X-Ray Crystallographic * and Tungsten-183 Nuclear Magnetic Resonance Structural Studies of the $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ Heteropolyanions ($\mathrm{M}=\mathrm{Co}{ }^{11}$ or $\mathrm{Zn}, \mathrm{X}=\mathrm{P}$ or As)
 Howard T. Evans
 U.S. Geological Survey, National Centre 959, Reston, Virginia 22092, U.S.A.
 Claude M. Tourné and Gilbert F. Tourné
 Laboratoire de Chimie des Solides, Université des Sciences et Techniques de Languedoc, 34060 Montpellier Cedex, France
 Timothy J. R. Weakley
 Department of Chemistry, Dundee University, Dundee DD1 4NH

The crystal structures of $\mathrm{K}_{10}\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}(1)$ and isomorphous $\mathrm{K}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 23 \mathrm{H}_{2} \mathrm{O}$ (2) have been determined $\left\{\mathrm{Mo}-K_{a}\right.$ radiation, space group $P 2 / / n$, $Z=2 ;(1) a=15.794(2), b=21.360(2), c=12.312(1) A, \beta=91.96^{\circ}, R=0.084$ for 3242 observed reflections $[I \geqslant 3 \sigma(I)]$; (2) $a=15.842(4), b=21.327(5), c=12.308(4) \AA$, $\beta=92.42(4)^{\circ}, R=0.066$ for 4675 observed reflections $\left.[F \geqslant 3 \sigma(F)]\right\}$. The anions have crystallographic symmetry $\overline{1}$ and non-crystallographic symmetry very close to $2 / m\left(C_{2 n}\right)$. Each consists of two $\left[\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{9-}$ moieties $[\alpha-\mathrm{B}$ isomers; $\mathrm{X}=\mathrm{P}(1)$ or $\mathrm{As}(2)]$ linked via four $\mathrm{Co}^{1} \mathrm{O}_{6}$ or ZnO_{6} groups. Two Co or Zn atoms each carry a water ligand. The ${ }^{183} \mathrm{~W}$ n.m.r. spectra of the anions $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}(\mathrm{X}=\mathrm{P}$ or As) confirm that the anions retain $2 / m$ symmetry in aqueous solution. Homonuclear coupling constants between ${ }^{183} \mathrm{~W}$ atoms are $5.8-9.0 \mathrm{~Hz}$ for adjacent WO_{6} octahedra sharing edges, and $19.6-25.0 \mathrm{~Hz}$ for octahedra sharing corners.

We briefly reported ${ }^{1}$ several years ago the existence of a novel class of heteropolyanions of the general formula $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$ $\left.\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Co}, \mathrm{Zn}, \mathrm{Mn}, \mathrm{Ni}\right.$, or $\mathrm{Cu} ; \mathrm{X}=\mathrm{P}$ or As). The formulation is based on the structure of $\mathrm{K}_{10}\left[\mathrm{Co}_{4}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}$ from single-crystal X-ray analysis, which we also reported. The new anions were formed in a hot, near-neutral aqueous mixture of approximate composition $\mathrm{M}^{2+}: \mathrm{HXO}_{4}{ }^{2-}: \mathrm{WO}_{4}{ }^{2-}=2: 4: 18$. More recently, Finke et al. ${ }^{2}$ have shown that the anions with $\mathrm{X}=\mathrm{P}$ can be more rapidly obtained in good yield from $\mathrm{M}^{2+}(\mathrm{aq})$ and pre-formed $\left[\mathrm{HPW}_{9} \mathrm{O}_{34}\right]^{8-}$ and have shown using ${ }^{183} \mathrm{~W}$ n.m.r. that the $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ ion retains in solution the $2 / m$ symmetry which it possesses in the crystalline K^{+}salt. Also, the X-ray structure has been reported ${ }^{3}$ for a minor byproduct, $\left[\mathrm{Co}_{9}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{3}\right]^{16-}$, of our original synthesis with $\mathrm{M}=\mathrm{Co}$. We here give details of the structures of the anions $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}(\mathrm{M}=\mathrm{Co}$, $\mathrm{X}=\mathrm{P} ; \mathrm{M}=\mathrm{Zn}, \mathrm{X}=\mathrm{As}$). We also discuss the ${ }^{183} \mathrm{~W}$ n.m.r. spectra of $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-} \quad(\mathrm{X}=\mathrm{P}$ or As$)$, recorded at a higher resolution than the spectrum published earlier. ${ }^{2}$

