Cluster Chemistry. Part 45. ${ }^{1}$ Synthesis and some Reactions of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]^{-}: X$-Ray Crystal Structures of $\left[\mathrm{MRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right](\mathbf{M}=\mathbf{C u}, \mathrm{Ag}$, or Au$) \dagger$

Michael I. Bruce* and Michael L. Williams
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001
Jennifer M. Patrick, Brian W. Skelton, and Allan H. White*
Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, Western Australia 6009

Abstract

Reactions between $\mathrm{K}\left[\mathrm{BHBu}_{3}\right]$ and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{EPh}_{2} \mathrm{CH}_{2} \mathrm{EPh}_{2}\right)\right]$ ($\mathrm{E}=\mathrm{P}$ or As) afford solutions of the dephenylated anions, $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{EPhCH}_{2} E \mathrm{EPh}_{2}\right)(\mathrm{CO})_{9}\right]^{-}$, which can be reversibly protonated to give $\left[R u_{3}(\mu-H)\left(\mu_{3}-E \mathrm{PhCH}_{2} E \mathrm{Eh}_{2}\right)(\mathrm{CO})_{9}\right]$. The latter complexes may also be obtained directly from $\left[R u_{3}(\mathrm{CO})_{10}\left(\mu-E \mathrm{Eh}_{2} \mathrm{CH}_{2} E P h_{2}\right)\right]$ and $\mathrm{H}_{2}\left(20 \mathrm{~atm}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ in cyclohexane (yields 65-75\%). Similar complexes were obtained in poor yield from [$\left.\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$. The group 1 B metal-containing clusters $\left[\mathrm{MRu}_{3}\left(\mu_{3}-\mathrm{EPhCH}_{2} E \mathrm{Eh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right](\mathrm{E}=\mathrm{P}, \mathrm{M}=\mathrm{Cu}, \mathrm{Ag}$, or Au ; $E=A s, M=A u)$ were prepared from $\left[R u_{3}\left(\mu_{3}-E P h C H_{2} E P h_{2}\right)(C O)_{9}\right]^{-}$and sources of $\left[M\left(P P h_{3}\right)\right]^{+}$; the analogous $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right.$] was also obtained. Single-crystal X-ray studies on the first three, title complexes showed that they are isostructural, the $\mathrm{M}\left(\mathrm{PPh}_{3}\right)$ fragment bridging the same Ru-Ru bond as that bridged by the PPh group of the face-capping phosphidophosphine ligand. Detailed examination of bond parameters in the $R u_{2} M P$ moiety suggests that the three $\mathrm{M}\left(\mathrm{PPh}_{3}\right)$ fragments are not strictly isolobal, although it is the $\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)$ fragment which interacts least strongly with the $R \mathrm{u}_{3}$ core. The structures were refined by least-squares methods to residuals of $0.039,0.044$, and 0.041 for 4560,4917 , and 9275 independent 'observed' reflections, respectively.

With the advent of mild synthetic routes to derivatives of [$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$] containing tertiary phosphine, phosphite, and arsine ligands, ${ }^{2}$ considerable interest in their chemistry has ensued. Extension of these studies to complexes containing bior tri-dentate ligands, in the hope that cluster degradation under more severe reaction conditions might be prevented, has uncovered an interesting microcosm of cluster chemistry. The thermal reaction between bis(diphenylphosphino)methane (dppm) and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ in tetrahydrofuran (thf) was first described in $1977,{ }^{3}$ when the fluxional properties of the resulting $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right](1)$ were also examined. A structural study of this molecule did not appear until seven years later, when the complex was obtained as one of the products of the reaction between $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ and $\left[\left\{\mathrm{RuCl}_{2}\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}_{2}\right)\right\}_{2}(\mathrm{dppm})\right]$ in refluxing benzene. ${ }^{4}$ Meanwhile, the reaction between dppm and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ in xylene at $80-85^{\circ} \mathrm{C}$ had been found to give $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{8}(\mathrm{dppm})_{2}\right]$ (2); ${ }^{5}$ under more vigorous conditions, the complex $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{PPh}\right)\left(\mu_{3}-\mathrm{CHPPh}_{2}\right)\right.$ $\left.(\mathrm{CO})_{7}(\mathrm{dppm})\right]$ (3) is formed, and this complex may also be obtained by heating (2) in xylene at $100^{\circ} \mathrm{C}$. The present account describes an improved synthesis of (1), and its conversion to the anion $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]^{-}$, together with some reactions of the latter. Some related studies of the arsine analogues are also included.

[^0]

(1) $E=P$
(2)

(3)

Results and Discussion

Following our earlier studies, ${ }^{2}$ we have found that (1) can be obtained in 91% yield by the $\mathrm{Na}\left[\mathrm{Ph}_{2} \mathrm{CO}\right]$-catalysed reaction between equimolar amounts of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and dppm in warm thf. A similar yield reaction catalysed by $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ [$\mathrm{O}_{2} \mathrm{CMe}$] has been reported recently. ${ }^{6}$ An analogous reaction employing bis(diphenylarsino)methane (dpam) gave $\left[\mathrm{Ru}_{3}-\right.$ $\left.(\mathrm{CO})_{10}(\mathrm{dpam})\right]$ (4) in 91% yield. Details of the reactions and characterisation of (1) and (4) are given in the Experimental section.

Treatment of (1) in thf solution with potassium selectride ($\left.\mathrm{K}^{\left[\mathrm{BHBu}^{\mathrm{s}}\right.}{ }_{3}\right]$) at ambient temperature resulted in an immediate darkening, followed by a slow (hours) change in the colour of the solution from deep red to orange-yellow. The i.r. spectrum of this solution contained $v(\mathrm{CO})$ bands at 2033 and $2019 \mathrm{~cm}^{-1}$. Protonation $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ and subsequent work-up afforded a monohydrido cluster which was readily identified as $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\right.$ -$\left.\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (5) by elemental microanalysis and from its spectroscopic properties. Thus, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum contained a high-field triplet (of relative intensity 1) at δ -16.65 , assigned to a proton bridging a metal-metal bond, and a
broad singlet (relative intensity 2) at $\delta 3.93$ assigned to the CH_{2} group. The aromatic multiplet at $\delta 7.44$ had relative intensity 15 H , showing that one of the Ph groups of the dppm ligand originally present has been eliminated, probably as benzene, with concomitant formation of a μ-phosphido group. The arsenic analogue, (6), was obtained by a similar sequence of reactions, although the elimination of benzene occurs at a much slower rate than that found for (1).

These unusual reactions probably proceed by initial formation of an anionic hydrido cluster, such as $\left[\mathrm{Ru}_{3} \mathrm{H}(\mathrm{CO})_{9}{ }^{-}\right.$ (dppm) ${ }^{-}$(Scheme). In support of this, the i.r. spectrum of the initial deep red solution contains a broad medium intensity absorption at $1665 \mathrm{~cm}^{-1}$, which is similar to that assigned to a $v(\mu-\mathrm{CO})$ vibration in $\left[\mathrm{Ru}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]^{-.}$. The subsequent elimination of benzene resembles well established reactions of other cluster hydrides containing tertiary phosphines or arsines, or thiolate ligands. ${ }^{8}$ In most cases, however, cleavage of the

(5) $E=P$
(6) $E=A s$

(9)
(7) $E=P$
(8) $E=A s$

P-, As-, or S-carbon bond occurs on heating, and we believe that this is the first occasion on which such a process has been accomplished by addition of hydride ion. However, the formation of $\left[\mathrm{MnRu}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in the reaction between $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$is assumed to proceed via an intermediate anionic hydrido complex. ${ }^{9}$

We note that deprotonation of the dppm or dpam ligands did not take place, probably because the approach of the bulky borate derivative to the methylene carbon is prevented by the phenyl groups.

The formation of $\left[\mathrm{Ru}_{3} \mathrm{H}_{2}\left(\mu_{3}-\mathrm{EPhCH}_{2} \mathrm{EPh}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ (7, $\mathrm{E}=\mathrm{P} ; 8, \mathrm{E}=\mathrm{As}$), which are closely akin to (5) and (6), by hydrogenation of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{8}(\mathrm{~L}-\mathrm{L})_{2}\right](\mathrm{L}-\mathrm{L}=\mathrm{dppm}$ or dpam, respectively), ${ }^{10}$ provides earlier examples of the μ_{3}-phosphidophosphine and μ_{3}-arsenido-arsine ligands. Indeed, complexes (5) and (6) may also be obtained similarly, by hydrogenation of (1) and (4) respectively under mild conditions (see Experimental section). Others have also reported the preparation of (5) by this route. ${ }^{11}$

Addition of $\mathrm{K}\left[\mathrm{BHBu}^{5}{ }_{3}\right]$ to $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\right.$ dppe $\left.)\right][$ dppe $=1,2-$ bis(diphenylphosphino)ethane], ${ }^{12}$ heating the mixture at reflux point overnight, and subsequent protonation, afforded $\left[\mathrm{Ru}_{3}(\mu-\right.$ $\left.\mathrm{H})\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (9) in low yield. The complex was identified by the usual methods [its spectroscopic properties were similar to those of (5)]; complex (9) was also obtained, in higher yield, together with $\left[\mathrm{Ru}_{4} \mathrm{H}_{4}(\mathrm{CO})_{10}(\mathrm{dppe})\right]$, by direct hydrogenation of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppe})\right]^{13}$

Reactions of the Anions $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{EPhCH}_{2} \mathrm{EPh}_{2}\right)(\mathrm{CO})_{9}\right]^{-}$ ($\mathrm{E}=\mathrm{P}$ or As).-The anions generated from (1) or (4) by addition of $\mathrm{K}\left[\mathrm{BHBu}_{3}{ }_{3}\right]$ proved to be useful synthetic intermediates. We have already described their use in the syntheses of aryldiazo ${ }^{14}$ and allyl derivatives ${ }^{15}$ of the cluster carbonyl. They also react readily with sources of $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)\right]^{+}$ fragments ($\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}$, or Au) to give complexes in which the bridging hydride ligand in (1) or (4) has been replaced by the $\mathrm{M}\left(\mathrm{PPh}_{3}\right)$ group, a not unexpected result in view of the well established isolobal relationship between H and $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$.

Scheme.

(10) $E=P, \quad M=C u$
(11) $E=P, M=A g$
(12) $E=P, M=A u$
(13) $E=A s, M=A u$

Thus, when solutions of the anions were reacted with $\left[\left\{\mathrm{CuCl}\left(\mathrm{PPh}_{3}\right)\right\}_{4}\right], \quad\left[\mathrm{Ag}\left\{\mathrm{C}_{5}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{5}\right\}\left(\mathrm{PPh}_{3}\right)\right]{ }^{16}$ or $[\mathrm{AuCl}-$ $\left.\left(\mathrm{PPh}_{3}\right)\right]$, the colour changed slightly, and the orange to red crystalline complexes $\left[\mathrm{MRu}_{3}\left(\mu_{3}-\mathrm{EPhCH}_{2} \mathrm{EPh}_{2}\right)(\mathrm{CO})_{9}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right][\mathrm{E}=\mathrm{P}, \mathrm{M}=\mathrm{Cu}(10), \mathrm{Ag}(11)$, or $\mathrm{Au}(12) ; \mathrm{E}=\mathrm{As}$, $\mathrm{M}=\mathrm{Au}(13)]$ were obtained in good yield. They were identified by elemental microanalyses and from their spectral characteristics. Their i.r. spectra contained well resolved $v(\mathrm{CO})$ patterns which resembled those of (1) or (4), while the ${ }^{1} \mathrm{H}$ n.m.r. spectra contained resonances from the bridging ligand and PPh_{3}, but no high-field signals as found in the parent hydrides. Unambiguous identification of all three complexes (10)-(12) was achieved by single-crystal X-ray diffraction studies, well formed crystals affording the opportunity to compare this series of Group 1B derivatives.
A similar reaction between the anion, generated by reaction of $\mathrm{K}\left[\mathrm{BHBu}_{3}{ }_{3}\right.$] with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppe})\right]$, and $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ gave the analogous complex $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right.$ $\left.(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right](14)$ as red crystals. This complex had generally similar i.r. $v(\mathrm{CO})$ spectra and ${ }^{1} \mathrm{H}$ n.m.r. spectra (except for the CH_{2} resonances) to those of (12), and undoubtedly has a similar structure.

