Reaction of Nitrobenzene with $[M_3(CO)_{12}]$ (M = Fe or Ru) in the Presence of $[Co_2(CO)_8]$: Isolation and Structure of $[Ru_3(CO)_7(NPh)(\eta^6-C_6H_6)]^{\dagger}$

Amitabha Basu, Sumit Bhaduri,* and Hanif Khwaja

Alchemie Research Centre, CAFI Site, P.O. Box 155, Thane-Belapur Road, Thane 400 601, Maharashtra, India

Peter G. Jones,* Karen Meyer-Bäse, and George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

The complexes $[Ru_3(CO)_7(NPh)(C_6H_6)]$ (1) and $[FeCo_2(CO)_9(NPh)]$ (2) are formed in the reactions between PhNO₂ and $[M_3(CO)_{12}]$ (M = Ru or Fe) only when $[Co_2(CO)_8]$ is present. The structure of (1) has been determined by X-ray diffraction; it contains triply bridging CO and PhN ligands and an η^6 -benzene ligand co-ordinated to only one metal atom.

Synthesis of phenyl isocyanate or phenylcarbamate derivatives by the direct carbonylation of nitrobenzene is of industrial importance.¹ Recently a few reports have appeared on this and other related reactions where carbonyl clusters, particularly $[Ru_3(CO)_{12}]$, have been used as efficient catalysts.² Here we report that the addition of $[Co_2(CO)_8]$ to reaction systems consisting of $[M_3(CO)_{12}]$ (M = Fe or Ru) and PhNO₂ has a remarkable effect on the nature of metal complexes formed in the reactions. A single-crystal X-ray structure determination of $[Ru_3(CO)_7(NPh)(C_6H_6)]$ (1), a complex formed only through the mediation of $[Co_2(CO)_8]$, is reported.

Results and Discussion

Although $[Ru_3(CO)_{12}]$ is an active precatalyst in the conversion of nitrobenzene to phenyl isocyanate by CO, $[Fe_3(CO)_{12}]$ under the same conditions (*e.g.* 160 °C, 300 lb in⁻², C₆H₆ solvent, 5 h) shows little activity.³ Addition of $[Co_2(CO)_8]$ to both the reaction systems results in the formation of azobenzene as one of the major products. Reactions of $[M_3(CO)_{12}]$ (M = Fe or Ru) with PhNO₂ under milder conditions, with or without the addition of $[Co_2(CO)_8]$, are described in the Scheme.

In the absence of $[Co_2(CO)_8]$, reaction of PhNO₂ and $[Fe_3(CO)_{12}]$ leads to the precipitation of insoluble iron oxides. However, under the same reaction conditions, addition of $[Co_2(CO)_8]$ yields complexes (2) and (5). Characterisation of (2) is based on microanalytical data, and mass, n.m.r., and solution i.r. spectra. The crystal structure determination of (5) was reported recently.⁴

Addition of $[Co_2(CO)_8]$ to the $[Ru_3(CO)_{12}]/PhNO_2$ reaction system gives (1) and (4) but not (3). Small quantities of $[Co_4(CO)_9(C_6H_6)]$ are also isolated from the reaction system; reaction of this complex with (3) produces (1), also in small

Non-S.I. unit employed: lb in⁻² \approx 6895 Pa.

quantities. Crystal structure determinations of (3) and (4) have recently been reported.⁵

The structure of (1) is shown in the Figure; it is consistent with its analytical and spectroscopic data. The ruthenium atoms form an approximately equilateral triangle with Ru-Ru (av.) 2.708 Å. The triangle is triply bridged on one side by the PhN ligand and on the other side, very asymmetrically, by CO [C-Ru(2) 1.981, C-Ru(1) 2.336, C-Ru(3) 2.354 Å). Ru(1) and Ru(3) both bear three terminal CO ligands and Ru(2) an η^6 benzene ligand. Arene ligands are not a common feature in metal cluster chemistry; one recent example is the carbide [Ru₆C(CO)₁₁(C₆H₆)₂].⁶

Experimental

Infrared and n.m.r. spectra were recorded on a Perkin-Elmer 377 grating spectrometer and a Bruker 80 MHz instrument respectively. A Carlo Erba 1106 instrument was used for C, H, and N microanalyses; iron and cobalt analyses were performed by atomic absorption spectrophotometry using an Instrumentation Laboratory TL 751 instrument.