Experimental

Preparations. $-\mathrm{K}_{10}\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$. The pH of a solution containing $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(110 \mathrm{~g}, 0.33$ $\mathrm{mol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~g}, 0.042 \mathrm{~mol})$ in water $\left(350 \mathrm{~cm}^{3}\right)$ was adjusted to 7.0 with $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$. The mixture was heated to boiling and a solution of $\mathrm{Co}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(20.8 \mathrm{~g}, 0.084$ mol) in water ($100 \mathrm{~cm}^{3}$) was slowly added and reflux continued for 2 h . The clear deep red solution was then treated with a hot, pH 7 solution of $\mathrm{K}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)(20.8 \mathrm{~g})$ and cooled. The crude crystalline product was filtered off and washed with aqueous KNO_{3} followed by $50 \% \mathrm{EtOH}$, and stirred with two $60-\mathrm{cm}^{3}$ portions of water at $35-40^{\circ} \mathrm{C}$ to extract $\mathrm{K}_{16}\left[\mathrm{Co}_{9} \mathrm{~W}_{27^{-}}\right.$

[^0]Table 1. Crystallographic data for $\mathrm{K}_{10}\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot n \mathrm{H}_{2} \mathrm{O}$

Complex	$(\mathbf{1})$	$(\mathbf{2})$	$(\mathbf{3})$
$\mathbf{M}, \mathbf{X}, n$	$\mathrm{Co}, \mathbf{P}, 22$	$\mathrm{Zn}, \mathrm{As}, 23$	$\mathrm{Co}, \mathrm{As}, 23$
Space group	$P 2, / n$	$P 2_{1} / n$	$P 2_{1} / n$
a / \AA	$15.794(2)$	$15.842(4)$	$15.822(2)$
b / \AA	$21.360(2)$	$21.327(5)$	$21.348(2)$
c / \AA	$12.312(1)$	$12.308(4)$	$12.313(1)$
$\beta /{ }^{\circ}$	$91.96(1)$	$92.42(4)$	$91.95(1)$
U / \AA^{3}	$4151.3(5)$	$4154(2)$	$4156.3(5)$
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	4.371	4.458	4.436
$D_{\mathrm{m}} / \mathrm{gcm}^{-3}$	$4.38(1)$	$4.47(1)$	$4.39(1)$
$F(000)$	4888	5004	4980

Data collection:

Radiation (λ / \AA)	Mo- $K_{\alpha}(0.71069)$	
Diffractometer	Picker four-circle	Stoe two-circle
Scan	$\theta-2 \theta$	$0-2 \theta$
Range		Layers
	$6<\theta<50^{\circ}$	$0-3 k l, h k 0-9$
Crystal		$0.16 \times 0.23 \times 0.45$,
size $/ \mathrm{mm}$	$0.17 \times 0.17 \times 0.25$	$0.14 \times 0.14 \times 0.35$
$\lambda / \mathrm{cm}^{-1}$	247	279
Abs. correction	Yes	Yes
Unique data	7401	5290
\quad measured		

Refinement:

Data used	3242	4675
	$[I \geqslant 3 \sigma(I)]$	$[F \geqslant 3 \sigma(F)]$
Parameters	336	309
R	0.084	0.066
R^{\prime}	0.073	0.071

$\mathrm{P}_{5} \mathrm{O}_{119} \mathrm{H}_{17}$]. The residue was twice reprecipitated from hot $\left(85^{\circ} \mathrm{C}\right.$) water with KNO_{3}, and twice recrystallised from hot water (Found: Co, 4.20; $\mathrm{H}_{2} \mathrm{O}, 7.85$; K, $7.05 ; \mathrm{P}, 1.10 ; \mathrm{W}, 60.6$. Calc. for $\mathrm{H}_{48} \mathrm{Co}_{4} \mathrm{~K}_{10} \mathrm{O}_{92} \mathrm{P}_{2} \mathrm{~W}_{18}$: $\mathrm{Co}, 4.25 ; \mathrm{H}_{2} \mathrm{O}, 7.85 ; \mathrm{K}, 7.10$; P, $1.10 ; \mathrm{W}, 60.0 \%$).
$\mathrm{K}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 23 \mathrm{H}_{2} \mathrm{O}$ (2). In a variant of the