Crystal Structures of $\left[\mathrm{MRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right](\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}$, or Au$)$.-Crystals of $\left[\mathrm{MRu}_{3}\left(\mu_{3^{-}}\right.\right.$ $\left.\left.\mathrm{PPhCH} \mathbf{2 P h}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right][\mathrm{M}=\mathrm{Cu}(10), \mathrm{Ag}(11)$, or Au (12)] are isomorphous and isostructural, the latter comment being qualified by the extent to which the structural similarity encompasses the resolved or unresolved disorder of some peripheral phenyl rings. The results of the structure determination are consistent with the above stoicheiometry and with a connectivity as depicted in the Figure for a molecule of (12). The four metal atoms are linked in a butterfly arrangement, with $\mathrm{Ru}(1,3)$ being bridged by the coinage metal. The same $\mathrm{Ru}-\mathrm{Ru}$ vector is also bridged on the other side of the $R u_{3}$ plane by the phosphido atom $\mathrm{P}(1)$ of the bidentate ligand. The latter is formed by loss of a phenyl group from $\mathrm{P}(1)$; one phenyl remains attached to this atom, which is also bonded to $\mathrm{C}(120)$ of the methylene group. The phosphido-phosphine is attached by $\mathrm{P}(2)$ to $\mathrm{Ru}(2)$ via a normal two-electron donor bond in an axial co-ordination position.
The following features of interest may be noted. (i) The symmetry of the MRu_{3} core is quite a reasonable approximation to $m ; \operatorname{Ru}(2)-\mathrm{Ru}(1,3)$ are generally similar, but not equivalent. $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ lie in the range 2.891(2)-2.896(1) \AA, while $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ are slightly shorter $[2.867(2)-2.873(2) \AA]$ (Table 1). In (11) and (12), $R u(1)-R u(3)$ is much longer [2.944(1), 2.942(1) \AA, respectively] than in (10) [2.885(1) \AA]. The slight asymmetry in $\mathrm{Ru}(1,3)-\mathrm{Ru}(2)$ is reflected in a similar and opposite asymmetry in $\mathrm{M}-\mathrm{Ru}(1,3)$, the $\mathrm{M}-\mathrm{Ru}(1)$ vector being generally shorter than the $\mathrm{M}-\mathrm{Ru}(3)$ vector by $0.015-$ $0.025 \AA$; this is also true of $\mathrm{P}(1)-\mathrm{Ru}(1,3)$. The deviation of $\mathrm{P}(1)$ from the $\mathrm{Ru}(3)$ plane is substantially constant (Table 2) as is the dihedral angle of the associated $\mathrm{Ru}_{2} \mathrm{P}(1)$ plane; in contrast, the deviation of Cu from the Ru_{3} plane is rather less than those of

Figure. Projection of $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (12): (a) normal to and (b) through the Ru_{3} plane. 20% Probability thermal ellipsoids are given for the non-hydrogen atoms, together with the basis of the numbering scheme. Phenyl ring 21 is disordered about its axis
the Ag and Au atoms (which are almost identical). That this is not simply an effect of changing coinage metal radius alone is suggested by the change in the associated $M R u_{2} / \mathrm{Ru}_{3}$ interplanar dihedral angles.
(ii) Within the co-ordination sphere of the MRu_{3} core, the quasi- m symmetry suggested by the core is totally lost (Figure; Table 2); it would seem more reasonable to suppose that the relatively minor distortions of the core symmetry observed in (10) are a consequence of some more major perturbations in the latter, rather than the converse. A possible cause of abnormal distortion of the co-ordination sphere may arise from the bidentate ligand; the angle subtended at $\mathrm{C}(120)$ by the two phosphorus atoms is appreciably smaller than the tetrahedral norm. If $\mathrm{P}(1)$ and $\mathrm{P}(2)$ were to co-ordinate strictly at right angles to the Ru_{3} plane, this value would be reduced even further; the resulting strain may explain the fact that atoms $\mathrm{P}(1) \mathrm{C}(120) \mathrm{P}(2)$ do not define a plane normal to Ru_{3} but rather one in which $\mathrm{C}(120)$ is well removed from the edge of the tetrahedron, so that m symmetry is lost. In support of this, $\mathrm{Ru}(1,3)-\mathrm{Ru}(2)-\mathrm{P}(2)$ are noted as being unsymmetrical; $\mathrm{C}(22,23)$ lie out of the $R u_{3}$ plane on the side opposite $\mathrm{P}(2)$, while $\mathrm{Ru}(1,3)-\mathrm{Ru}(2)-\mathrm{C}(21)$ are both well below 90°. In rebuttal of this argument, however, we note that $\operatorname{CO}(11,31)$, both lying above the Ru_{3} plane on the side of $\mathrm{C}(120)$, have an asymmetry such that $C(11)$ is much closer to $C(120)$ than is $C(31)$. Nevertheless,

Table 1. Metal and phosphorus atom environments. The first column in each matrix is the metal-ligand atom distance (\AA); other entries are the angles $\left({ }^{\circ}\right)$ subtended by the atoms at the head of the relevant row and column. The geometry about the phosphorus atoms is given similarly

(a) $\mathrm{Ru}(1)$							
(10)	r	Ru(2)	$\mathrm{Ru}(3)$	C(11)	C(12)	C(13)	P(1)
Cu	2.607(1)	109.56(3)	56.77(3)	164.8(2)	69.9(2)	80.9(2)	85.25(6)
$\mathrm{Ru}(2)$	2.896(1)		59.61(3)	85.7(2)	174.1(2)	91.2(2)	78.33(5)
Ru(3)	2.885(1)			135.9(2)	117.0(2)	106.8(2)	51.99(5)
C(11)	1.889(8)				94.9(3)	99.7(3)	97.9(2)
C(12)	1.898(7)					94.5(3)	95.8(2)
C(13)	1.932(7)						158.8(2)
P(1)	2.316 (2)						
(11)	r	Ru(2)	Ru(3)	C(11)	C(12)	C(13)	P(1)
Ag	2.767(1)	108.92(3)	58.75(3)	167.3(3)	73.2(2)	77.8(3)	87.80(7)
$\mathrm{Ru}(2)$	2.894(1)		58.95(3)	83.5(3)	172.7(2)	92.0(2)	78.57(5)
$\mathrm{Ru}(3)$	2.944(1)			133.0(3)	118.7(2)	108.1(2)	51.31(6)
C(11)	1.895(8)				94.8(4)	99.7(3)	97.4(3)
C(12)	1.888(9)					95.2(3)	94.7(2)
C(13)	1.939(8)						159.4(3)
$\mathrm{P}(1)$	2.328(2)						
(12)	r	$\mathrm{Ru}(2)$	Ru(3)	C(11)	C(12)	C(13)	P(1)
Au	2.751(1)	108.77(2)	58.49(2)	169.3(2)	74.5(2)	79.6(2)	87.53(5)
$\mathrm{Ru}(2)$	2.891(1)		58.86(4)	81.8(2)	172.9(1)	92.6(2)	78.49(4)
$\mathrm{Ru}(3)$	2.942(1)			131.3(2)	120.2(2)	109.8(2)	51.37(4)
C(11)	1.888(7)				95.2(3)	98.6(3)	96.6(2)
C(12)	1.897(6)					94.2(3)	95.5(2)
C(13)	1.928(6)						161.2(2)
P(1)	2.320(2)						

(b) $\mathrm{Ru}(2)$						
(10)	r	Ru(3)	C(21)	C(22)	C(23)	P(2)
$\mathrm{Ru}(1)$	2.896(1)	60.00(2)	83.7(2)	94.2(3)	165.5(2)	92.74(6)
Ru(3)	2.873(1)		82.1(2)	153.7(3)	105.8(2)	89.86(6)
C(21)	1.897(7)			90.7(3)	91.5(3)	171.9(2)
C(22)	1.895(8)				99.6(4)	96.8(3)
C(23)	1.894(7)					90.3(2)
P(2)	$2.415(2)$					
(11)	r	Ru(3)	C(21)	C(22)	C(23)	P(2)
$\mathrm{Ru}(1)$	2.894(1)	61.39(2)	82.0(3)	95.2(3)	163.7(3)	92.76(6)
Ru(3)	2.873(1)		80.9(2)	155.9(3)	103.1(3)	88.78(6)
C(21)	1.881(8)			90.7(4)	91.0(4)	169.7(2)
C(22)	1.904(8)				99.6(4)	98.7(3)
C(23)	1.888(9)					91.7(3)
$\mathrm{P}(2)$	2.432(2)					
(12)	r	$\mathrm{Ru}(3)$	C(21)	C(22)	C(23)	P(2)
$\mathrm{Ru}(1)$	2.891(1)	61.45(2)	81.5(2)	95.5(2)	163.9(3)	92.89(5)
Ru(3)	2.867(1)		81.0(2)	156.5(2)	103.3(3)	88.60(5)
C(21)	1.875(6)			91.6(3)	91.4(3)	169.6(2)
C(22)	1.903(7)				99.1(3)	97.7(2)
C(23)	1.897(7)					91.8(2)
P(2)	2.419(2)					

(c) $\mathrm{Ru}(3)$

(10)	r	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	$\mathrm{C}(31)$	$\mathrm{C}(32)$	$\mathrm{C}(33)$	$\mathrm{P}(1)$
Cu	$2.622(1)$	$56.28(3)$	$109.82(3)$	$163.4(2)$	$78.7(3)$	$71.7(2)$	$84.52(6)$
$\mathrm{Ru}(1)$	$2.885(1)$		$60.39(3)$	$135.9(2)$	$122.5(3)$	$102.4(2)$	$51.37(5)$
$\mathrm{Ru}(2)$	$2.873(1)$			$77.1(2)$	$168.4(3)$	$96.3(2)$	$78.51(5)$
$\mathrm{C}(31)$	$1.899(8)$				$96.9(4)$	$92.9(3)$	$111.9(4)$
$\mathrm{C}(32)$	$1.844(9)$					$93.9(4)$	$94.9(3)$
$\mathrm{C}(33)$	$1.916(8)$					$152.4(2)$	
$\mathrm{P}(1)$	$2.336(2)$						

Table 1 (continued)

