(11)
C(10)	$-0.2758(27)$	0.0291(42)	-0.1079(15)	Cl	0.5473(9)	0.6119(14)	-0.1916(5)
C(11)	-0.1710(24)	0.1570(43)	-0.1685(14)	$\mathrm{O}(7)$	$0.4505(15)$	$0.4971(20)$	-0.2197(8)
C(12)	-0.0953(23)	0.3042(40)	-0.1744(12)	$\mathrm{O}(8)$	0.5996 (15)	0.5987(19)	-0.1198(8)
C(13)	0.1476 (23)	0.3908(30)	-0.1951(13)	$\mathrm{O}(9)$	$0.5808(15)$	$0.8323(21)$	-0.1842(8)
C(14)	0.1935(26)	0.2122(31)	-0.1984(12)	O(10)	0.4596(20)	0.7498(15)	-0.1852(10)

Interestingly, bond distances from thallium to the oxygens $O(1), O(3), O(4)$, and $O(6)$, which are bonded to the decalin moieties, are much longer than those of the others (longer, $2.82-2.94$; shorter, $2.61-2.68 \AA$). In the case of $\left[\mathrm{TlMe}_{2}\left(\mathrm{~L}^{6}\right)\right]$ [$\left.\mathrm{OC}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3}-2,4,6\right]$, there are no significant differences between the bond distances from Tl to oxygens which are bonded to cyclohexane moieties and to those of the other oxygens (cis,syn,cis isomer: the former 2.68-2.98 and the latter 2.74$2.80 \AA$; cis,anti,cis isomer: the former $2.74-2.87$ and the latter
$2.76 \AA$, respectively). ${ }^{3}$ Moreover, the longer distances are much longer and the shorter distances much shorter than those described in the complex [$\left.\mathrm{TlMe}_{2}\left(\mathrm{~L}^{7}\right)\right]\left[\mathrm{OC}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3}-2,4,6\right]$ (longer, $2.77-2.82$; shorter $2.69-2.70 \AA$). ${ }^{5}$ Consequently, the O_{6} hexagon of $\left[\mathrm{TlMe}_{2}\left(\mathrm{~L}^{1}\right)\right]^{+}$is widely elongated in the direction of each decalin moiety. The steric effect of the decalin wall, as shown above, and the strong co-ordination of $\mathrm{O}(2)$ and $\mathrm{O}(5)$ might be the cause of the large spin-spin coupling observed (Table 2).

Table 4. Bond distances (\AA) for $\left[\mathrm{TeMe}_{2}\left(\mathrm{~L}^{1}\right)\right] \mathrm{ClO}_{4}$

Tl-O(1)	2.842(14)	T1-O(2)	2.608(17)
Tl-O(3)	2.818(17)	Tl-O(4)	2.890 (18)
Tl-O(5)	2.677(18)	Tl-O(6)	2.939(17)
Tl-C(29)	2.170 (42)	TI-C(30)	$2.150(28)$
$\mathrm{O}(1)-\mathrm{C}(2)$	1.413(34)	$\mathrm{O}(1)-\mathrm{C}(3)$	$1.450(32)$
$\mathrm{O}(2)-\mathrm{C}(4)$	1.444(31)	$\mathrm{O}(2)-\mathrm{C}(5)$	1.451(34)
$\mathrm{O}(3)-\mathrm{C}(6)$	$1.476(38)$	$\mathrm{O}(3)-\mathrm{C}(7)$	1.457(33)
$\mathrm{O}(4)-\mathrm{C}(8)$	1.469(26)	$\mathrm{O}(4)-\mathrm{C}(9)$	1.400 (39)
$\mathrm{O}(5)-\mathrm{C}(10)$	1.378(37)	$\mathrm{O}(5)-\mathrm{C}(11)$	1.419(38)
$\mathrm{O}(6)-\mathrm{C}(1)$	1.475(27)	$\mathrm{O}(6)-\mathrm{C}(12)$	1.445(35)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.528(37)$	$\mathrm{C}(1)-\mathrm{C}(13)$	$1.556(31)$
$\mathrm{C}(1)-\mathrm{C}(20)$	1.523(31)	$\mathrm{C}(2)-\mathrm{C}(16)$	1.630(42)
$\mathrm{C}(2)-\mathrm{C}(17)$	1.577(39)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.459(39)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.422(44)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.538(34)$
$\mathrm{C}(7)-\mathrm{C}(21)$	$1.562(46)$	$\mathrm{C}(7)-\mathrm{C}(28)$	1.541(38)
$\mathrm{C}(8)-\mathrm{C}(24)$	1.511(34)	$\mathrm{C}(8)-\mathrm{C}(25)$	1.500 (33)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.635(48)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.451(46)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.487(37)	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.556(38)$
$\mathrm{C}(15)-\mathrm{C}(16)$	1.488(38)	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.566(47)$
$\mathrm{C}(18)-\mathrm{C}(19)$	1.310 (52)	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.596(40)$
$\mathrm{C}(21)-\mathrm{C}(22)$	1.510(69)	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.588(43)$
$\mathrm{C}(25)-\mathrm{C}(26)$	1.504(43)	C(27)-C(28)	1.491(43)

Experimental

${ }^{1}$ H N.m.r. spectra were measured on JEOL JNM-PS-100 (100 MHz) and Hitachi R-600S (60 MHz) spectrometers, using SiMe_{4} as internal standard and $\mathrm{CD}_{3} \mathrm{CN}$ as solvent.