Synthesis of (1) and (2).—A solution of $[Ru_3(CO)_{12}]$ (0.214 g, 0.33 mmol), nitrobenzene (0.2 g, 1.5 mmol), and $[Co_2(CO)_8]$ (0.342 g, 1 mmol) in benzene (100 cm³) was stirred and refluxed under CO for 5 h. The resultant solution was taken to dryness, extracted with dichloromethane, and subjected to thin-layer chromatography (t.l.c.) with n-hexane as eluant. $[Ru_3(CO)_9(NPh)_2]$, $[Co_4(CO)_9(C_6H_6)]$, and unreacted $[Ru_3(CO)_{12}]$ moved on the plate while (1) remained near the baseline. It was extracted with dichloromethane and subjected to t.l.c. again with 40% dichloromethane in hexane as eluant. The complex was crystallized from dichloromethane and n-hexane (Found: C, 34.3; H, 1.8; N, 2.0. Calc. for $C_{19}H_{11}NO_7Ru_3$: C, 34.1; H, 1.6; N, 2.1%).

Compound (2) was synthesized under the same conditions using $[Fe_3(CO)_{12}]$ (2.02 g, 4 mmol), nitrobenzene (2.4 g, 19.5 mmol), and $[Co_2(CO)_8]$ (4.1 g, 12 mmol) in benzene (200 cm³). The eluant for t.l.c. was 1% dichloromethane in hexane; (2) moves to the top of the plate as a dark brown band (Found: C, 34.5; H, 1.1; Co, 22.8; Fe, 10.8; N, 2.5. Calc. for C₁₅H₅Co₂-FeNO₉: C, 34.8; H, 1.0; Co, 22.8; Fe, 10.8; N, 2.7%).

Spectral Data for (1) and (2).—Infrared spectra (n-hexane):

 $[\]dagger$ 3-(1--6- η -Benzene)- μ_3 -carbonyl-1,1,1,2,2,2-hexacarbonyl- μ_3 -(phenyl-imido)-*triangulo*-trivinthenium.

Supplementary data available: complete bond lengths and angles, H-atom co-ordinates, structure factors, and thermal parameters may be obtained from the Fachinformationszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopoldshafen 2, Federal Republic of Germany, quoting reference no. CSD 51801 and the full literature citation.

Scheme. (i) C_6H_6 , 80 °C, 5 h, $[M_3(CO)_{12}]$: PhNO₂ = 1:1.5; (ii) C_6H_6 , 80 °C, 5 h, $[M_3(CO)_{12}]$: PhNO₂: $[Co_2(CO)_8]$ = 1:1.5:1

Figure. The molecule of (1) in the crystal (H atoms omitted, radii arbitrary). Selected bond lengths (Å): Ru(1)-Ru(2) 2.695(2), Ru(1)-Ru(3) 2.726(2), Ru(2)-Ru(3) 2.704(2), N-Ru(1) 2.016(9), N-Ru(2) 2.029(9), N-Ru(3) 2.043(9), C-Ru(1) 2.336(11), C-Ru(2) 1.981(12), C-Ru(3) 2.354(11), Ru(2)-C(benzene) 2.193-2.240(13) Å

Table. Atomic co-ordinates $(\times 10^4)$ for (1)

(1), 2 074s, 2 046vs, 2 010vs, 1 986s, 1 976m, and 1 745m, br cm^{-1} ; (2), 2 096m, 2 058vs, 2 042vs, 2 034s (sh), 2 026w (sh), 1 975m, and 1 965m cm^{-1} . Proton n.m.r. spectra for both (1) and (2): multiplets around 7.1 p.p.m. in CDCl₃.

X-Ray Structure Determination of (1).—Crystal data. $C_{19}H_{11}$ -NO₇Ru₃, M = 668.5, monoclinic, space group $P2_1/n$, a = 8.618(2), b = 15.455(2), c = 16.446(3) Å, $\beta = 91.92(2)^{\circ}$, U = 2 189.3 Å³ (refined from 20 values of 40 strong reflections in the range 20—23°), graphite-monochromated Mo- K_a radiation ($\lambda = 0.710$ 69 Å), Z = 4, $D_c = 2.03$ g cm⁻³, F(000) = 1 280. Reddish brown tablets: crystal dimensions $0.15 \times 0.1 \times 0.05$ mm, $\mu = 2.0$ mm⁻¹.

Data collection and processing. Stoe-Siemens four-circle diffractometer, 4 233 profile-fitted intensities 7 ($2\theta_{max}$, 50°), 3 843 unique, 2 428 with $F > 4\sigma(F)$ used for all calculations (program system SHELXTL⁸). Absorption correction based on ψ -scans (transmissions 0.77–0.89). No crystal decay.