Table 2. Atomic co-ordinates
$\begin{array}{cccc}\text { Atom } & x & y & z\end{array}$

\mathbf{P}	1389 (9)	747(6)	-672(11)	$\mathrm{Co}(1)$	-661(4)	574(3)	-331(5)
$\mathrm{Co}(2)$	-249(4)	235(3)	$2132(5)$	W(1)	$3065(1)$	$1457(1)$	-2322(2)
W(2)	$2018(1)$	2386 (1)	-192(2)	W(3)	3 510(1)	1 102(1)	596(2)
W(4)	$1094(1)$	1100 (1)	-3461(2)	W(5)	2 435(1)	-79(1)	-2767(2)
W(6)	54(1)	$2022(1)$	-1372(2)	W(7)	2890 (1)	-439(1)	120(2)
W(8)	474(1)	$1704(1)$	$1313(2)$	W(9)	$1949(1)$	411(1)	$2082(2)$
K(1)	7 123(11)	776(7)	$5882(12)$	K(2)	5 523(9)	$1228(7)$	2 914(11)
K(3)	8 483(10)	1 696(6)	3 139(14)	K(4)	5 214(8)	$1824(6)$	$8789(11)$
K(5)	2 694(9)	2 147(6)	2 793(9)				
$\mathrm{O}(1)$	387(2)	187(1)	-286(2)	$\mathrm{O}(2)$	249(2)	311(1)	-8(2)
$\mathrm{O}(3)$	450(2)	138(1)	106(2)	$\mathrm{O}(4)$	79(2)	128(2)	-467(2)
$\mathrm{O}(5)$	288(2)	-59(1)	-358(2)	O(6)	-59(2)	257(1)	-192(2)
O(7)	354(2)	-111(2)	28(3)	$\mathrm{O}(8)$	11(2)	204(1)	243(2)
$\mathrm{O}(9)$	202(2)	33(1)	341(2)	$\mathrm{O}(10)$	283(2)	184(1)	60(2)
O(11)	250(2)	210(1)	-150(2)	$\mathrm{O}(12)$	356(2)	119(1)	-91(2)
O(13)	138(2)	122(1)	196(2)	$\mathrm{O}(14)$	62(2)	179(1)	-254(2)
O(15)	297(2)	-23(1)	-140(2)	O(16)	222(2)	155(1)	-334(2)
O(17)	327(2)	62(1)	-283(2)	O(18)	101(2)	259(1)	-99(2)
O(19)	375(2)	24(1)	44(2)	O(20)	147(2)	234(2)	107(2)
$\mathrm{O}(21)$	301(2)	94(1)	193(2)	$\mathrm{O}(22)$	189(2)	39(1)	-381(2)
$\mathrm{O}(23)$	-8(2)	212(1)	14(2)	$\mathrm{O}(24)$	259(2)	-27(1)	162(2)
$\mathrm{O}(25)$	178(2)	82(1)	-179(2)	O(26)	111(2)	142(1)	-36(2)
O (27)	213(2)	53(1)	22(2)	O (28)	66(2)	26(1)	-67(2)
$\mathrm{O}(29)$	31(2)	53(1)	-305(2)	$\mathrm{O}(30)$	151(2)	-49(1)	-239(2)
O(31)	-60(2)	128(1)	-135(2)	O(32)	186(2)	-79(1)	-10(2)
O(33)	-17(2)	98(1)	102(2)	O(34)	93(2)	1(1)	161(2)
O(35)	4(2)	75(2)	360(3)	O(36)	896(2)	55(2)	526(3)
O(37)	306(2)	137(2)	453(3)	O(38)	575(4)	126(3)	685(5)
O(39)	485(3)	150(2)	512(4)	$\mathrm{O}(40)$	160(3)	241(2)	430(3)
$\mathrm{O}(41)$	674(2)	186(2)	193(3)	$\mathrm{O}(42)$	934(2)	233(2)	485(3)
O(43)	777(3)	155(2)	761(3)	$\mathrm{O}(44)$	484(4)	1(3)	807(4)
$\mathrm{O}(45)$	815(4)	203(2)	62(3)				