(c) $\mathrm{Ru}(3)$									
	(11)	r	$\mathrm{Ru}(1)$	Ru(2)	C(31)	C(32)	C(33)	P(1)	
	Ag	$2.806(1)$	57.48(4)	108.45(4)	162.2(3)	79.8(3)	72.8(3)	86.49(7)	
	$\mathrm{Ru}(1)$	2.944(1)		59.67(4)	135.9(3)	122.5(3)	106.1(3)	50.66(6)	
	$\mathbf{R u}(2)$	2.873(2)			78.5(3)	168.8(3)	95.8(3)	78.70 (6)	
	C(31)	1.886(9)				95.9(4)	90.4(4)	$111.2(3)$	
	C(32)	1.900(9)					94.0(4)	94.5(3)	
	C(33)	1.913(8)						155.8(3)	
	P(1)	2.349(2)							
	(12)	r	Ru(1)	$\mathrm{Ru}(2)$	C(31)	C(32)	C(33)	P(1)	
	Au	2.786(1)	57.33(3)	108.49(3)	163.3(2)	79.9(2)	74.3(2)	86.15(6)	
	$\mathrm{Ru}(1)$	2.942(1)		59.69(4)	135.6(2)	122.7(2)	106.8(2)	50.51(4)	
	Ru(2)	2.867(2)			78.5(2)	168.7(2)	95.2(2)	78.57(5)	
	C(31)	1.887(7)				95.6(3)	90.2(3)	110.3(2)	
	C(32)	1.896 (7)					94.5(3)	94.8(2)	
	C(33)	1.916(7)						156.5(2)	
	P(1)	2.348(2)							
(d) $\mathrm{M}[\mathrm{Cu}(10), \mathrm{Ag}(11)$, or $\mathrm{Au}(12)]$					(e) $\mathrm{P}(1)$				
(10)	r	$\mathrm{Ru}(3)$	P(3)		(10)	r	$\mathrm{Ru}(3)$	C(111)	C(120)
$\mathrm{Ru}(1)$	2.607(1)	66.95(3)	149.13(7)		Ru(1)	2.316 (2)	76.64(6)	120.8(2)	114.0(2)
Ru(3)	2.622(1)		143.58(7)		Ru(3)	$2.336(2)$		121.1(2)	123.7(2)
P(3)	2.228(2)				C(111)	$1.830(7)$			100.8(3)
					C(120)	$1.850(7)$			
(11)	r	Ru(3)	P(3)						
Ru(1)	2.767(1)	63.77(3)	151.76(7)		(11)	r	$\mathrm{Ru}(3)$	C(111)	C(120)
Ru(3)	2.806(1)		142.91(7)		$\mathrm{Ru}(1)$	2.328(2)	78.03(7)	119.1(3)	113.8(3)
$\mathbf{P (3)}$	2.422(3)				$\mathrm{Ru}(3)$	2.349 (2)		120.9(3)	122.3(3)
					C(111)	$1.827(8)$			102.3(3)
(12)	r	Ru(3)	P(3)		C(120)	1.852(8)			
Ru(1)	2.751(1)	64.18(3)							
$\mathrm{Ru}(3)$	$2.786(1)$		$143.30(6)$		(12)	r	Ru(3)	C(111)	C(120)
P(3)	2.297(2)				$\mathrm{Ru}(1)$	$2.320(2)$	78.12(5)	119.3(2)	113.8(2)
					$\mathbf{R u}(3)$	2.348(2)		120.6(2)	122.3(2)
					C(111)	1.840 (6)			102.4(3)
					C(120)	1.842(6)			
(f) $\mathbf{P}(2)$					(g) $\mathrm{P}(3)$				
(10)	r	C(120)	C(211)	C(221)	(10)	r	C(311)	C(321)	C(331)
Ru(2)	2.415(2)	112.0(2)	118.9(2)	116.0 (2)	Cu	2.228(2)	117.0(3)	113.3(2)	112.6(3)
C(120)	1.814(8)		104.4(3)	102.6(3)	C(311)	1.812(7)		102.4(3)	105.5(4)
C(211)	1.833(7)			101.0(3)	C(321)	$1.820(8)$			104.8(4)
C(221)	1.823(8)				C(331)	1.813(8)			
(11)	r	C(120)	C(211)	C(221)	(11)	r	C(311)	C(321)	C(331)
$\mathrm{Ru}(2)$	2.432(2)	111.7(3)	$\begin{aligned} & 121.4(3) \\ & 102.8(4) \end{aligned}$	114.2(3)	Ag	2.422(3)	118.5(3)	112.6(3)	111.4(3)
$\mathrm{C}(120)$	1.826(8)			104.5(4)	C(311)	1.804(8)		102.5(4)	105.0(4)
$\mathrm{C}(211)$	1.834(8)			100.3(3)	C(321)	1.835(9)			105.7(4)
C(221)	1.841 (9)				C(331)	1.827(10)			
(12)	r	C(120)	C(211)	C(221)	(12)	r	C(311)	C(321)	C(331)
$\mathrm{Ru}(2)$	2.419(2)	111.7(2)	121.4(2)	115.4(2)	Au	2.297(2)	117.4(2)	113.3(2)	$111.4(3)$
$\mathrm{C}(120)$	$1.825(6)$		102.9(3)	102.9(3)	C(311)	$1.805(6)$		102.5(3)	106.3(3)
$\mathrm{C}(211)$	$1.830(6)$			100.3(3)	C(321)	1.815(7)			104.7(3)
C(221)	$1.830(6)$				C(331)	1.821(7)			

$\mathrm{P}(1)-\mathrm{C}(120)-\mathrm{P}(2)$ are $105.8(3), 105.8(4), 105.6(3)^{\circ}$ for (10), (11), and (12) respectively.
methylene-bridged chelating tertiary phosphine ligands have a history of unusual steric behaviour, e.g. in $\left[\mathrm{PdCl}_{2}(\mathrm{dppm})\right]$, the angle $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ is closed down to 73.3°, with a $\mathrm{P}-\mathrm{C}-\mathrm{P}$ angle of only 93.0° and $\mathrm{Pd}-\mathrm{P}-\mathrm{C}$ angles of 94.7 and 94.3°, the C atom lying out of the PdP_{2} plane by $0.50 \AA$; the trans Cl atoms in the 'square planar' co-ordination sphere are also deviant by -0.18 and $0.30 \AA \AA^{17}$
(iii) Also of comparative interest are the related osmium cluster compounds, $\left[\mathrm{CuOs}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right](15)^{18}$ and $\left[\mathrm{AuOs}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)\right](16){ }^{19}$ In the former, the $\mathrm{Cu}-\mathrm{Os}$ distances [2.695(5) and 2.726(5) \AA] are appreciably longer than in the present complex (10); the $\mathrm{Os}_{3} / \mathrm{CuOs}_{2}$ interplanar dihedral angle is very different [$72.2 \mathrm{vs} .46 .4^{\circ}$ in (10)]. The $\mathrm{Cu}-\mathrm{P}$ distance [2.213(8) \AA] does not differ significantly from that found in

Table 2. $R u_{3}$ planes. Atom deviations, δ, from the $R u_{3}$ planes are tabulated in $\AA ; \theta^{\circ}$ is the associated MRu_{2} dihedral angle and φ° the $\mathrm{P}(1) \mathrm{Ru} \mathrm{u}_{2}$ dihedral angle

	Cu	Ag	Au
$\delta \mathrm{M}$	1.155	1.394	1.371
$\delta \mathbf{P}(1)$	-1.801	-1.785	-1.781
$\delta \mathrm{C}(11)$	-0.897	-0.929	-0.933
$\delta \mathrm{C}(12)$	-0.161	-0.229	-0.233
$\delta \mathrm{C}(13)$	1.828	1.821	1.790
$\delta \mathbf{P}(2)$	-2.411	-2.426	-2.412
$\delta \mathrm{C}(21)$	1.876	1.852	1.846
$\delta \mathrm{C}(22)$	0.174	0.201	0.160
$\delta \mathrm{C}(23)$	0.110	0.169	0.178
$\delta \mathrm{C}(31)$	-0.391	-0.465	-0.495
$\delta \mathrm{C}(32)$	-0.353	-0.358	-0.359
$\delta \mathrm{C}(33)$	1.871	1.835	1.830
θ	46.4	36.1	35.8
φ	80.8	79.3	79.4

(15)

(16)
(10). In (16), on the other hand, the Au -Os distances [2.772(2) and 2.738(1) \AA] are similar to those in (12), while the Au-P distance of $2.320(7) \AA$ in (16) is slightly longer than in the present complex. The interplanar dihedral angle (70.2°) is similar to that in (15), but again different from that in (12) $\left(35.8^{\circ}\right)$. No comparable study exists of a silver derivative; this is unfortunate, since one of the most interesting results of the present work is the very long $\mathrm{Ag}-\mathrm{P}$ distance $[2.422(3) \AA]$, compared with the $\mathrm{Cu}-\mathrm{P}$ and $\mathrm{Au}-\mathrm{P}$ values [2.228(2) and 2.297(2) \AA, respectively].

This study is the first comparison available of the geometries of the three coinage metals occupying similar bridging sites in a metal cluster, and is of interest particularly in the context of the isolobal relationship between the $\mathrm{M}\left(\mathrm{PPh}_{3}\right)$ groups and the H atom, first pointed out in 1981, ${ }^{20}$ and also of the extended discussion of the relationships between the three coinage metals. It is fortunate that the molecular structure of the isolobal complex $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right](5)$ has also been reported. ${ }^{12}$ Table 3 includes selected structural parameters for this complex as well. There is a major difference between the solid-state structure of (5) and those described above, namely, that the H atom is bridging $\mathrm{Ru}(1)-\mathrm{Ru}(2)$, and is coplanar with the $R u_{3}$ atoms. In solution, the H bridge is fluxional. We have previously described the structure of $\left[\mathrm{AuFe}_{3}\left(\mu_{3}-\eta^{2}-\mathrm{HC}=\mathrm{NBu}{ }^{t}\right)\right.$ $\left.(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$, in which the $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group bridges a different $\mathrm{Fe}-\mathrm{Fe}$ vector from that bridged by the H in $\left[\mathrm{Fe}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{HC}=\mathrm{NBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}\right] ;{ }^{21}$ again, however, the H bridge is fluxional in solution, and the structure adopted in the solid state is determined by crystal-packing considerations.