Structure solution and refinement. Ruthenium atoms from Patterson function, other non-H atoms from difference syntheses. Least-squares refinement on F to R 0.061, R' 0.048 [non-H atoms anisotropic, H atoms included using a riding model with C-H 0.96 Å, $U(H) = 1.2 U_{eq}(C)$; weighting scheme $w^{-1} = \sigma^2(F) + 0.0003 F^2$; 271 parameters]. Final atomic coordinates are given in the Table.

Acknowledgements

We thank the Fonds der Chemischen Industrie for financial support.

Atom	x	у	Ζ	Atom	x	У	Z
Ru(1)	292(1)	1 896(1)	2 563.9(0.5)	C(3a)	-1 380(15)	2 522(8)	4 656(7)
Ru(2)	2 209(1)	1 242(1)	3 737.8(0.5)	C(3b)	-79(14)	3 793(8)	3 712(7)
Ru(3)	472(1)	2 649(1)	4 062.8(0.5)	C(3c)	1 741(16)	2 904(8)	4 993(7)
N	2 086(9)	2 426(5)	3 205(4)	C (11)	3 394(12)	2 921(6)	2 959(6)
0	-1092(9)	759(5)	3 985(4)	C(12)	4 093(15)	3 513(8)	3 468(7)
С	-81(12)	1 183(7)	3 795(6)	C(13)	5 370(15)	3 999(8)	3 233(9)
O(1a)	-641(10)	3 501(5)	1 600(5)	C(14)	5 959(15)	3 895(8)	2 474(8)
O(1b)	-2816(10)	1 041(6)	2 203(5)	C(15)	5 267(16)	3 310(8)	1 981(9)
O(1c)	1 890(12)	891(6)	1 234(6)	C(16)	3 988(14)	2 810(8)	2 208(7)
O(3a)	-2487(11)	2 436(7)	5 015(6)	C(21)	4 806(13)	1 069(7)	3 796(7)
O(3b)	-348(12)	4 481(6)	3 544(6)	C(22)	4 155(12)	488(7)	3 225(7)
O(3c)	2 523(12)	3 092(7)	5 542(5)	C(23)	2 975(14)	-81(7)	3 467(8)
C(1a)	-346(13)	2 902(7)	1 957(7)	C(24)	2 496(14)	-80(7)	4 267(8)
C(1b)	-1666(13)	1 349(7)	2 319(6)	C(25)	3 081(14)	522(8)	4 807(7)
C(1c)	1 301(14)	1 269(8)	1 708(6)	C(26)	4 262(14)	1 083(8)	4 596(7)

References

- 1 G. W. Parshall, 'Homogeneous Catalysis,' Wiley, New York, 1980, p. 93 and refs. therein; Mitsubishi Chem. Ind. Co., Jap. P. 81 118 054/1981.
- 2 S. Ceuini, M. Pizzoth, C. Crotti, F. Porta, and G. LaMonica, J. Chem. Soc., Chem. Commun., 1984, 1286; H. Alper and K. E. Hashem, J. Am. Chem. Soc., 1981, 103, 6514; H. Alper and L. C. Damude, Organometallics, 1982, 1, 579; S. Bhaduri, K. S. Gopalkrishnan, W. Clegg, P. G. Jones, G. M. Sheldrick, and D. Stalke, J. Chem. Soc., Dalton Trans., 1984, 1765.
- 3 S. Bhaduri, K. R. Sharma, and K. Gopalkrishnan, U.S.P. 4 491 670/1983.

- 4 W. Clegg, G. M. Sheldrick, D. Stalke, S. Bhaduri, and H. K. Khwaja, Acta Crystallogr., Sect. C, 1984, 40, 2045.
- 5 S. Bhaduri, K. S. Gopalkrishnan, G. M. Sheldrick, W. Clegg, and D. Stalke, J. Chem. Soc., Dalton Trans., 1983, 2339; W. Clegg, G. M. Sheldrick, D. Stalke, S. Bhaduri, and K. S. Gopalkrishnan, Acta Crystallogr., Sect. C, 1984, 40, 927.
- 6 M. P. Gomez-Sal, B. F. G. Johnson, J. Lewis, P. R. Raithby, and A. H. Wright, J. Chem. Soc., Chem. Commun., 1985, 1682 and refs. therein.
- 7 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
- 8 SHELXTL, G. M. Sheldrick, University of Göttingen, 1978.

Received 22nd January 1986; Paper 6/159