Effect of Oxidation State of Plastocyanin on the Remote Binding Site $\mathbf{p} K_{a} \dagger$

Joseph McGinnis, John D. Sinclair-Day, and A. Geoffrey Sykes*
Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU

The variation of rate constants for the $\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}[$ phen $=1,10$-phenanthroline $),\left[\mathrm{Co}(\text { terpy })_{2}\right]^{2+}$ (terpy $=2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine), and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{2+}$ ($\mathrm{py}=$ pyridine) reductions of parsley plastocyanin PCu (II) with pH indicate an acid dissociation $\mathrm{p} K_{\mathrm{a}}$ at the remote east face of 5.05 , whereas for the oxidant $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{3+}$ with $\mathrm{PCu}(1)$ the value is 5.8 . Implications of this change and the relevance to the reaction with cytochrome f are considered.

Effects of pH on the reactivity of the single (type 1) copper protein plastocyanin ($M 10500 ; E^{\circ} 370 \mathrm{mV}$) from parsley leaves are considered in this paper. ${ }^{1}$ In previous work it has been demonstrated that at pH 7.5 an oxidant such as $\left[\mathrm{Co}(\text { phen })_{3}\right]^{3+}$ (phen $=1,10$-phenanthroline) $(370 \mathrm{mV})$ reacts $\sim 61 \%$ at the Tyr 83 binding site (the so-called east face) of the molecule. ${ }^{2}$ It is presumed that the rest of the reaction is at (or close to) the His 87 (north) site, which represents the closest possible approach ($6 \AA$) from the surface of the protein to the Cu active site. ${ }^{3}$ Rate constants for the reaction of $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{3+}$ at the Tyr 83 site decrease with pH ($\mathrm{p} K_{\mathrm{a}} 5.8$). Association of redox inactive $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]^{4+}$ is also inhibited by protonation $\left(\mathrm{p} K_{\mathrm{a}} 5.8\right){ }^{4}$ With $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{s}}(\mathrm{py})\right]^{2+}$ ($\mathrm{py}=\mathrm{py}$ ridine) as reductant for $\mathrm{PCu}(\mathrm{II})$, rate constants for reaction solely at the Tyr 83 site also decrease with pH , but the $\mathrm{p} K_{\mathrm{a}}$ is now $5.0 .^{5}$ Because of the extensive distribution of negative charge at the east face, ${ }^{1.3}$ it cannot be assumed that $\left[\mathrm{Co}(\text { phen })_{3}\right]^{3+}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{2+}$ react at precisely the same locality, and are influenced by the same acid dissociation process. It has been possible to obtain further relevant information by studying the $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{2+}$ reduction of $\mathrm{PCu}(\mathrm{II})$, equation (1). Microscopic reversibility requires that

$$
\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}+\mathrm{PCu}(\mathrm{II}) \longrightarrow
$$

$$
\begin{equation*}
\left[\mathrm{Co}(\text { phen })_{3}\right]^{3+}+\mathrm{PCu}(\mathrm{I}) \tag{1}
\end{equation*}
$$

$\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}$ and $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{3+}$ react at an identical site (or sites) on plastocyanin.

Results and Discussion

Experimental details were as previously described. ${ }^{1,4.5}$ The $\mathrm{pH}-$ jump method was used with the protein dialysed into 0.10 M NaCl at $\mathrm{pH} 7.5(1 \mathrm{mM}$ Tris -HCl$)$ [Tris $=\operatorname{tris}($ hydroxymethyl $)-$ aminoethane], and solutions of complex made up in 40 mM buffer [acetate, 2-(N-morpholino)ethanesulphonic acid (mes), and Tris] at the required pH . Because of the potential lability of $\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}$ a $6: 1$ ratio of 1,10 -phenanthroline to Co^{11} was used to retain the complex in the tris-chelated form. A reaction between phen and $\mathrm{PCu}(\mathrm{II})$ was observed, but this is at least an order of magnitude slower than the redox process. The variation of second-order rate constants $k_{\text {exp. }}$. with pH is indicated in Table 1 and the effect illustrated on a relative scale in the Figure. These values give a good fit to equation (2),

$$
\begin{equation*}
k_{\text {exp. }}=\frac{k_{0} K_{\mathrm{a}}+k_{\mathrm{H}}\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]} \tag{2}
\end{equation*}
$$

Table 1. The variation of second-order rate constants for the reduction of parsley $\mathrm{PCu}(\mathrm{II})\left(\sim 1 \times 10^{-5} \mathrm{M}\right)$ with pH at $25^{\circ} \mathrm{C}$ and $I=0.10 \mathrm{M}$ $(\mathrm{NaCl}) *$

