Notes

Synthesis, Crystal Structure, \dagger and Gas-phase Photoelectron Spectroscopic Study of B, B^{\prime}-Bis(1,3-dicyclohexyl-1,3,2-diazaborolidin-2-yI)

George Ferguson * and Masood Parvez
Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
R. Paul Brint, Deirdre C. M. Power, and Trevor R. Spalding*
Department of Chemistry, University College, Cork, Ireland
D. Robert Lloyd
Department of Chemistry, Trinity College, Dublin 2, Ireland

Abstract

The highly sterically hindered compound B, B^{\prime}-bis(1,3-dicyclohexyl-1,3,2-diazaborolidin-2-yl) (1) was prepared by transamination of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$. It is unreactive towards air or moisture. Crystals of (1) are monoclinic, $a=16.829(3), b=12.021(2), c=14.744(3) \AA, \beta=95.06(2)^{\circ}, Z=4$, and space group $C 2 / c$. The structure was solved by direct methods and refined by full-matrix leastsquares calculations to $R=0.097$ for 1247 reflections with $/>3 \sigma(/)$. The molecule has crystallographic two-fold symmetry and the two halves of the molecule are linked through boron atoms, with $B-B 1.721$ (12) À. Other ring distances are: mean $B-N 1.393(7)$, mean $C-N 1.454(6)$, and mean C-C 1.494(9) A. The five-membered ring $\mathrm{BN}_{2} \mathrm{C}_{2}$ planes form a dihedral angle of 80.7°. Both cyclohexyl rings are in chair conformations. A comparison of the photoelectron spectrum of compound (1) with that of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ suggests that both compounds are in a staggered conformation in the gas phase; a reassignment of the $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ spectrum is proposed.

Compounds of the type $\mathrm{X}_{2} \mathrm{~B}-\mathrm{BX}_{2}\left(\mathrm{X}=\right.$ halide, OR , or $\left.\mathrm{NR}_{2}\right)$ are well known. ${ }^{1}$ The halides ($\mathrm{X}=\mathrm{F}$ or Cl) are structurally interesting because they appear to adopt planar $\left(D_{2 n}\right)$ configurations in the solid state and either planar $(X=F)$ or non-planar ($D_{2 d}$) configurations ($\mathrm{X}=\mathrm{Cl}$) in the liquid or gas phase. Dialkylamino derivatives, $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4},{ }^{2}$ and $B, B^{\prime}-$ bis(1,3-dimethyl-1,3,2-diazaborolidin-2-yl) $(\mathbf{I} ; \mathbf{R}=\mathbf{M e})^{3}$ are

(I)
reported to be non-planar in the liquid and solid state respectively. The two BN_{2} groups are not mutually perpendicular, but have interplane $\left(\mathrm{BN}_{2}\right)-\left(\mathrm{BN}_{2}\right)^{\prime}$ angles of $c a .30$ and ca. 60° respectively. The gas-phase photoelectron (p.e.) spectrum of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ has been interpreted in terms of a planar model. ${ }^{4}$ In view of the possible variation of interplane angle with phase, we decided to prepare sterically rigid $\mathrm{B}_{2} \mathrm{~N}_{4}$ systems which would be non-planar in both the solid and gas phase and to investigate their electronic structure in the gas phase by p.e. spectroscopy and MNDO molecular-orbital (m.o.) calculations. The results are compared to data for $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$.

[^0]
Results and Discussion

In order to achieve a sterically rigid non-planar structure the compounds (I) $\left[\mathbf{R}=\right.$ cyclohexyl (1) or $\left.\operatorname{Pr}^{\mathbf{i}}(\mathbf{2})^{5}\right]$ were prepared. Compound (1) was obtained in 47% yield by the transamination of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ with N, N^{\prime}-dicyclohexylethylenediamine. It is stable to atmospheric hydrolysis for at least 6 months. Crystals suitable for an X-ray diffraction study were grown from isopropyl alcohol.