In developing their discussion on the differences in bonding modes of the Group 1B $\mathrm{M}\left(\mathrm{PPh}_{3}\right)$ fragments, Evans and Mingos ${ }^{22}$ suggested that the degenerate p_{x} and p_{y} orbitals of gold are of relative high energy, compared with those of copper. In a capping situation, the frontier molecular orbitals for $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)$ are likely to involve these two π-type orbitals and the hybrid $(s-z)$ orbital, whereas for $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$, only the latter will be important in bonding. Previous comparisons between these Group 1B metals have involved the $\mathrm{Cu}(\mathrm{NCMe})$ and $\mathrm{Au}\left(\mathrm{PR}_{3}\right)$ fragments, for example, in the carbido complexes $\left[\mathrm{M}_{2} \mathrm{Ru}_{6}\right.$ -

Table 3. Selected bond parameters for complexes $\left[R u_{3}(\mu-H)\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (5) and $\left[\mathrm{MRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right][\mathrm{M}=\mathrm{Cu}(10), \mathrm{Ag}(11)$, or $\mathrm{Au}(12)]$

(10)-(12)

Complex

	(5)*	(10)	(11)	(12)
(i) Bond distances/ \AA				
a	2.820 (1)	2.885(1)	2.944(1)	2.942(1)
b	2.890 (1)	$2.873(1)$	2.873(1)	2.867(1)
c	3.012(1) \dagger	2.896(1)	2.894(1)	2.891(1)
d	1.815(32)	2.622(1)	2.806(1)	$2.786(1)$
e	1.827(32)	$2.607(1)$	2.767 (1)	2.751(1)
f	2.306(1)	$2.336(2)$	2.349(2)	2.348(2)
g	$2.332(1)$	2.316 (2)	2.328 (2)	2.320(2)
h	2.384(1)	$2.415(2)$	2.432(2)	2.419(2)
i		2.228(2)	2.422(3)	2.297(2)
(ii) Dihedral angles/ ${ }^{\circ}$				
$\mathrm{Ru}_{3} / \mathrm{Ru}_{2} \mathrm{M}$		46.4(1)	36.1(1)	35.8(1)
$\mathrm{Ru}_{3} / \mathrm{Ru}_{2} \mathrm{P}$	83.8(1)	80.8(1)	81.5(1)	79.4(1)

* Ref. 12. \dagger Bridged by H.
$\left.\mathrm{C}(\mathrm{CO})_{16}(\mathrm{~L})_{2}\right] \quad\left(\mathrm{M}=\mathrm{Au}, \mathrm{L}=\mathrm{PMePh}_{2} ;{ }^{23 a} \quad \mathrm{M}=\mathrm{Cu}, \mathrm{L}=\right.$ $\mathrm{MeCN}{ }^{23 b}$) and $\left[\mathrm{MOs}_{10} \mathrm{C}(\mathrm{CO})_{24}(\mathrm{~L})\right]^{24}(\mathrm{M}=\mathrm{Cu}, \mathrm{L}=\mathrm{MeCN}$; $\mathrm{M}=\mathrm{Au}, \mathrm{L}=\mathrm{PPh}_{3}$), in which some geometrical differences were ascribed to differences in bonding. Studies of the hexanuclear clusters $\left[\mathrm{MM}^{\prime} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad\left(\mathrm{M}, \mathrm{M}^{\prime}=\right.$ Cu, Ag, or Au) have concluded that the lighter Group 1B element occupied the site of highest co-ordination number, ${ }^{25}$ in the examples of $\left[\mathrm{MCo}_{3} \mathrm{Ru}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)\right](17)(\mathrm{M}=\mathrm{Cu}$ and Au), in which the $\mathrm{M}\left(\mathrm{PPh}_{3}\right)$ fragment caps a Co_{3} face on the opposite side to the $\mathrm{Ru}(\mathrm{CO})_{3}$ group, no differences were found for the M -Co bond lengths other than those arising from differences in covalent radii. ${ }^{26}$ An extended-Hückel molecular orbital calculation carried out by these authors suggests that the p_{x} and p_{y} levels in the $\mathrm{Cu}\left(\mathrm{PH}_{3}\right)$ and $\mathrm{Au}\left(\mathrm{PH}_{3}\right)$ fragments do not differ significantly (-6.33 vs. -5.93 eV). Finally, we refer to the anionic complexes $\left[\mathrm{M}\left\{\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right\}_{2}\right]^{-}\left(\mathrm{M}=\mathrm{Ag}^{27}\right.$ or $\left.\mathrm{Au}^{28}\right)$ in which the $\mathrm{Os}-\mathrm{Ag}$ distances $[2.852(1)-2.874(1) \AA$] are also $c a .0 .06 \AA$ longer than the corresponding $\mathrm{Os}-\mathrm{Au}$ distances $[2.802(1)-2.814(1) \AA]$.

Returning to the structures of complexes (10), (11), and (12), we find that, within the PMRu_{3} core, changes in bond lengths along the series $\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$ suggest that the $\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)$ moiety is the most tightly held (shortest $\mathrm{M}-\mathrm{Ru}, \mathrm{Ru}-\mathrm{Ru}$ distances in CuRu_{2} triangle) and that the silver derivative may
be the exception (longest $\mathrm{M}-\mathrm{Ru}, \mathrm{M}-\mathrm{P}$ distances). It is interesting to note that within the Group 1 B metals themselves, the $\mathrm{Ag}-\mathrm{Ag}$ bond strength is anomalously low when compared with copper and gold and a connection can be traced to the weaker $\mathrm{Ag}-\mathrm{H}$ bond compared with CuH and $\mathrm{AuH}.{ }^{29}$ Alternatively, the edge-bridging $\mathrm{M}\left(\mathrm{PPh}_{3}\right)$ units in these complexes may utilise the hybrid $(s-z)$ orbital and one of the degenerate p_{x} and p_{y} orbitals in the copper and silver examples, but only the former in the gold complex, a closer approach of the $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ affording a better overlap with the appropriate edge orbitals of the $\mathrm{R} \mathrm{u}_{3}$ cluster. While our results can be interpreted as giving qualitative support to a view that the three $\mathbf{M}\left(\mathrm{PPh}_{3}\right)$ groups are isolobal in edge-bridging as well as facecapping positions, further comparative studies, particularly of silver-containing complexes, are required to quantify the position of these Group 1B metal fragments.

(17) $M=C u$ or $A u$

Experimental

General experimental conditions are similar to those described in other papers from this Laboratory. All reactions were carried out under nitrogen, but no special precuations to exclude air were taken during work-up. [$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$] was made by a literature method; ${ }^{30}$ the ligands dppm, dpam, and dppe were obtained from Strem Chemical Co., Newburyport, Massachusetts, and used as received. ${ }^{31} \mathrm{P}$ Chemical shifts were referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%$ aqueous solution $)$.

Preparation of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right]$ (1).-A mixture of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right](1.0 \mathrm{~g}, 1.56 \mathrm{mmol})$ and dppm $(0.62 \mathrm{~g}, 1.61 \mathrm{mmol})$ in thf $\left(100 \mathrm{~cm}^{3}\right)$ was warmed to $40^{\circ} \mathrm{C}$ to dissolve all of the carbonyl. A solution of $\mathrm{Na}\left[\mathrm{Ph}_{2} \mathrm{CO}\right]$ in thf (ca. $0.025 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was added dropwise from a syringe until the solution darkened and the $2061 \mathrm{~cm}^{-1}$ band of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ was absent $(1--5$ drops). The solution volume was reduced to $c a .5 \mathrm{~cm}^{3}$ (rotary evaporator). Addition of $\mathrm{MeOH}\left(40 \mathrm{~cm}^{3}\right)$ and cooling gave orange-red crystals of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right]$ (1) $(1.37 \mathrm{~g}, 91 \%)$, m.p. $180-181^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 43.75$; $\mathrm{H}, 2.05 . \mathrm{C}_{35} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Ru}_{3}$ requires $\mathrm{C}, 43.45 ; \mathrm{H}, 2.30 \%$). I.r. (cyclohexane): $v(\mathrm{CO})$ at $2086 \mathrm{~m}, 2024(\mathrm{sh}), 2018 \mathrm{~s}, 2005 \mathrm{~s}, 1991 \mathrm{w}, 1968 \mathrm{~m}, 1965 \mathrm{~m}$, and $1947 \mathrm{w} \mathrm{cm}^{-1}$ [lit., ${ }^{3} v(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at $2080 \mathrm{~m}, 2040 \mathrm{w}, 2010 \mathrm{~s}$, $1988(\mathrm{sh})$, and $\left.1960 \mathrm{~m} \mathrm{~cm}^{-1}\right] .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta, 4.29[\mathrm{t}$, $\left.J(\mathrm{HP}) 10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right]$ and $7.37(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$.

Preparation of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dpam})\right]$ (4).-This complex was obtained in 91% yield by the $\mathrm{Na}\left[\mathrm{Ph}_{2} \mathrm{CO}\right]$-catalysed reaction between $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right.$] and dpam, carried out as described above for the dppm complex, m.p. $170-174^{\circ} \mathrm{C}$ (Found: C , $39.80 ; \mathrm{H}, 1.95 . \mathrm{C}_{35} \mathrm{H}_{22} \mathrm{As}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$ requires $\mathrm{C}, 39.80 ; \mathrm{H}, 2.10 \%$). I.r. (cyclohexane): $v(\mathrm{CO})$ at $2087 \mathrm{~m}, 2028 \mathrm{w}, 2014 \mathrm{vs}, 2010$ (sh), $1993 \mathrm{w}, 1968 \mathrm{~m}$, and $1962 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta, 4.15$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$) and $7.38(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$.

Preparation of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (5).--A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right](150 \mathrm{mg}, 0.155 \mathrm{mmol})$ in thf $(10$ cm^{3}) was treated with $\mathrm{K}\left[\mathrm{BHBu}^{\mathrm{s}}{ }_{3}\right]\left(0.31 \mathrm{~cm}^{3}\right.$ of a $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in thf, 0.155 mmol). An immediate darkening in colour to deep red occurred initially, followed by a gradual lightening to orange after stirring at $25^{\circ} \mathrm{C}$ for 5 h . Addition of $\mathrm{H}_{3} \mathrm{PO}_{4}(0.25$
cm^{3}) to the reaction mixture resulted in a further lightening in colour to yellow. The solvent was evaporated and the residue extracted with light petroleum (b.p. range $\left.40-60^{\circ} \mathrm{C}\right)(3 \times 10$ cm^{3}). The combined filtered extracts were taken to dryness, crystallisation from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ affording yellow crystals of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (5) $(92 \mathrm{mg}, 69 \%)$, m.p. $135-140^{\circ} \mathrm{C}$ (decomp.) [Found: C, $38.85 ; \mathrm{H}, 1.65 \% ; M$ (mass spectrum), $865 . \mathrm{C}_{28} \mathrm{H}_{18} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3}$ requires C, $38.95 ; \mathrm{H}, 2.10 \%$; $M, 865]$. I.r. (cyclohexane): $v(\mathrm{CO})$ at $2084 \mathrm{~s}, 2053 \mathrm{vs}, 2031 \mathrm{vs}$, $2014 \mathrm{~m}, 2001 \mathrm{~m}, 1996 \mathrm{~m}, 1990 \mathrm{~m}, 1984 \mathrm{~m}$, and $1964 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta,-16.65[\mathrm{t}, \mathrm{br}, J(\mathrm{HP}) 10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{RuH}]$, 3.93 ($\mathrm{sr}, 2 \mathrm{H}, \mathrm{CH}_{2}$), and $7.44(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph})$.

Attempts to isolate the first-formed deep red anion, for example, by crystallisation with $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}$, were not successful. The i.r. spectrum contains a $v(\mathrm{CO})$ band at 1665 m cm^{-1}, which is characteristic of a μ-CO ligand in anionic hydrido clusters.