(b) $\mathrm{K}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 23 \mathrm{H}_{2} \mathrm{O}$ (2) (all $\times 10^{4}$)

As	$1402(2)$	$746(1)$	$-671(3)$
$\mathrm{Zn}(2)$	$-223(2)$	$256(2)$	$2157(4)$
$\mathrm{W}(2)$	$2028(1)$	$2398(1)$	$-200(1)$
$\mathrm{W}(4)$	$1105(1)$	$1101(1)$	$-3470(1)$
$\mathrm{W}(6)$	$74(1)$	$2042(1)$	$-1368(1)$
$\mathrm{W}(8)$	$492(1)$	$1724(1)$	$1322(1)$
$\mathrm{K}(1)$	$7135(7)$	$776(5)$	$5868(10)$
$\mathrm{K}(3)$	$8452(8)$	$1717(5)$	$3008(11)$
$\mathrm{K}(5)$	$2701(5)$	$2143(4)$	$2761(8)$
$\mathrm{O}(2)$	$2503(14)$	$3118(10)$	$-46(21)$
$\mathrm{O}(4)$	$769(16)$	$1346(11)$	$-4743(23)$
$\mathrm{O}(6)$	$-612(14)$	$2600(10)$	$-1906(20)$
$\mathrm{O}(8)$	$58(13)$	$2025(9)$	$2475(18)$
$\mathrm{O}(10)$	$2840(14)$	$1841(10)$	$548(20)$
$\mathrm{O}(12)$	$3497(13)$	$1202(9)$	$-928(20)$
$\mathrm{O}(14)$	$692(15)$	$1753(10)$	$-2571(21)$
$\mathrm{O}(16)$	$2192(13)$	$1579(9)$	$-3445(20)$
$\mathrm{O}(18)$	$1036(13)$	$2606(9)$	$-987(19)$
$\mathrm{O}(20)$	$1404(14)$	$2366(10)$	$1088(21)$
$\mathrm{O}(22)$	$1880(12)$	$427(8)$	$-3871(18)$
$\mathrm{O}(24)$	$2637(14)$	$-251(10)$	$1657(21)$
$\mathrm{O}(26)$	$1082(13)$	$1464(9)$	$-330(20)$
$\mathrm{O}(28)$	$601(11)$	$227(7)$	$-654(16)$
$\mathrm{O}(30)$	$1503(13)$	$-447(9)$	$-2410(19)$
$\mathrm{O}(32)$	$1912(15)$	$-747(10)$	$-88(22)$
$\mathrm{O}(34)$	$995(14)$	$21(10)$	$1615(21)$
$\mathrm{O}(36)$	$9005(17)$	$547(12)$	$5281(25)$
$\mathrm{O}(38)$	$5807(36)$	$1302(26)$	$6959(49)$
$\mathrm{O}(40)$	$1637(21)$	$2464(15)$	$4421(31)$
$\mathrm{O}(42)$	$9381(21)$	$2188(14)$	$4922(29)$
$\mathrm{O}(44)$	$4849(23)$	$136(16)$	$8142(33)$