The molecular structure of compound (1) and the atom numbering are shown in the Figure, with selected interatomic distances and angles in Table 1. The structure contains discrete well separated molecules with the two $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{~B}$ rings related by crystallographic two-fold symmetry and linked through boron atoms with B-B' 1.721(12) \AA. A B-B distance of $1.693(9) \AA$ was previously reported for ($\mathbf{I} ; \mathbf{R}=\mathbf{M e}$). ${ }^{3}$ Intercage $\mathbf{B}-\mathbf{B}$ distances in $1,1^{\prime}-\left(\mathrm{B}_{5} \mathrm{H}_{8}\right)_{2}{ }^{6}$ and the $2,2^{\prime}-7^{7} 2,6^{\prime}-{ }^{8}$ and $1,5^{\prime}-{ }^{9}$ isomers of $\left(\mathrm{B}_{10} \mathrm{H}_{13}\right)_{2}$ are 1.74(6), 1.692(3), 1.679(3), and 1.698(3) \AA

Figure. Stereoview of compound (1). The crystallographic two-fold axis passes through the midpoint of the B-B bond; for clarity, the cyclohexyl rings bonded to $\mathrm{N}\left(1^{\prime}\right)$ and $\mathrm{N}\left(2^{\prime}\right)$ have been omitted

Table 1. Molecular dimensions (distances in \AA, angles in ${ }^{\circ}$) for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~N}_{4}$, (1), with estimated standard deviations (e.s.d.s) in parentheses

* Average e.s.d. of torsion angles is 0.8°. Primed atoms are related to unprimed atoms by the symmetry operation: $-x, y, \frac{1}{2}-z$. The equation of the best plane through the atoms of the $\mathrm{BN}_{2} \mathrm{C}_{2}$ ring is $10.8727 x+7.7798 y+5.1028 z=2.0892$. Deviations $\left(\AA \times 10^{3}\right)$ of the atoms from this plane are: $\mathrm{B},-3 ; \mathrm{N}(1),-23 ; \mathrm{N}(2), 28 ; \mathrm{C}(1), 36 ; \mathrm{C}(2),-38$.

Table 2. Ionisation energies (eV) of the four highest-occupied orbitals in $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$, (1), and (2)

$\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$		(1)	(2)
Exptl. ${ }^{4}$	Calc. (MNDO)		
$\left(\Pi_{4}\right) 7.3$	8.84	7.4	73
$\left(\Pi_{3}\right) 7.6$	9.11	7.4	7.3
$\left(\Pi_{2}\right) 9.0$	10.40, 10.53	8.9	9.0
$\left(\Pi_{1}\right) 9.5$ (sh)	11.66		

sh $=$ Shoulder, designation $\Pi_{1}-\Pi_{4}$ as in ref. 4. The ionisation Π_{1} is reassigned in the text.
respectively. For $\mathrm{B}_{2} \mathrm{~F}_{4}$ and $\mathrm{B}_{2} \mathrm{Cl}_{4}$ the values for the gas phase and solid state were 1.720 and 1.67 and 1.702 and $1.75 \AA$ respectively. ${ }^{1}$ The mean distances $\mathrm{B}-\mathrm{N}$ 1.393(7), $\mathrm{C}-\mathrm{N} 1.454(6)$, and C-C 1.494(9) \AA in compound (1) are unexceptional (Table 1) and agree well with the corresponding bond lengths reported for ($\mathbf{I} ; \mathbf{R}=\mathrm{Me}$) [mean B-N 1.413(8), mean ring C-N 1.461(7), $\mathrm{C}-\mathrm{C} 1.520(9) \AA]^{3}$ and 3,6 -bis(dimethylamino)-1,2,4,5-tetra-methyl-1,2,4,5,3,6-tetra-azadiborinane, $\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{~B}_{2} \mathrm{~N}_{6}$ [mean $\mathrm{B}-\mathrm{N} 1.428(3) \AA] .{ }^{10}$