Preparation of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{AsPhCH}_{2} \mathrm{AsPh}_{2}\right)(\mathrm{CO})_{9}\right](6)$.A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\right.$ dpam $\left.)\right](100 \mathrm{mg}, 0.095 \mathrm{mmol})$ in thf ($10 \mathrm{~cm}^{3}$) was treated with $\mathrm{K}\left[\mathrm{BHBu}_{3}{ }_{3}\right]\left(0.2 \mathrm{~cm}^{3}\right.$ of a 0.5 mol dm^{-3} solution in thf, 0.10 mmol). After stirring at $25^{\circ} \mathrm{C}$ for 20 h $\mathrm{H}_{3} \mathrm{PO}_{4}\left(0.25 \mathrm{~cm}^{3}\right)$ was added. The solution was then taken to dryness and the residue extracted with light petroleum (3×10 cm^{3}). The combined filtered extracts were taken to dryness, crystallisation from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ affording orange-yellow crystals of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{AsPhCH}_{2} \mathrm{AsPh}_{2}\right)(\mathrm{CO})_{9}\right](6)(48 \mathrm{mg}$, 53%), m.p. $157-159^{\circ} \mathrm{C}$ (decomp.) (Found: C, $35.75 ;$ H, 1.65. $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{As}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$ requires C, 35.35 ; H, 1.90%). I.r. (cyclohexane): $v(\mathrm{CO})$ at $2081 \mathrm{~s}, 2052 \mathrm{vs}, 2029 \mathrm{vs}, 2009 \mathrm{~s}, 1992 \mathrm{~s}$, 1979 w , and $1968 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta,-16.35$ (s br, 1 $\mathrm{H}, \mathrm{RuH}), 4.47$ ($\mathrm{s} \mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2}$), and $7.45(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta, 41.93\left(\mathrm{~s} \mathrm{br}, \mathrm{CH}_{2}\right), 128.93-142.98(\mathrm{~m}, \mathrm{Ph})$, and 196.46 ($\mathrm{sbr}, \mathrm{CO}$).

Preparation of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (9). - A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\right.$ dppe $\left.)\right](100 \mathrm{mg}, 0.102 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{K}\left[\mathrm{BHBu}_{3}{ }_{3}\right]\left(0.22 \mathrm{~cm}^{3}\right.$ of a 0.5 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ solution in thf, 0.11 mmol). After stirring at reflux for $18 \mathrm{~h} \mathrm{H}_{3} \mathrm{PO}_{4}\left(0.25 \mathrm{~cm}^{3}\right)$ was added. The solution was taken to dryness and the residue extracted with light petroleum (3×10 cm^{3}). The combined yellow filtered extracts were taken to dryness; crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave an orangeyellow powder of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (9) ($22 \mathrm{mg}, 25 \%$).
This complex was identified by comparison of its $v(C O)$ spectrum with that of a sample prepared as described below.

Only $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppe})\right]$ was recovered (70%) after stirring with $\mathrm{K}\left[\mathrm{BHBu}^{\mathrm{s}}{ }_{3}\right]$ at room temperature for 5 h , followed by addition of $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Hydrogenation of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{~L}-\mathrm{L})\right] \quad(\mathrm{L}-\mathrm{L}=\mathrm{dppm}$ or dpam).-A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right](200 \mathrm{mg}, 0.206$ mmol) in cyclohexane ($40 \mathrm{~cm}^{3}$) was heated in an autoclave $\left(80^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ under $\mathrm{H}_{2}(20 \mathrm{~atm})$. The resulting yellow solution was filtered and evaporated to dryness. Crystallisation of the residue $\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}\right)$ gave yellow crystals of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right]$ (5) $(134 \mathrm{mg}, 75 \%)$, identified by comparison of its i.r. spectrum with an authentic sample.
A similar reaction of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\right.$ dpam $\left.)\right]$ afforded orangeyellow crystals (from $\left.\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}\right)$ of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{AsPh}-\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)(\mathrm{CO})_{9}\right](6)(117 \mathrm{mg}, 65 \%)$, identified by comparison with an authentic sample (i.r.).

Hydrogenation of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppe})\right]$.-A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppe})\right](200 \mathrm{mg}, 0.204 \mathrm{mmol})$ in cyclohexane (40 cm^{3}) was heated in an autoclave $\left(80^{\circ} \mathrm{C}, 5 \mathrm{~h}\right)$ under $\mathrm{H}_{2}(25 \mathrm{~atm})$. The resulting yellow solution was taken to dryness and
separated by preparative t.l.c. [light petroleum-acetone ($90: 10$)] to give 4 bands. Band $1, R_{f} 0.36$, yellow, crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to give an orange powder of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right](9)\left(60 \mathrm{mg}, 34 \%\right.$), m.p. $110-115{ }^{\circ} \mathrm{C}$ [Found: C, 39.85; H, 2.30\%; M (mass spectrum), 879. $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3}$ requires $\mathrm{C}, 39.70 ; \mathrm{H}, 2.30 \%, M, 879$]. I.r. (cyclohexane): $v(\mathrm{CO})$ at $2087 \mathrm{~m}, 2043 \mathrm{~s}, 2016 \mathrm{vs}, 2007 \mathrm{w}$, 1 995w, $1990 \mathrm{w}, 1979 \mathrm{~m}$, and $1968 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right)$: $\delta,-16.36$ (s br, $1 \mathrm{H}, \mathrm{RuH}$), 4.46 ($\mathrm{s} \mathrm{br}, 4 \mathrm{H}, \mathrm{CH}_{2}$), and 7.45 (m, 15 $\mathrm{H}, \mathrm{Ph})$. Band 4, $R_{\mathrm{f}} 0.13$, yellow, crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to give orange crystals of $\left[\mathrm{Ru}_{4} \mathrm{H}_{4}(\mathrm{CO})_{10}(\right.$ dppe $\left.)\right](52 \mathrm{mg}, 23 \%$) identified by comparison of i.r. and ${ }^{1} \mathrm{H}$ n.m.r. data with literature values. ${ }^{1,2}$ Bands 2 and 3 were obtained in trace amounts and were not identified.

Preparation of Group 1B Derivatives.-(a) $\left[\mathrm{CuRu}_{3}\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right](10)$. A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10^{-}}\right.$ (dppm)] $(300 \mathrm{mg}, 0.309 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{K}\left[\mathrm{BHBu}_{3}{ }^{3}\right]\left(0.63 \mathrm{~cm}^{3}\right.$ of a $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in thf, 0.315 mmol). After stirring at $25^{\circ} \mathrm{C}$ for 5 h , the initial deep red solution had lightened to orange. Solid $\left[\left\{\mathrm{CuCl}\left(\mathrm{PPh}_{3}\right)\right\}_{4}\right](114$ $\mathrm{mg}, 0.315 \mathrm{mmol}$) was added to the anionic solution resulting in a further change in colour to a deeper orange. After stirring at ambient temperature for 30 min solvent was removed and the residue extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). Filtration through Celite, addition of methanol ($30 \mathrm{~cm}^{3}$) to the filtrate, and reduction of the solution volume to $c a .10 \mathrm{~cm}^{3}$ gave $\left[\mathrm{CuRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right](10)$ as an orange powder ($297 \mathrm{mg}, 81 \%$), m.p. 179-184 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, $46.25 ; \mathrm{H}, 2.85 . \mathrm{C}_{46} \mathrm{H}_{32} \mathrm{CuO}_{9} \mathrm{P}_{3} \mathrm{Ru}_{3}$ requires $\mathrm{C}, 46.50 ; \mathrm{H}, 2.70 \%$). I.r. (cyclohexane): $v(\mathrm{CO})$ at $2057 \mathrm{~m}, 2013 \mathrm{vs}, 2007$ (sh), 1996 m , $1984 \mathrm{w}, 1965 \mathrm{~m}$, and $1947 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right)$: δ, 4.38 [dd, $J(\mathrm{PH}) 10.0,12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$] and $7.39(\mathrm{~m}, 30 \mathrm{H}$, $\mathrm{Ph})$.
(b) $\left[\mathrm{AgRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right](11)$. The cluster anion was prepared by the above method using $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10^{-}}\right.$ (dppm) $](100 \mathrm{mg}, 0.103 \mathrm{mmol})$, thf ($10 \mathrm{~cm}^{3}$), and $\mathrm{K}\left[\mathrm{BHBu}^{\mathrm{s}}{ }_{3}\right]$ ($0.21 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in thf, 0.105 mmol). A solution of $\left[\mathrm{Ag}\left\{\mathrm{C}_{5}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{5}\right\}\left(\mathrm{PPh}_{3}\right)\right](75 \mathrm{mg}, 0.103 \mathrm{mmol})$ in thf $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise (0.5 h) to the anionic solution, resulting in a darkening from orange to red. After removal of the solvent, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10$ cm^{3}) and filtered through Celite. Addition of $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ to the filtrate followed by concentration to $c a .20 \mathrm{~cm}^{3}$ (rotary evaporator) and cooling to $0^{\circ} \mathrm{C}$ gave well formed deep red crystals of $\left[\mathrm{AgRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (11) (104 $\mathrm{mg}, 82 \%$), m.p. $198-201^{\circ} \mathrm{C}$ (Found: C, 44.35 ; H, 2.25. $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{AgO}_{9} \mathrm{P}_{3} \mathrm{Ru}_{3}$ requires $\mathrm{C}, 44.80 ; \mathrm{H}, 2.60 \%$). I.r. (cyclohexane): $v(\mathrm{CO})$ at $2054 \mathrm{~m}, 2014 \mathrm{vs}, 2000 \mathrm{~s}(\mathrm{sh}), 1985 \mathrm{~m}$, 1961 w , and $1950 \mathrm{~m} \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta, 4.54$ [dd, $\left.J(\mathrm{PH}) 9.5,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right]$ and $7.45(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph})$.
(c) $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (12). A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})\right](100 \mathrm{mg}, 0.103 \mathrm{mmol})$ in dry thf (10 cm^{3}) was treated with $\mathrm{K}\left[\mathrm{BHBu}^{3}{ }_{3}\right]\left(0.21 \mathrm{~cm}^{3}\right.$ of a $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in thf, 0.105 mmol). After stirring at $25^{\circ} \mathrm{C}$ for 5 h , the initial deep red solution lightened to orange. Solid [AuCl$\left.\left(\mathrm{PPh}_{3}\right)\right](52 \mathrm{mg}, 0.105 \mathrm{mmol})$ was added and the mixture stirred for 30 min . The solution was taken to dryness, extracted with diethyl ether ($3 \times 25 \mathrm{~cm}^{3}$), and filtered through Celite. Evaporation and recrystallisation $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ afforded orange-red crystals of $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]$ (12) ($100 \mathrm{mg}, 74 \%$), m.p. $224-226^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 41.55 ; \mathrm{H}, 2.10 . \mathrm{C}_{46} \mathrm{H}_{32} \mathrm{AuO}_{9} \mathrm{P}_{3} \mathrm{Ru}_{3}$ requires C , $41.80 ; \mathrm{H}, 2.45 \%$). I.r. (cyclohexane): $v(\mathrm{CO})$ at $2058 \mathrm{~m}, 2023 \mathrm{vs}$, 2011s, $1992 \mathrm{~m}, 1977 \mathrm{w}$, and $1963 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right)$: $\delta, 4.62$ [dd, $\left.J(\mathrm{PH}) 10.0,12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right] 7.43(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph})$. ${ }^{13} \mathrm{C}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta, 45.33$ [dd, $J(\mathrm{PC}) 19.1,26.5 \mathrm{~Hz}, \mathrm{CH}_{2}$], 127.8-146.6(m, Ph), and 198.7-199.9(CO). ${ }^{31}$ PN.m.r. $\left(\mathrm{CDCl}_{3}\right)$:
$\delta, 11.46$ [d, $\left.J(\mathrm{PP}) 117, \mathrm{PPh}_{2}\right], 68.68\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$, and 128.81 [d, $J(\mathrm{PP}) 117 \mathrm{~Hz}, \mathrm{PPh}]$.
(d) $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{AsPhCH}_{2} \mathrm{AsPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (13). A reaction similar to (c), using $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}\right.$ (dpam)] $(100 \mathrm{mg}, 0.095$ $\mathrm{mmol})$, gave large well formed crystals of $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{AsPh}-\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (13) ($101 \mathrm{mg}, 75 \%$), m.p. $191-$ $195{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 39.10 ; \mathrm{H}, 2.00 . \mathrm{C}_{46} \mathrm{H}_{32} \mathrm{As}_{2} \mathrm{AuPRu}_{3}$ requires C, 39.20 ; H, 2.30%). I.r. (cyclohexane): v(CO) at 2070 vw , $2056 \mathrm{~m}, 2040 \mathrm{vw}, 2022 \mathrm{vs}, 2009 \mathrm{~s}, 1989 \mathrm{~m}, 1974 \mathrm{w}, 1965 \mathrm{~m}$, and $1960 \mathrm{w} \mathrm{cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta, 4.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and 7.43 ($\mathrm{m}, 30 \mathrm{H}, \mathrm{Ph}$).
(e) $\left[\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (14). A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppe})\right](50 \mathrm{mg}, 0.051 \mathrm{mmol})$ in dry thf $\left(10 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{K}\left[\mathrm{BHBu}_{3}^{\mathrm{s}}\right]\left(0.15 \mathrm{~cm}^{3}\right.$ of a 0.5 mol dm^{-3} solution in thf, 0.08 mmol). After stirring at $40^{\circ} \mathrm{C}$ for 5 h , solid $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](28 \mathrm{mg}, 0.057 \mathrm{mmol})$ was added and the mixture stirred for 2 h . The solution was extracted with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$) and filtered. Evaporation and crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-isopentane afforded red crystals of [$\mathrm{AuRu}_{3}\left(\mu_{3^{-}}\right.$ $\left.\left.\mathrm{PPhCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]$ (14) ($18 \mathrm{mg}, 26 \%$), m.p. 206--209 ${ }^{\circ} \mathrm{C}$ (Found: C, $42.15 ; \mathrm{H}, 2.45 . \mathrm{C}_{47} \mathrm{H}_{34} \mathrm{AuO}_{9} \mathrm{P}_{3} \mathrm{Ru}_{3}$ requires $\mathrm{C}, 42.25 ; \mathrm{H}, 2.55 \%$). I.r. (cyclohexane): $v(\mathrm{CO})$ at 2073 m , $2021 \mathrm{~s}, 2009 \mathrm{~m}, 1997 \mathrm{vs}, 1991 \mathrm{w}, 1969 \mathrm{w}, 1950 \mathrm{~m}$, and 1936 w $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta, 4.45\left(\mathrm{~s} \mathrm{br}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $7.45(\mathrm{~m}, 30$ H, Ph).