$\mathrm{Zn}(1)$	$-686(2)$
$\mathrm{W}(1)$	$3065(1)$
$\mathrm{W}(3)$	$3519(1)$
$\mathrm{W}(5)$	$2437(1)$
$\mathrm{W}(7)$	$2912(1)$
$\mathrm{W}(9)$	$1971(1)$
$\mathrm{K}(2)$	$5542(8)$
$\mathrm{K}(4)$	$5252(6)$
$\mathrm{O}(1)$	$3922(13)$
$\mathrm{O}(3)$	$4494(14)$
$\mathrm{O}(5)$	$2924(14)$
$\mathrm{O}(7)$	$3558(17)$
$\mathrm{O}(9)$	$2018(12)$
$\mathrm{O}(11)$	$2507(14)$
$\mathrm{O}(13)$	$1374(12)$
$\mathrm{O}(15)$	$2995(13)$
$\mathrm{O}(17)$	$3291(13)$
$\mathrm{O}(19)$	$3766(13)$
$\mathrm{O}(21)$	$3035(12)$
$\mathrm{O}(23)$	$-105(12)$
$\mathrm{O}(25)$	$1856(12)$
$\mathrm{O}(27)$	$2196(14)$
$\mathrm{O}(29)$	$290(14)$
$\mathrm{O}(31)$	$-556(15)$
$\mathrm{O}(33)$	$-137(11)$
$\mathrm{O}(35)$	$-9(18)$
$\mathrm{O}(37)$	$3049(19)$
$\mathrm{O}(39)$	$4887(28)$
$\mathrm{O}(41)$	$6666(27)$
$\mathrm{O}(43)$	$7896(25)$
$\mathrm{O}(45)$	$8096(23)$

$601(2)$	$-364(4)$
$1455(1)$	$-2341(1)$
$1108(1)$	$596(1)$
$-75(1)$	$-2768(1)$
$-427(1)$	$137(1)$
$423(1)$	$2090(1)$
$1235(5)$	$2883(11)$
$1815(4)$	$8755(9)$
$1858(9)$	$-2829(19)$
$1383(9)$	$1042(20)$
$-635(10)$	$-3522(21)$
$-1062(12)$	$257(24)$
$327(9)$	$3452(18)$
$2084(10)$	$-1480(21)$
$1208(8)$	$1943(18)$
$-251(9)$	$-1422(19)$
$647(9)$	$-2868(20)$
$230(9)$	$398(19)$
$943(8)$	$1965(18)$
$2176(8)$	$175(18)$
$799(8)$	$-1928(17)$
$548(10)$	$227(21)$
$555(10)$	$-3047(20)$
$1331(10)$	$-1355(21)$
$1021(7)$	$1043(16)$
$722(13)$	$3586(26)$
$1339(14)$	$4573(28)$
$1381(20)$	$5051(37)$
$1879(18)$	$1898(38)$
$1577(19)$	$7507(35)$
$2044(16)$	$488(32)$

Atoms $\mathrm{O}(36)-\mathrm{O}(45)$ are in lattice water molecules in both compounds.

Figure 1. The $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ anion: general stereoview
above procedure, a boiling solution containing $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $(5.75 \mathrm{~g}, 0.021 \mathrm{~mol})$ and $6.4 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}\left(17.2 \mathrm{~cm}^{3}, 0.110\right.$ mol) in water ($110 \mathrm{~cm}^{3}$) was treated slowly with a solution of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(29.7 \mathrm{~g}, 0.090 \mathrm{~mol})$ and $\mathrm{Na}_{2} \mathrm{HAsO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(3.15$ $\mathrm{g}, 0.011 \mathrm{~mol}$) in water $\left(110 \mathrm{~cm}^{3}\right)$. The mixture was refluxed for 3 h and filtered while hot. The crude crystalline product was precipitated by the addition of $\mathrm{KNO}_{3}(40 \mathrm{~g})$ and cooling; it was twice redissolved and reprecipitated with KNO_{3}, and was finally recrystallised twice from hot water (Found: As, 2.60; $\mathrm{H}_{2} \mathrm{O}, 8.05 ; \mathrm{K}, 7.10 ; \mathrm{W}, 58.5 ; \mathrm{Zn}, 4.70$. Calc. for $\mathrm{H}_{50} \mathrm{As}_{2}-$ $\mathrm{K}_{10} \mathrm{O}_{93} \mathrm{~W}_{18} \mathrm{Zn}_{4}$: As, $2.65 ; \mathrm{H}_{2} \mathrm{O}, 7.95 ; \mathrm{K}, 6.90 ; \mathrm{W}, 58.6 ; \mathrm{Zn}$, 4.65%).
Similar procedures gave $\mathrm{K}_{10}\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]$. $23 \mathrm{H}_{2} \mathrm{O}(3)$ and $\mathrm{K}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$, for which satisfactory analyses were obtained.
The number of molecules of lattice water in each compound was found to be dependent on the temperature and rate at which crystallisation occurred. Values of $20-25 \mathrm{H}_{2} \mathrm{O}$ were obtained in different preparations. The crystallinity (as judged from singlecrystal photographs) and crystal habit were unaffected. As only 20 lattice water molecules could be located with confidence in the structure analyses (see below), it seems likely that the remaining water is zeolitic, as is the case for numerous heteropolyoxometalate salts.