The five-membered $\mathrm{BN}_{2} \mathrm{C}_{2}$ ring has close to two-fold symmetry, with the non-crystallographic axis passing through B and the midpoint of the $\mathrm{C}(1)-\mathrm{C}(2)$ bond. The five-membered rings in the two halves are inclined at an angle of 80.7° thereby relieving steric interactions of the cyclohexyl groups. The corresponding interplanar angles in the two independent molecules of $(\mathbf{I} ; \mathbf{R}=\mathbf{M e})$ in the crystal structure are 61.6 and $56.7^{\circ}{ }^{3}$

The two independent cyclohexyl rings adopt chair conformations with the ring substituent equatorial. Both rings showed marked anisotropy (or slight disorder) with one ring $[C(21)-C(26)]$ much more affected than the other. Thus the unsigned values of torsion angles in ring $\mathrm{C}(11)-\mathrm{C}(16)$ are $52.7-57.0^{\circ}$, whereas in ring $\mathrm{C}(21)-\mathrm{C}(26)$ the corresponding values are $43.0-48.2^{\circ}$. The $\mathrm{C}-\mathrm{C}$ bond lengths in the cyclohexyl rings reflect this anisotropy/disorder with values in the range 1.384(13)-1.557(9).

Noting the structural trends in $\mathrm{B}-\mathrm{B}$ and $\mathrm{B}-\mathrm{N}$ bond distances
above, it appears that the electronic structure of compound (1) contains two almost identical but isolated BN_{2} systems. The highest-lying occupied orbitals of these BN_{2} systems are shown schematically as (II) and (III); (II) is N localised by symmetry

(II)

(III)
but the N components of (III) can π donate to the nominally empty B $2 p$ orbital. The interaction of these two systems across the $\mathrm{B}-\mathrm{B}$ bond depends on the interplanar angle (θ), and as θ approaches 0° a splitting of the energies of the Π_{1} and Π_{2} orbitals ${ }^{4}$ arising from (III) would be expected. The He I p.e. spectrum of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ has been interpreted ${ }^{4}$ on the assumption of $\theta=0^{\circ}$, and the apparent Π_{2} / Π_{1}, split of the third and fourth ionisation (Table 2) is about 0.5 eV . However, our MNDO calculations ${ }^{11}$ on this molecule indicate a staggered conformation with minimum energy at $\theta=73^{\circ}$, and a Π_{1} / Π_{2} split of only 0.13 eV (Table 2), which could not be resolved on a broad ionisation band; in $D_{2 d}$ symmetry $\left(\theta=90^{\circ}\right)$ the orbitals become degenerate. The other π-energy separations in the calculation are in excellent agreement with experiment if it is assumed that the third ionisation at 9.0 eV corresponds to both Π_{1} and Π_{2}, and the observed intensity of the third band ${ }^{4}$ is fully consistent with this. Such an interpretation requires a reassignment of the ionisation at $c a .9 .5 \mathrm{eV}$: we believe that this is due to the $\mathrm{B} 2 p-\mathrm{B} 2 p \sigma$-bonding orbital. Corresponding orbitals ionise at 13.3 eV in $\mathrm{B}_{2} \mathrm{~F}_{4}$ and at 11.0 eV in $\mathrm{B}_{2} \mathrm{Cl}_{4},{ }^{12}$ so it is very unlikely that the $\mathrm{B}-\mathrm{B} \sigma$ orbital in $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ would have a higher ionisation energy (i.e.) than 11 eV . Furthermore, there is no band in this region of the spectrum other than that at $c a$. 9.5 eV to which the $\mathrm{B}-\mathrm{B}$ ionisation can be assigned. Thus a very satisfactory reassignment of the $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ spectrum can be made if the staggered conformation with θ ca. 70° is assumed. The splitting pattern of the corresponding π orbitals in $\mathrm{B}_{2} \mathrm{Cl}_{4}$, which is known to have a staggered conformation, supports this. In $\mathrm{B}_{2} \mathrm{Cl}_{4}$, the $1 a_{2}$ and $1 b$ orbitals equivalent to (II) ionise at

Table 3. Final fractional co-ordinates $\left(\times 10^{4}\right)$ with e.s.d.s in parentheses