Crystallography.-Unique data sets were measured at 295 K within preset $2 \theta_{\text {max }}$. limits using a Syntex $P 2{ }_{1}$ four-circle diffractometer in conventional $2 \theta / \theta$ scan mode and fitted with a monochromatic Mo- K_{α} radiation source $\left(\lambda=0.7106_{9} \AA\right) . N$ Independent reflections were obtained, N_{o} with $I>3 \sigma(I)$ being considered 'observed' and used in the basically 9×9 blockdiagonal least-squares refinement after Gaussian absorption correction and solution of the structure by direct methods. Anisotropic thermal parameters were refined for the nonhydrogen atoms (exception: some disordered ring components); $(x, y, z, U)_{\mathrm{H}}$ were included as constrained estimates. Residuals quoted at convergence are R, R^{\prime} (on $|F|$), reflection weights being statistical. Neutral complex scattering factors were used; ${ }^{31}$ computation used the XTAL 83 program system ${ }^{32}$ implemented on a Perkin-Elmer 3240 by S. R. Hall. Atom labelling is shown in the molecular projections. The three complexes are isostructural, except perhaps in respect of some disordered phenyl ring components, this being confined to one ring only in (11) and (12) and much more widespread in (10); in (11) and (12), however, high thermal motion in some rings may be a foil for disorder.

Crystal Data--For (10). $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{CuO}_{9} \mathrm{P}_{3} \mathrm{Ru}_{3}, M=1188.4$, monoclinic, space group $P 2_{1} / n$ (variant of $C_{2 h}^{5}$, no. 14), $a=$ 17.345(5), $b=22.533(8), c=11.995(4) \AA, \beta=91.19(2)^{\circ}, U=$ $4687(3) \AA^{3}, D_{\mathrm{m}}=1.68(1), D_{\mathrm{c}}(Z=4)=1.69 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ $2344, \mu_{\mathrm{Mo}}=15.3 \mathrm{~cm}^{-1}$. Specimen: $0.18 \times 0.12 \times 0.30 \mathrm{~mm}$. $2 \theta_{\text {max. }}=50^{\circ}, N=7586, N_{\mathrm{o}}=4560 . R=0.039, R^{\prime}=0.034$.

For (11). $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{AgO}_{9} \mathrm{P}_{3} \mathrm{Ru}_{3}, M=1232.8$, monoclinic, space group $P 2_{1} / n, \quad a=17.009(9), \quad b=22.694(10), \quad c=$ $12.306(5) \AA, \beta=91.51(4)^{\circ}, U=4749(4) \AA^{3}, D_{\mathrm{m}}=1.73(1), D_{\mathrm{c}}$ $(Z=4)=1.87 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=2544, \quad \mu_{\mathrm{Mo}}=42.6 \mathrm{~cm}^{-1}$. Specimen: $0.10 \times 0.10 \times 0.35 \mathrm{~mm} .2 \theta_{\text {max. }}=50^{\circ}, N=8378$, $N_{\mathrm{o}}=4$ 917. $R=0.044, R^{\prime}=0.035$.

For (12). $\mathrm{C}_{46} \mathrm{H}_{32} \mathrm{AuO}_{9} \mathrm{P}_{3} \mathrm{Ru}_{3}, \quad M=1322.0$, monoclinic, space group $P 2_{1} / n, \quad a=17.036(9), \quad b=22.556(12), \quad c=$ $12.238(6) \AA, \beta=91.45(3)^{\circ}, U=4701(4) \AA^{3}, D_{\mathrm{m}}=1.86(1), D_{\mathrm{c}}$ $(Z=4)=1.87 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=2544, \mu_{\mathrm{Mo}}=42.6 \mathrm{~cm}^{-1}$. Specimen: $0.50 \times 0.27 \times 0.58 \mathrm{~mm} .2 \theta_{\text {max. }}=65^{\circ}, N=17140$, $N_{\mathrm{o}}=9$ 275. $R=0.041, R^{\prime}=0.049$.

Carbonyl geometries are given in Table 4 and atomic coordinates in Table 5.

Table 4. Carbonyl geometries

Carbonyl	Distance $r_{\text {C-O }} / \AA$			Angle $\mathrm{Ru}-\mathrm{C}-\mathrm{O} /^{\circ}$		
	(10)	(11)	(12)	(10)	(11)	(12)
11	1.146(10)	1.150(10)	1.138(9)	178.7(7)	178.0(8)	176.2(6)
12	1.136(9)	1.158(10)	1.140 (8)	172.8(7)	174.2(7)	174.5(6)
13	1.137(9)	1.145(10)	$1.145(8)$	176.0(6)	176.2(7)	177.7(6)
21	1.146(9)	1.162(10)	1.151(7)	173.4(6)	172.5(7)	172.9(6)
22	1.138(10)	1.137(10)	1.138(8)	175.1(7)	176.2(8)	174.6(6)
23	1.132(9)	1.149(11)	1.137(8)	176.3(6)	175.2(8)	175.0(7)
31	1.127(10)	1.148(12)	1.133(9)	171.4(7)	170.4(8)	169.0(6)
32	1.164(12)	1.124(11)	1.133(9)	174.7(8)	173.5(9)	173.2(7)
33	1.148(10)	1.152(11)	1.147(9)	174.9(7)	174.5(7)	174.5(6)

Table 5. Non-hydrogen atomic co-ordinates

	(10) $\mathrm{M}=\mathrm{Cu}$			(11) $\mathrm{M}=\mathrm{Ag}$			(12) $\mathrm{M}=\mathrm{Au}$		
Atom	x	y	z	x	y	z	x	y	z
M	$0.27000(6)$	$0.43183(4)$	0.656 28(7)	0.272 58(4)	0.434 01(3)	$0.65782(5)$	0.269 10(2)	0.434 75(1)	0.66070 (2)
$\mathrm{Ru}(1)$	0.367 79(3)	$0.42285(2)$	0.494 98(5)	0.372 62(4)	0.42590 (3)	0.484 74(5)	0.370 59(3)	0.426 54(2)	0.490 04(3)
$\mathrm{Ru}(2)$	$0.38715(3)$	0.299 13(3)	0.436 55(5)	0.389 00(4)	0.303 22(3)	$0.42516(5)$	0.387 43(3)	0.303 12(2)	0.431 34(3)
$\mathrm{Ru}(3)$	0.244 64(3)	$0.33912(3)$	0.528 57(5)	$0.24207(4)$	0.342 24(3)	0.509 84(5)	0.240 32(3)	0.342 32(2)	0.514 08(3)
Carbonyl groups									
C(11)	$0.4387(4)$	$0.4385(3)$	$0.3812(6)$	$0.4460(5)$	0.438 0(4)	$0.3737(6)$	0.443 9(4)	$0.4360(3)$	0.378 2(5)
$\mathrm{O}(11)$	0.4810 (4)	0.4490 (3)	$0.3119(5)$	0.4901 (4)	0.447 0(3)	$0.3065(5)$	0.487 4(4)	0.4450 (2)	0.3111 (5)
C(12)	$0.3460(5)$	$0.5039(3)$	0.523 5(6)	0.353 8(5)	$0.5069(4)$	$0.5075(7)$	0.354 0(4)	0.5089 9(3)	$0.5110(5)$
$\mathrm{O}(12)$	$0.3398(4)$	0.5538 (2)	0.534 6(5)	0.347 9(4)	0.557 5(3)	0.516 5(6)	0.348 4(4)	0.559 1(2)	0.517 4(5)
C(13)	0.438 6(4)	0.4146 (3)	$0.6205(6)$	0.444 4(5)	$0.4169(4)$	0.608 6(7)	0.443 3(4)	0.419 3(3)	0.612 5(5)
$\mathrm{O}(13)$	$0.4825(3)$	0.412 5(3)	0.692 0(5)	$0.4867(4)$	0.4150 (3)	0.682 6(5)	$0.4865(3)$	0.4170 (3)	0.685 7(5)
C(21)	$0.4148(4)$	$0.2907(3)$	0.589 6(6)	0.4129 (5)	0.295 6(4)	0.574 6(6)	$0.4108(4)$	0.296 6(3)	0.5814 (5)
$\mathrm{O}(21)$	0.4354 (3)	0.2809 (3)	0.679 1(4)	0.431 4(3)	0.2850 (3)	0.6641 (4)	$0.4290(3)$	0.287 2(2)	$0.6710(3)$
C(22)	0.492 2(5)	0.307 9(4)	0.399 4(7)	$0.4979(5)$	$0.3085(4)$	0.394 6(7)	0.4958 (4)	$0.3083(3)$	0.398 6(5)
$\mathrm{O}(22)$	0.556 6(4)	$0.3123(4)$	$0.3848(6)$	0.5637 (3)	0.309 4(4)	$0.3808(6)$	$0.5619(3)$	0.310 2(3)	0.3875 (5)
C(23)	$0.3770(4)$	0.2159 (3)	0.419 7(7)	0.374 8(5)	0.2210 (4)	$0.4118(7)$	0.374 1(4)	0.2199 (3)	$0.4187(6)$
$\mathrm{O}(23)$	$0.3717(4)$	0.1659 (2)	0.415 6(6)	0.369 4(4)	0.170 5(3)	$0.4100(6)$	0.367 4(4)	$0.1697(2)$	0.4190 (5)
C(31)	$0.2198(5)$	$0.2618(4)$	0.4763 (6)	$0.2138(6)$	0.268 4(4)	0.4505 (7)	0.212 3(5)	0.268 4(3)	0.4523 (6)
$\mathrm{O}(31)$	0.199 2(4)	0.215 5(2)	0.456 4(5)	0.191 1(5)	0.222 2(3)	0.427 7(6)	0.1917 (4)	0.2219 (2)	0.431 6(5)
C(32)	0.145 4(5)	0.362 5(4)	0.558 8(8)	0.1377 (5)	0.367 1(4)	0.5371 (7)	$0.1360(4)$	0.367 0(4)	0.5397 (6)
$\mathrm{O}(32)$	$0.0810(4)$	0.372 8(4)	0.5763 (8)	0.074 0(4)	0.376 4(4)	0.551 6(6)	$0.0714(3)$	$0.3765(3)$	$0.5509(6)$
C(33)	0.265 6(5)	$0.3118(4)$	0.677 4(6)	0.257 3(5)	0.307 2(4)	0.650 2(7)	0.254 7(4)	$0.3057(3)$	0.654 4(5)
O(33)	0.272 5(4)	0.2940 (3)	$0.7667(4)$	$0.2605(4)$	0.284 4(3)	0.733 8(5)	0.257 3(4)	0.2819 (3)	0.737 2(4)