Reductant $\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}$ at $(1.2-2.6) \times 10^{-4} \mathrm{M}$						
pH	4.43	4.95	5.22	5.53	6.59	7.40
$10^{-3} k_{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	1.380	1.665	1.96	2.13	2.44	2.48
Reductant $\left[\mathrm{Co}(\text { terpy })_{2}\right]^{2+}$ at $(0.6-3.7) \times 10^{-4} \mathrm{M}$						
pH	4.25	4.54	4.80	5.10	5.30	5.48
$10^{-4} k_{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	4.17	4.39	4.95	5.72	5.96	6.38
pH	5.71	6.02	6.30	6.75	7.50	
$10^{-4} k_{\text {exp }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	6.73	6.87	7.15	7.34	7.46	

Reductant $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{2+}$ at $(1.3-3.8) \times 10^{-4} \mathrm{M}$

pH	3.96	4.31	4.42	4.47	4.73	4.92
$10^{-5} \boldsymbol{k}_{\text {exp }} / \mathbf{M}^{-1} \mathrm{~s}^{-1}$	2.25	2.47	2.66	2.74	2.96	3.05
pH	5.25	5.48	5.70	6.50	7.28	
$10^{-5} \boldsymbol{k}_{\text {exp. }} / \mathbf{M}^{-1} \mathrm{~s}^{-1}$	3.50	3.72	4.00	4.38	4.45	

* Buffers used: acetate, $\mathrm{pH} 4.2-5.5$; mes, $\mathrm{pH} 5.3-6.8$; Tris, $\mathrm{pH}>7$.

Figure. Variation of rate constants (on a relative scale) with pH for the reduction of parsley plastocyanin $\mathrm{PCu}(\mathrm{II})$ with $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{2+}$ (О), $\left[\mathrm{Co}(\text { terpy })_{2}\right]^{2+}(\triangle)$, and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{2+}(\square)$ at $25^{\circ} \mathrm{C}$ and $I=$ $0.10 \mathrm{M}(\mathrm{NaCl})$
where the various constants are as defined in equations (3)-(5).

$$
\begin{gather*}
\mathrm{HPCu}(\mathrm{II}) \stackrel{K_{\mathrm{t}}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{PCu}(\mathrm{II}) \tag{3}\\
\mathrm{Co}^{\mathbf{I I}}+\mathrm{HPCu}(\mathrm{II}) \xrightarrow{k_{\mathrm{H}}} \tag{4}\\
\mathrm{Co}^{\mathrm{II}}+\mathrm{PCu}(\mathrm{II}) \xrightarrow{k_{\mathrm{o}}} \tag{5}
\end{gather*}
$$

Table 2. Summary of $\mathrm{p} K_{\mathrm{a}}, k_{\mathrm{H}}$, and k_{o} values for the reduction of parsley $\mathrm{PCu}(\mathrm{II})$ at $25^{\circ} \mathrm{C}$ and $I=0.10 \mathrm{M}(\mathrm{NaCl})$

Reductant	$\mathrm{p} K_{\mathrm{a}}$	$k_{\mathrm{H}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\mathrm{o}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$
$\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}$	5.08	1.11×10^{3}	2.49×10^{3}
$\left[\mathrm{Co}(\text { terpy })_{2}\right]^{2+}$	5.02	3.56×10^{4}	7.32×10^{4}
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{2+}$	5.07	2.19×10^{5}	4.44×10^{5}

A non-linear least-squares treatment gives $\mathrm{p} K_{\mathrm{a}}=5.08 \pm 0.06$, $k_{\mathrm{H}}=(1.11 \pm 0.06) \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, and $k_{\mathrm{o}}=(2.49 \pm 0.03) \times$ $10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

Further to substantiate this study, we have used [Co(terpy) $\left.{ }_{2}\right]^{2+}$ (terpy is the tridentate ligand $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine) as a reductant ($E^{0} 260 \mathrm{mV}$) for $\mathrm{PCu}(\mathrm{II})$, Table 1. These results are also illustrated in the Figure. From a fit to equation (2), $\mathrm{p} K_{\mathrm{a}}=5.02 \pm 0.05, k_{\mathrm{H}}=(3.6 \pm 0.02) \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, and $k_{\mathrm{o}}=$ $(7.3 \pm 0.01) \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. We have also sought better to define the $\mathrm{p} K_{\mathrm{a}}$ and amplitude of the effect of pH , with $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{2+}$ as reductant, Table 1. The new results give $\mathrm{p} K_{\mathrm{a}}=5.07 \pm 0.05, k_{\mathrm{H}}=(2.19 \pm 0.06) \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, and $k_{\mathrm{o}}=(4.4 \pm 0.1) \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (the previous $\mathrm{p} K_{\mathrm{a}}$ was 5.0 , with $k_{\mathrm{H}}=1.52 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$).