Atom	x	1	z
B	250(4)	$1010(5)$	$2015(4)$
N(1)	81(2)	$1713(4)$	$1265(3)$
N(2)	867(3)	304(4)	1839(3)
C(1)	613(4)	$1500(5)$	572(4)
C(2)	1 105(3)	475(5)	939(4)
C(11)	-484(4)	2 655(4)	$1204(4)$
C(12)	-48(3)	3 747(4)	$1194(4)$
C(13)	-643(4)	$4714(5)$	$1214(5)$
C(14)	- 1289 (5)	4 633(6)	500(5)
C(15)	- 1714 (3)	3 531(5)	491(5)
C(16)	-1112(3)	2 575(5)	467(4)
C(21)	$1257(4)$	-534(5)	$2451(5)$
C(22)	$1151(5)$	-1694(5)	2084(5)
C(23)	$1484(4)$	-2 556(5)	$2784(6)$
C(24)	$2221(8)$	-2 266(8)	3 209(7)
C(25)	$2360(5)$	-1118(6)	3 571(6)
C(26)	$2021(4)$	-234(6)	$2869(5)$

12.3 and 12.5 eV . and $3 e$, equivalent to (III), ionises at $13.6 \mathrm{eV} .{ }^{12}$ The smaller spacings in the chloride can be attributed to the π bonding being weaker for $\mathrm{B}-\mathrm{Cl}$ than for $\mathrm{B}-\mathrm{N}$.
Further support for a near- $D_{2 d}$ gas-phase structure of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ comes from the He I p.e. spectra of compounds (1) and (2) (Table 2). The substantial steric hindrance in these molecules makes it very unlikely that either would take up a conformation in the gas phase which was far removed from that of $(\mathbf{1})$ in the solid. It is seen in Table 2 that the ionisation energies are almost exactly the same as for $\mathbf{B}_{\mathbf{2}}\left(\mathrm{NMe}_{2}\right)_{4}$ except that the Π_{3} / Π_{4} splitting [type (II) orbitals] is not resolved; this is not surprising given the greater complexity of the molecules. The region beyond 10 eV is unresolved, but for (1) a shoulder can be picked out at 10.1 eV , very close to the $\mathrm{B}-\mathrm{B}$ ionisation of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}$ at 9.5 eV , and we assign this to the $\mathrm{B}-\mathrm{B}$ bond in (1). Thus the spectra, and hence the conformations, of all three molecules are very similar. We conclude that in the gas phase all the $\mathbf{B}_{2}\left(\mathrm{NR}_{2}\right)_{4}$ compounds examined adopt a conformation with 0 approaching 90 ; those most sterically hindered are closest to this condition. Compound (1) is the most sterically demanding reported to date.

Experimental

Infrared spectra were recorded on Perkin-Elmer 1310 and 457 spectrophotometers using KBr discs or thin films. N.m.r. spectra were recorded on Perkin-Elmer R20A (${ }^{1} \mathrm{H}$) and Bruker WH400 (${ }^{11} \mathrm{~B}$) spectrometers. Chemical shifts are relative to $\mathrm{SiMe}_{4}\left({ }^{\prime} \mathrm{H}\right)$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (external) (${ }^{11} \mathrm{~B}$), positive values representing shifts to high frequency of the reference. Melting points are uncorrected. Analyses were carried out by the Microanalytical Laboratory, University College, Cork. Mass spectra were recorded on an AEI-K ratos MS 30DB instrument at 70 eV $\left(1.12 \times 10^{-17} \mathrm{~J}\right)$, in electron-impact (e.i.) mode. Photoelectron spectra were recorded on a Perkin-Elmer PS16 spectrometer.
Solvents were dried and distilled before use. Experiments were carried out under dry, oxygen-free nitrogen. The compounds $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4},{ }^{13}$ (2). ${ }^{5}$ and N, N^{\prime}-dicyclohexylethylenediamine ${ }^{1+}$ were prepared by literature methods.