Phosphine ligands

$\mathrm{P}(1)$	$0.26006(11)$	$0.40609(8)$	$0.38206(15)$	$0.26191(12)$	$0.41210(9)$	0.372 43(16)	$0.26143(9)$	$0.41233(6)$	(11)
C(111)	$0.1897(4)$	$0.4651(3)$	0.3550 (5)	0.193 4(5)	0.473 2(3)	$0.3509(6)$	0.192 2(4)	0.473 9(3)	$0.3527(4)$
$\mathrm{C}(112)^{a}$	$0.1569(9)$	0.4869 (7)	0.2561 (12)	0.1778 (6)	$0.4965(4)$	0.251 (7)	$0.1767(5)$	$0.4969(3)$	0.251 3(5)
$\mathrm{C}(113)^{a}$	0.1040 (9)	0.5320 (7)	0.240 9(13)	0.123 5(7)	0.543 6(5)	$0.2362(7)$	$0.1251(6)$	0.544 2(4)	$0.2352(6)$
$\mathrm{C}(114)^{a}$	0.072 2(11)	$0.5573(7)$	0.335 4(15)	0.087 4(6)	$0.5668(4)$	0.3213 (7)	0.0879 (5)	0.5676 6(3)	$0.3202(6)$
$\mathrm{C}(115)^{a}$	0.0970 (9)	0.539 8(7)	0.4354 (12)	$0.1037(6)$	0.545 6(4)	0.4221 (7)	0.1027 (5)	$0.5465(3)$	$0.4229(6)$
$\mathrm{C}(116)^{a}$	$0.1512(9)$	0.4970 (7)	0.447 1(11)	$0.1564(6)$	0.499 5(4)	0.4378 (7)	$0.1563(5)$	0.5008 (3)	0.437 1(5)
$\mathrm{C}(120)$	0.2827 (4)	0.3836 (3)	0.2381 (6)	0.284 9(5)	$0.3907(3)$	0.231 6(6)	0.285 5(3)	0.3906 (3)	0.235 6(4)
$\mathrm{P}(2)$	$0.33418(12)$	0.313 79(9)	$0.25084(15)$	0.335 42(12)	0.319 88(9)	$0.24261(17)$	0.334 96(9)	0.319 06(7)	0.248 22(11)
$\mathrm{C}(211)$	$0.39)$ 6(4)	$0.3136(3)$	$0.1328(5)$	$0.3987(5)$	$0.3202(4)$	$0.1242(6)$	0.398 3(4)	0.3181 (3)	$0.1297(4)$
$\mathrm{C}(212)^{b}$	$0.3807(9)$	$0.3523(7)$	0.035 2(12)	0.369 8(11)	0.3123 (8)	$0.0231(15)$	0.372 5(19)	0.3151 (14)	0.0229 (23)
$\mathrm{C}(213){ }^{\text {b }}$	$0.4272(10)$	$0.3464(8)$	-0.050 8(13)	$0.4110(11)$	0.3156 (9)	-0.069 7(14)	0.410 4(28)	$0.3188(20)$	$-0.0672(30)$
$\mathrm{C}(214)^{b}$	0.494 6(5)	$0.3112(5)$	$-0.0489(7)$	0.4980 (12)	0.324 6(9)	$-0.0560(14)$	0.494 6(26)	0.318 6(26)	$-0.0512(30)$
$\mathrm{C}(215)^{b}$	0.5250 (13)	0.317 4(14)	0.047 0(19)	0.527 1(13)	0.338 6(10)	$0.0404(15)$	0.523 3(10)	0.3320 (9)	0.0450 (14)
$\mathrm{C}(216)^{b}$	0.479 3(11)	$0.3130(13)$	$0.1427(14)$	$0.4779(9)$	0.3358 (7)	0.131 6(11)	0.4780 (9)	$0.3310(8)$	$0.1360(11)$
$\mathrm{C}\left(212^{\prime}\right)^{\text {b }}$	0.378 8(9)	$0.3119(9)$	$0.0313(11)$	0.369 2(10)	0.3371 (10)	0.024 3(12)	0.366 2(23)	0.3397 (16)	0.033 9(26)
$\mathrm{C}\left(213^{\prime}\right)^{\text {b }}$	0.4289 (12)	0.312 4(9)	-0.061 8(12)	$0.4208(12)$	0.334 9(10)	$-0.0658(13)$	0.4210 (31)	0.334 8(26)	$-0.0579(33)$
${ }^{C}\left(214^{\prime}\right)^{\text {b }}$				$0.4867(11)$	$0.3127(13)$	$-0.0626(14)$	$0.4836(23)$	0.315 8(20)	$-0.0587(17)$
$\mathrm{C}\left(215^{\prime}\right)^{\text {b }}$	$0.5090(9)$	$0.2720(7)$	0.049 4(12)	0.512 6(12)	0.290 6(14)	0.038 2(16)	0.513 0(12)	0.2805 (11)	0.0458 (16)
$\mathrm{C}\left(216^{\prime}\right)^{\text {b }}$	0.457 2(9)	$0.2757(7)$	0.1403 (13)	0.4719 9(12)	0.289 2(11)	$0.1307(16)$	0.464 9(11)	$0.2861(9)$	0.134 3(14)
C(221)	0.262 2(4)	0.2599 (3)	0.2040 (6)	0.2611 (5)	0.265 5(4)	0.198 0(6)	0.258 9(4)	0.2667 (3)	0.2027 (5)
C(222)	$0.2844(6)$	$0.2082(5)$	0.158 2(10)	0.2833 (5)	0.2105 (4)	0.169 4(8)	0.2837 (4)	0.2097 (3)	$0.1747(6)$
C(223)	0.2323 (7)	$0.1651(6)$	0.127 5(12)	0.2297 (6)	$0.1681(4)$	0.1390 (9)	0.227 7(6)	$0.1669(4)$	0.1454 (7)
C(224)	0.1571 (7)	$0.1747(5)$	$0.1377(9)$	$0.1515(6)$	$0.1802(5)$	$0.1374(9)$	0.1498 (5)	0.1807 (4)	0.143 4(8)
C(225)	$0.1309(5)$	$0.2259(5)$	0.1827 (8)	0.1283 (6)	$0.2350(5)$	0.169 6(10)	0.125.8(5)	0.2353 (4)	0.1713 (8)

Table 5 (continued)

	(10) $\mathrm{M}=\mathrm{Cu}$			11) $\mathrm{M}=\mathrm{Ag}$			12) $\mathrm{M}=\mathrm{Au}$		
Atom	x	y	z	x	y	z	x	y	z
C(226)	$0.1858(5)$	0.2690 (4)	0.2159 (7)	$0.1801(5)$	0.279 1(4)	$0.1969(8)$	0.1816 (4)	$0.2787(4)$	$0.2020(7)$
$\mathrm{P}(3)$	0.223 40(12)	0.483 77(0)	0.797 88(17)	$0.21737(15)$	$0.48717(11)$	$0.80847(18)$	$0.21744(10)$	0.485 12(7)	0.805 26(12)
C(311)	0.2921 (4)	$0.5090(3)$	0.903 3(6)	0.2833 (5)	0.514 8(4)	0.913 8(7)	0.285 3(4)	0.512 2(3)	0.909 4(5)
$\mathrm{C}(312)^{a}$	0.285 6(10)	0.557 4(7)	0.974 9(14)	0.268 4(6)	$0.5571(5)$	0.985 3(8)	$0.2694(6)$	$0.5550(4)$	0.9817 (8)
$\mathrm{C}(313)^{a}$	0.342 1(13)	$0.5709(8)$	$1.0519(14)$	0.316 4(7)	$0.5715(5)$	1.0731 (8)	0.319 8(6)	0.569 4(4)	$1.0678(7)$
$\mathrm{C}(314)^{a}$	$0.4067(9)$	0.5390 (10)	1.053 4(13)	$0.3816(8)$	0.543 6(6)	$1.0897(12)$	0.384 9(8)	$0.5411(6)$	$1.0842(10)$
$\mathrm{C}(315)^{a}$	0.404 4(10)	0.4801 (8)	$1.0179(16)$	0.397 7(7)	0.4953 (6)	$10315(11)$	0.398 7(7)	0.4988 (6)	$1.0270(10)$
$\mathrm{C}(316){ }^{a}$	0.353 9(9)	0.4691 (7)	0.935 4(13)	0.348 9(7)	0.4825 (6)	0.934 4(9)	0.349 5(6)	0.4800 (6)	$0.9298(9)$
C(321)	0.154 4(4)	$0.4425(3)$	0.879 8(6)	0.1483 (5)	0.442 4(4)	0.885 3(6)	0.149 8(4)	0.4410 (3)	0.883 6(5)
$\mathrm{C}(322){ }^{\text {a }}$	0.085 6(9)	0.466 4(8)	$0.9062(14)$	0.104 9(8)	0.4611 (5)	0.967 6(9)	$0.1076(7)$	0.4611 (5)	$0.9670(8)$
$\mathrm{C}(323)^{a}$	0.037 7(10)	0.4327 (10)	0.969 5(15)	$0.0611(7)$	0.425 4(6)	1.027 9(9)	0.059 8(7)	0.4233 (5)	1.025 5(8)
C(324)	$0.0538(5)$	0.374 5(5)	1.002 6(7)	0.050 9(7)	0.370 9(6)	$1.0007(9)$	$0.0517(6)$	$0.3703(5)$	1.004 3(8)
$\mathrm{C}(325)^{\text {a }}$	0.125 5(10)	$0.3511(8)$	0.964 3(14)	0.0914 (13)	0.350 6(7)	0.9218 (16)	0.0910 (15)	$0.3505(7)$	0.920 1(16)
$\mathrm{C}(326){ }^{a}$	0.174 6(9)	$0.3868(7)$	0.905 6(12)	0.140 0(10)	$0.3865(6)$	$0.8615(12)$	0.139 9(12)	$0.3851(6)$	0.862 3(14)
$\mathrm{C}(331)^{a}$	$0.1717(5)$	0.549 7(3)	0.752 2(7)	0.1614 (6)	$0.5514(4)$	0.7615 (7)	0.1601 (5)	0.548 9(3)	0.759 2(5)
$\mathrm{C}(332){ }^{\text {a }}$	0.088 9(9)	0.553 4(8)	0.760 6(12)	0.082 2(6)	0.548 4(5)	$0.7415(9)$	0.0825 (6)	$0.5457(5)$	0.738 9(7)
$\mathrm{C}(333){ }^{\text {a }}$	0.0485 (13)	$0.6009(9)$	0.722 7(16)	0.0391 (7)	0.597 2(7)	0.697 2(9)	0.041 2(7)	0.5959 (6)	$0.7002(9)$
$\mathrm{C}(334){ }^{a}$	0.0821 (11)	0.639 8(7)	0.6657 (18)	0.0815 (10)	0.644 9(6)	0.678 6(11)	0.077 3(10)	0.644 3(5)	$0.6758(8)$
$\mathrm{C}(335){ }^{\text {a }}$	0.170 2(16)	0.649 6(8)	0.6801 (17)	0.158 6(11)	$0.6518(5)$	0.691 6(13)	0.153 0(13)	$0.6487(5)$	0.693 4(14)
$\mathrm{C}(336)^{a}$	$0.2097(13)$	$0.5977(7)$	0.723 8(14)	0.198 6(9)	$0.6022(5)$	0.7359 (12)	0.2003 (9)	0.6006 (5)	$0.7310(11)$