Preparation of Complexes.-Complexes were prepared by a method similar to that described before ${ }^{1}$ in an appropriate solvent (propan-2-ol, acetone, or $\mathrm{CD}_{3} \mathrm{CN}$), and purified by recrystallization from acetone-light petroleum or dichloro-methane-n-hexane.

Crystal Data. $-\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{ClO}_{10} \mathrm{Tl}, M=814.57$, monoclinic, $a=11.075(3), b=7.753(2), c=22.052(7) \AA, \beta=112.21(3)^{\circ}$, $U=1753 \AA^{3}$ (by least-squares refinement on diffractometer angles of 25 automatically centred reflections, $\lambda=71069 \AA$), space group $P c, Z=2, D_{c}=1.54 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=47.8$ $\mathrm{cm}^{-1}, F(000)=824$; white needle of approximate dimensions $0.20 \times 0.24 \times 0.80 \mathrm{~mm}$ recrystallized from methanol.

Data Collection and Processing.-The data were collected on a Rigku automated four-circle diffractometer, $\theta-2 \theta$ scan,

Table 5. Selected bond angles (${ }^{\circ}$) for $\left[\mathrm{TiMe}_{2}\left(\mathrm{~L}^{1}\right)\right] \mathrm{ClO}_{4}$

$\mathrm{O}(1)-\mathrm{Tl}-\mathrm{O}(2)$	$63.2(5)$	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$111(3)$
$\mathrm{O}(2)-\mathrm{T}-\mathrm{O}(3)$	$63.3(6)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)$	$108(3)$
$\mathrm{O}(3)-\mathrm{Tl}-\mathrm{O}(4)$	$55.8(5)$	$\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(7)$	$115(3)$
$\mathrm{O}(4)-\mathrm{Tl}(5)$	$61.7(6)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$106(2)$
$\mathrm{O}(5)-\mathrm{Tl}-\mathrm{O}(6)$	$62.4(5)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(4)$	$105(2)$
$\mathrm{O}(6)-\mathrm{T}-\mathrm{O}(1)$	$54.2(5)$	$\mathrm{C}(8)-\mathrm{O}(4)-\mathrm{C}(9)$	$117(3)$
$\mathrm{C}(29)-\mathrm{Tl}-\mathrm{C}(30)$	$179(2)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$107(3)$
		$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)$	$104(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	$108(3)$	$\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(11)$	$111(3)$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(3)$	$116(2)$	$\mathrm{O}(5)-\mathrm{C}(11)-\mathrm{C}(12)$	$112(3)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$110(3)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(6)$	$12(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	$110(3)$	$\mathrm{C}(12)-\mathrm{O}(6)-\mathrm{C}(1)$	$118(2)$
$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(5)$	$115(2)$	$\mathrm{O}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$102(2)$

$0<20<55^{\circ}$, graphite-monochromated Mo- K_{α} radiation, 4257 unique reflections, 3323 reflections with $I>3 \sigma(I)$. Absorption corrections were not applied.

Structure Analysis and Refinement.--A Patterson function was used to determine the position of the thallium atom. The remaining atoms were located from Fourier maps. All the nonhydrogen atoms were refined anisotropically by block-diagonal least-square methods. R and R^{\prime} values were 0.078 and 0.117 , respectively. Atomic co-ordinates are given in Table 3, bond lengths in Table 4, and selected bond angles in Table 5.

Acknowledgements

We are grateful to Associate Professor Y. Kai for helpful discussions during the course of this work.

References

1 Y. Kawasaki and R. Kitano, Chem. Lett., 1978, 1427.
2 Y. Kawasaki and N. Okuda, Chem. Lett., 1982, 1161.
3 D. L. Hughes and M. R. Truter, J. Chem. Soc., Chem. Commun., 1982, 727; Acta Crystallogr., Sect. B, 1983, 39, 329.
4 G. D. Shier and R. S. Drago, J. Organomet. Chem., 1966, 5, 330; Y. Kawasaki and M. Aritomi, ibid., 1976, 104, 39; P. J. Burke, R. W. Matthews, and D. G. Gillies, ibid., 1976, 118, 129.
5 K. Henrick, R. W. Matthews, B. L. Podejma, and P. A. Tasker, J. Chem. Soc., Chem. Commun., 1982, 118; J. Crowder, K. Henrick, R. W. Matthews, and B. L. Podejma, J. Chem. Res., 1983 (S) 82; (M) 0901.

Received 5th July 1985; Paper 5/1133

[^0]: \dagger Supplementary data available (No. SUP 56562, 4 pp.): thermal parameters, least-squares plane data. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii-xx. Structure factors are available from the editorial office.