Synthesis of B.B-Bis(1,3-dicyclohexyl-1,3,2-dia_aborolidin-2$y /$). (1). Tetrakis(dimethylamino) diborane ($0.50 \mathrm{~g}, 2.53 \mathrm{mmol}$) and N, N^{\prime}-dicyclohexylethylenediamine ($2.46 \mathrm{~g}, 5.28 \mathrm{mmol}$) were heated at 170 (under N_{2} for 40 h . On cooling to room temperature the mixture solidified. Recrystallisation from hot
isopropyl alcohol afforded colourless crystals of (1) $(0.55 \mathrm{~g}, 1.18$ mmol, 47%) (Found: C, 71.95 ; H, 10.65; B, $4.15 ; \mathrm{N}, 11.85$. $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~N}_{4}$ requires C, $72.15 ; \mathrm{H}, 11.15 ; \mathrm{B}, 4.65 ; \mathrm{N}, 12.05 \%$), m.p. $188-190^{\circ} \mathrm{C} ; v_{\max .}$ at $2920 \mathrm{~s}, 2847 \mathrm{~s}, 2657 \mathrm{w}, 1463 \mathrm{~m}$, $1460 \mathrm{w}, 1444 \mathrm{~m}, 1409 \mathrm{~s}, 1368 \mathrm{~m}, 1340 \mathrm{w}, 1269 \mathrm{~s}, 1240 \mathrm{~s}, 1192 \mathrm{~m}$, $1180(\mathrm{sh}), 1162 \mathrm{w}, 1131 \mathrm{~m}, 1112 \mathrm{w}, 1048 \mathrm{w}, 1075 \mathrm{w}, 1068 \mathrm{w}$, $1028 \mathrm{w}, 1002 \mathrm{w}, 975 \mathrm{w}, 920 \mathrm{w}, 894 \mathrm{~s}, 843 \mathrm{w}, 805 \mathrm{w}, 702 \mathrm{w}$, and 667 m cm^{-1}. N.m.r. spectra ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 35^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}, \delta 3.12(\mathrm{~s}, 8 \mathrm{H}), 2.90$ ($\mathrm{m}, 4 \mathrm{H}$) , and $0.4(\mathrm{~m}, 40 \mathrm{H})$; ${ }^{12} \mathrm{~B}, \delta 31.1$ p.p.m. Mass spectrum: $m /=466\left(M,{ }^{12} \mathrm{C}_{28}{ }^{1} \mathrm{H}_{52}{ }^{11} \mathrm{~B}_{2}{ }^{14} \mathrm{~N}_{4}\right), 384\left(M-\mathrm{C}_{6} \mathrm{H}_{10}\right)$, and 233 ($M / 2$).

Molecular Structure Determination of Compound (1).Crystal data. $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~N}_{4}, \quad M=466.4$, monoclinic, $a=$ 16.829(3), $b=12.021(2), c=14.744(3) \AA, \beta=95.06(2)^{\circ}, U=$ $2971.1 \AA^{3}, Z=4, D_{\mathrm{c}}=1.04 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1032, \lambda($ Mo$\left.K_{z}\right)=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.3 \mathrm{~cm}^{-1}$, space group $C 2 / c$ or $C c$ from systematic absences $h k l, h+k=2 n+1$ and $h 0 /$ both $h=2 n+1$ and $l=2 n+1$ (the former was chosen and confirmed by the successful analysis).

A colourless crystal of dimensions $0.50 \times 0.40 \times 0.32 \mathrm{~mm}$ was used for data collection with an Enraf-Nonius CAD4 diffractometer. Data were collected to a maximum θ of 24° by the $\omega-2 \theta$ scan method using monochromatised Mo- K_{α} radiation; 25 reflections in the range $10<\theta<15^{\circ}$ were used to determine cell dimensions and the orientation matrix by leastsquares refinement. The intensities of three standard reflections monitored every 2 h of exposure did not change significantly over the period of data collection. A total of 2327 unique reflections were measured of which 1247 had $I>3 \sigma(I)$ and were used in structure solution and refinement. Data were corrected for Lorentz and polarisation factors; absorption correction was not considered necessary.