The results obtained are collected in Table 2. Clearly all three reductants are influenced by the same $\mathrm{p} K_{\mathrm{a}}$ of 5.05 ± 0.03. Since moreover $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{2+}$ and $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{3+}$ must use the same site, it can be concluded that all three reductants react at this same site, and that there are no variations with the different ligands. Ratios $\left(k_{\mathrm{o}}-k_{\mathrm{H}}\right) / k_{\mathrm{o}}$ indicating the effectiveness of protonation are for $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{2+}(55 \%)$, $\left[\mathrm{Co}(\text { terpy })_{2}\right]^{2+}$ (51%), and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{py})\right]^{2+}(51 \%)$, which compare with the value for $\left[\mathrm{Co}(\text { phen })_{3}\right]^{3+}(58 \%) .^{2}$ The latter is about the same as the maximum effectiveness of the redox inactive complex $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CoNH}_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}$ on the $\left[\mathrm{Co}(\text { phen })_{3}\right]^{3+}$ reaction at pH 7.6 (61%), ${ }^{4}$ suggesting that a proton and blocking complex induce the same net effect. ${ }^{6}$ It has been concluded that this is a measure of the reaction taking place at the Tyr 83 east face site. The remaining $\sim 40 \%$ reaction is believed to occur at an alternative site (or sites), the most likely candidate being the His 87 site.

A somewhat different situation pertains in the proteinprotein reactions of $\mathrm{PCu}(\mathrm{II})$ with cytochrome $\mathrm{c}(\mathrm{II})^{6}$ and cytochrome $\mathrm{f}(\mathrm{II}),{ }^{7}$ when effects of protonation and blocking are much more extensive and approaching 100%, indicating much greater specificity for the east face. Values of $\mathrm{p} K_{\mathrm{a}}$ for $\mathrm{PCu}(\mathrm{II})$ are 4.90 and 5.07 respectively from these studies.

It is concluded that for parsley plastocyanin, the Tyr 83 binding site $\mathrm{p} K_{\mathrm{a}}$ of 5.8 for $\mathrm{PCu}(\mathrm{I})$ is shifted to 5.05 for $\mathrm{PCu}(\mathrm{II})$. One possible explanation of a $\mathrm{p} K_{\mathrm{a}}$ of 5.8 is that two carboxylates share a proton, whereas one of 5.0 may stem from protonation
at a single carboxylate only. If the carboxylates in question are at the 42-45 patch, then it seems at first unlikely that the change in charge on the Cu can be influential at $18 \AA$ distance. However, much depends on the size of the dielectric constant within the protein, about which little is known. A conformation change which affects the charge distribution at the Tyr 83 site is an alternative explanation. The His 37 residue, which is coordinated to the Cu , is linked directly to the $42-45$ patch by a chain of highly conserved amino-acid residues. Close proximity of the Tyr 83 residue to the co-ordinated Cys 84 may also be important. Fluorescence experiments on the nitro modified Tyr 83 derivative ${ }^{8}$ have indicated sensitivity of the Tyr 83 residue to oxidation state of the Cu . Crystal structure information for poplar plastocyanin gives no evidence for changes at the east face as the oxidation state of the Cu changes. However, crystals were grown from $2.7 \mathrm{M}\left[\mathrm{NH}_{4}\right]_{2} \mathrm{SO}_{4},{ }^{3}$ and fluorescence experiments appear to demonstrate that this level of [$\left.\mathrm{NH}_{4}\right]_{2} \mathrm{SO}_{4}$ excludes such changes at the east face. ${ }^{8}$

The sensitivity of protonation to oxidation state of the Cu reported here is no doubt important in the function of the protein. The natural photosynthetic electron-transport partners plastocyanin and cytochrome f are believed to have complementary surfaces which leads to efficient association prior to electron transfer. One problem is how dissociation of the product pair can occur following electron transfer. A conformation change after electron transfer bringing about a change in $\mathrm{p} K_{\mathrm{a}}$ at the binding site is clearly one way in which this could be achieved.

Acknowledgements

We are grateful to the S.E.R.C. for post-doctoral (to J. McG.) and post-graduate (to J. D. S-D.) support.

References

1 A. G. Sykes, Chem. Soc. Rev., 1985, 283.
2 J. D. Sinclair-Day, M. J. Sisley, A. G. Sykes, G. C. King, and P. E. Wright, J. Chem. Soc., Chem. Commun., 1985, 505.

3 J. M. Guss and H. C. Freeman, J. Mol. Biol., 1983, 169, 521
4 S. K. Chapman, A. D. Watson, and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1983, 2545.
5 S. K. Chapman, I. Sanemasa, and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1983, 2549.
6 S. K. Chapman, C. V. Knox, and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1984, 2775.
7 D. Beoku-Betts, S. K. Chapman, C. V. Knox, and A. G. Sykes, Inorg. Chem., 1985, 24, 1677.
8 E. L. Gross, G. P. Anderson, S. K. Ketchner, and J. E. Draheim, Biochim. Biophys. Acta, 1985, 808, 437.

Received 23rd October 1985; Paper 5/1843