Additional disordered components [(10) only]; populations of all components are 0.5

	x	y	z		x	y	z
C(112')	$0.2218(9)$	$0.5120(7)$	0.3039 (13)	C(322)	0.140 6(9)	$0.4524(8)$	$0.9995(12)$
$\mathrm{C}(113)$	0.169 9(11)	0.556 5(7)	0.2698 (13)	C(323')	0.087 1(10)	0.4175 (8)	1.056 6(13)
$\mathrm{C}\left(114^{\prime}\right)$	0.091 (9)	0.553 2(7)	0.2881 (14)	$\mathrm{C}\left(325^{\prime}\right)$	0.0639 (11)	0.3629 (8)	$0.8958(15)$
$\mathrm{C}(115)$	$0.0683(10)$	0.5015 (9)	0.3330 (17)	C(326)	0.1161 (10)	0.3954 (7)	0.8401 (15)
$\mathrm{C}\left(116{ }^{\prime}\right)$	0.119 2(9)	0.4553 (7)	0.363 5(12)	C(332')	0.144 8(10)	$0.5508(8)$	0.6350 (13)
$\mathrm{C}\left(312{ }^{\prime}\right)$	0.274 (10)	$0.5212(9)$	$1.0045(12)$	C(333')	0.1070 (12)	0.600 2(9)	0.5904 (14)
C(313')	0.325 2(10)	0.545 4(9)	$1.0825(12)$	C(334)	$0.1053(15)$	$0.6545(8)$	$0.6768(14)$
$\mathrm{C}\left(314{ }^{\prime}\right)$	0.3823 (10)	$0.5407(9)$	1.0898 (13)	$\mathrm{C}\left(335{ }^{\prime}\right)$	$0.1308(14)$	0.649 4(8)	$0.7517(18)$
C(315')	0.419 4(12)	0.547 0(11)	0.946 3(18)	C(336)	0.1724 (13)	$0.5980(9)$	0.7974 (16)
$\mathrm{C}\left(316{ }^{\prime}\right)$	$0.3651(10)$	0.5228 (10)	$0.8665(13)$				

${ }^{a}$ Population: 0.5 [(10) only]. ${ }^{b}$ Population: 0.5 .

Acknowledgements

We gratefully acknowledge support from the Australian Research Grants Committee. M. L. W. was a Commonwealth Post-Graduate Research Awardee. We thank Professor P. Braunstein (Université Louis Pasteur, Strasbourg) for a preprint of ref. 26.

References

1 Part 44, M. I. Bruce, G. N. Pain, C. Hughes, J. M. Patrick, B. W. Skelton, and A. H. White, J. Organomet. Chem., 1986, 307, 343.
2 M. I. Bruce, J. G. Matisons, and B. K. Nicholson, J. Organomet. Chem., 1983, 247, 321.
3 F. A. Cotton and B. E. Hanson, Inorg. Chem., 1977, 16, 3369.
4 A. W. Coleman, D. F. Jones, P. H. Dixneuf, C. Brisson, J-J. Bonnet, and G. Lavigne, Inorg. Chem., 1984, 23, 952.
5 G. Lavigne and J-J. Bonnet, Inorg. Chem., 1981, 20, 2713.
6 G. Lavigne and H. D. Kaesz, J. Am. Chem. Soc., 1984, 106, 4647.
7 M. Anstock, D. Taube, D. C. Gross, and P. C. Ford, J. Am. Chem. Soc., 1984, 106, 3696.
8 M. I. Bruce, O. bin Shawkataly, and M. L. Williams, J. Organomet. Chem., 1985, 287, 127; R. D. Adams, I. T. Horvath, and H-S. Kim, Organometallics, 1984, 3, 548.
9 S. Sabo, B. Chaudret, and D. Gervais, J. Organomet. Chem., 1983, 258, C19.
10 G. Lavigne, N. Lugan, and J-J. Bonnet, Organometallics, 1982, 1, 1040.

11 N. Lugan, J-J. Bonnet, and J. A. Ibers, J. Am. Chem. Soc., 1985, 107, 4484.

12 M. I. Bruce and B. K. Nicholson, J. Organomet. Chem., 1982, $235,83$. 13 J. R. Shapley, S. I. Richter, M. R. Churchill, and R. A. Lashewycz, J. Am. Chem. Soc., 1977, 99, 7384; M. R. Churchill, R. A. Lashewycz, J. R. Shapley, and S. I. Richter, Inorg. Chem., 1980, 19, 1277.

14 M. I. Bruce, E. Horn, M. R. Snow, and M. L. Williams, J. Organomet. Chem., 1984, 276, C53.
15 M. I. Bruce and M. L. Williams, J. Organomet. Chem., 1985, 288, C55.
16 M. I. Bruce, M. L. Williams, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 1983, 799.
17 W. L. Steffen and G. J. Palenik, Inorg. Chem., 1976, 15, 2432.
18 B. F. G. Johnson, J. Lewis, P. R. Raithby, S. N. A. B. Syed-Mustaffa, M. J. Taylor, K. H. Whitmire, and W. Clegg, J. Chem. Soc., Dalton Trans., 1984, 2111.
19 B. F. G. Johnson, D. A. Kaner, J. Lewis, and P. R. Raithby, J. Organomet. Chem., 1981, 215, C33.
20 J. W. Lauher and K. Wald, J. Am. Chem. Soc., 1981, 103, 7648.
21 M. I. Bruce and B. K. Nicholson, J. Organomet. Chem., 1983, $250,627$.
22 D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1982, 232, 171; see also D. M. P. Mingos, Polyhedron, 1984, 3, 1289.
23 (a) S. R. Bunkhall, H. D. Holden, B. F. G. Johnson, J. Lewis, G. N. Pain, P. R. Raithby, and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1984, 25; (b) J. S. Bradley, R. L. Pruett, E. Hill, G. B. Ansell, M. E. Leonowicz, and M. A. Modrick, Organometallics, 1982, 1, 748.
24 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, M. D. Vargas, D. S. Braga, and M. McPartlin, J. Organomet. Chem., 1983, 246, C69.
25 M. J. Freeman, M. Green, A. G. Orpen, I. D. Salter, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1983, 1332.
26 P. Braunstein, J. Rose, A. Dedieu, Y. Dusausoy, J-P. Mangeot, A. Tiripicchio, and M. Tiripicchio-Camellini, J. Chem. Soc., Dalton Trans., 1986, 225.

27 M. Fajardo, M. P. Gómez-Sal, H. D. Holden, B. F. G. Johnson, J. Lewis, R. C. S. McQueen, and P. R. Raithby, J. Organomet. Chem., 1984. 267. C25.

28 B. F. G. Johnson, D. A. Kaner, J. Lewis, and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1981, 751.
29 R. G. Pearson, Chem. Rev., 1985, 85, 41.
30 M. I. Bruce, J. G. Matisons, R. C. Wallis, J. M. Patrick, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 1983, 2365.

31 J. A. Ibers and W. C. Hamilton, 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
32 J. M. Stewart and S. R. Hall (eds.), 'The XTAL System of Crystallographic Programs: Users' Manual,' Technical Report T4901, Computer Science Center, University of Maryland, U.S.A., 1983.

[^0]: $\dagger \mu_{3}-\left[(\right.$ Diphenylphosphinomethyl $)$ phenylphosphido- $P\left(\mathbf{R u}^{1}, \mathbf{R u}^{2}\right)$;-$\left.P^{\prime}\left(\mathrm{Ru}^{3}\right)\right]-1,2-\mu$-(triphenylphosphine)cuprio-triangulo-tris(tricarbonylruthenium $), \mu_{3}-\left[(\right.$ diphenylphosphinomethyl $)$ phenylphosphido- $P\left(\mathbf{R u}^{\mathbf{1}}\right.$,$\left.\left.\mathrm{Ru}^{2}\right) ; P^{\prime}\left(\mathrm{Ru}^{3}\right)\right]-1,2-\mu$-(triphenylphosphine) argentio-triangulo-tris(tricarbonylruthenium), and $\mu_{3}-[($ diphenylphosphinomethyl)phenyl-phosphido- $\left.P\left(\mathrm{Ru}^{1}, \mathrm{Ru}^{2}\right) ; P^{\prime}\left(\mathrm{Ru}^{3}\right)\right]-1,2-\mu$-(triphenylphosphine)aurio-triangulo-tris(tricarbonylruthenium) respectively.
 Supplementary data available (No. SUP 56632, 17 pp.): thermal parameters, H-atom co-ordinates. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii-xx. Structure factors are available from the editorial office.
 Non-S.I. units employed: $\mathrm{eV} \approx 1.60 \times 10^{-19} \mathrm{~J}, \mathrm{~atm}=101325 \mathrm{~N} \mathrm{~m}^{-2}$.