The structure was solved by direct methods using SHELX 76. ${ }^{15}$ An E map calculated with reflections with $E>1.2$ revealed the positions of all non-hydrogen atoms. Initial refinement was by full-matrix least-squares calculations with isotropic thermal parameters for the non-hydrogen atoms. A difference map calculated at the conclusion of this isotropic refinement revealed maxima at positions corresponding to the hydrogen atoms which were then included in the subsequent refinement in geometrically idealised positions ($\mathrm{C}-\mathrm{H} 0.95 \AA$); an overall isotropic thermal parameter was refined for these hydrogen atoms. Refinement allowing anisotropic thermal parameters for the non-hydrogen atoms converged with $R=$ 0.097 and $R^{\prime}=\left(\Sigma \Delta w^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right)^{\frac{1}{2}}=0.119$. The R value was relatively high because of large thermal motion and/or disorder in the cyclohexyl rings. In the final cycles of refinement a weighting scheme of the form $u=1 /\left(\sigma^{2} F+p F^{2}\right)$ was employed where the final parameter p was 0.00016 . The number of parameters refined in the final refinement was 154 . Scattering factors used in the structure-factor calculations were taken from ref. 16 for non-hydrogen atoms and ref. 17 for hydrogen atoms. A difference map calculated at the conclusion of the refinement showed no significant electron density. The final fractional coordinates for non-hydrogen atoms (with estimated standard deviations in parentheses) are given in Table 3.

Molecular-orbital Calculations.-The MNDO program was used as supplied. ${ }^{\text {" }}$ Calculations were run with complete free variation of all geometry parameters.

Acknowledgements

Financial support from the National Science and Engineering Research Council, Canada (to G. F.), and the Department of Education, Republic of Ireland (to D. C. M. P.) is gratefully acknowledged.

References

1 N. N. Greenwood and A. Earnshaw, 'Chemistry of the Elements,' Pergamon, Oxford, 1984, p. 226; A. G. Massey, Adv. Inorg. Chem. Radiochem., 1983, 26, 16.
2 H. J. Becher, W. Sawodny, H. Nöth, and W. Meister, Z. Anorg. Allg. Chem., 1962, 314, 226.
3 H. Fusstetter, J. C. Huffman, H. Nöth, and R. Schaeffer, Z. Naturforsch., Teil B, 1976, 31, 1441.
4 B. Cetinkaya, G. H. King, S. S. Krishnamurthy, M. F. Lappert, and J. B. Pedley, Chem. Commun., 1971, 1370.

5 M. P. Brown, A. E. Dann, D. W. Hunt, and H. B. Silver, J. Chem. Soc., 1962, 4648.
6 R. Grimes, F. E. Wang, R. Lewin, and W. N. Lipscomb, Proc. Natl. Acad. Sci. USA, 1961, 47, 996.
7 N. N. Greenwood, J. D. Kennedy, W. S. McDonald, D. Taylorson, and J. Staves, J. Chem. Soc., Chem. Commun., 1979, 17.
8 S. K. Boocock, N. N. Greenwood, J. D. Kennedy, W. S. McDonald, and J. Staves, J. Chem. Soc., Dalton Trans., 1980, 790.

9 G. M. Brown, J. W. Pinson, and L. L. Ingram, Inorg. Chem., 1979, 18, 1951.

10 J. C. Huffman, H. Fusstetter, and H. Nöth, Z. Naturforsch., Teil B, 1976, 31, 289.
11 M. J. S. Dewar and M. L. McKee, Inorg. Chem., 1978, 17, 1569.
12 N. Lynaugh, D. R. Lloyd, M. F. Guest, M. B. Hall, and I. H. Hillier, J. Chem. Soc., Faraday Trans. 2, 1972, 2192.
13 R. J. Brotherton, A. L. McCloskey, L. L. Petterson, and H. Steinberg, J. Am. Chem. Soc., 1960, 82, 6242.

14 J. M. Bennett, J. Chem. Soc., 1919, 576.
15 G. M. Sheldrick, SHELX 76, University Chemical Laboratory, Cambridge, 1976.
16 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.

17 R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

[^0]: \dagger Supplementary data available (No. SUP 56611, 3 pp.): thermal parameters, H-atom co-ordinates. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii-xx. Structure factors are available from the editorial office.