Crystal Structure Analysis.--Beautiful violet [(1) and (3)] or colourless [(2)] crystals were deposited from slightly supersaturated aqueous solutions on standing at room temperature. Cell dimensions for (2) were originally obtained from $\mathrm{NaCl}-$ calibrated Weissenberg photographs and were refined on the diffractometer. Cell dimensions for (1) and (3) were also refined on the diffractometer and improved values were obtained from powder photographs (Guinier-Hagg focusing camera; $\mathrm{Cr}-\mathrm{K}_{\alpha}$ radiation, $\lambda=2.28962 \AA ; \mathrm{CaF}_{2}$ internal standard, $a=5.4638$ \AA). The final values are listed in Table 1, together with other information relevant to data collection and refinement. \{A second data set for (2) was independently collected, and the structure solved: CAD-4F four-circle diffractometer, Mo- K_{α} radiation, $\theta_{\text {max. }} 21^{\circ}, 4260$ unique data $[I \geqslant 2.5 \sigma(I)] ; R 0.047, R^{\prime}$ 0.056 for 3177 data with $\left|F_{0}\right| \geqslant 0.06\left|F_{\mathrm{o}}\right|_{\max }$. The final parameters, standard deviations, and derived dimensions are not significantly different from the values obtained with the first data set, which are the ones reported here.\} Data were not collected for (3), which was clearly isostructural with (1) and (2) (cell dimensions, space group, distribution of intensities). The structural analyses were straightforward. The heavy atoms in
both compounds (W, P or As, Co or Zn) were readily located in E maps, following the assignment of signs by a symbolicaddition procedure [(1); reflections with $\theta<15^{\circ}$] or by the EEES sub-program of SHELX- 76^{4} [(2), all data]. The K and O atoms were located in difference syntheses alternating with cycles of refinement. The $\mathrm{W}, \mathrm{Co}, \mathrm{P}$, and K atoms in (1) and the W , As, and Zn atoms in (2) were allowed anisotropic thermal parameters during block-diagonal least-squares refinement [(1), XRAY-76; ${ }^{5}$ (2), SHELX-76 ${ }^{4}$]. For (1), an isotropic extinction parameter was included and the data were weighted by $1 / \sigma$ based on counting statistics. For (2) the weights in the last cycle were given by $w=\left[\sigma^{2}(F)+0.013 F^{2}\right]^{-1}$. The maximum peak heights in the final difference synthesis were $c a .2 \mathrm{e}^{-3}$. There were indications that some K^{+}ions and lattice $\mathrm{H}_{2} \mathrm{O}$ molecules were disordered over two or more adjacent sites. No attempt was made to model this since the structural features of the anions, which did not appear to be affected by disorder, were already clear when convergence was reached at the R values given in Table 1. The somewhat high residual for (1) may be the consequence of the loss of some zeolitic water from the crystals during transit, with enhancement of the disorder for the cations and remaining water molecules.

Atomic co-ordinates for (1) and (2) are given in Table 2.

${ }^{183}$ W Nuclear Magnetic Resonance Spectra.--Measurements

 were made on concentrated solutons of $\mathrm{Li}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 40 \mathrm{H}_{2} \mathrm{O}(\mathrm{X}=\mathrm{P}$ or As) which were prepared by passage of the aqueous K^{+}salts through a cation-exchange resin in the Li^{+}form until the effluent showed no reaction with NaBPh_{4}, and evaporation to dryness. Spectra were recorded by use of a Bruker WP- 360 spectrometer fitted with a $15-\mathrm{mm}$ lowfrequency multinuclear probe. The two-dimensional experiment (COSY-45) was performed as described previously, ${ }^{6}$ except that a $45^{\circ} \varphi_{2}$ mixing pulse was used.
Discussion

Structure of the Anions.-The anions $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ and $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ are isostructural. A general stereoview of the Co anion is given in Figure 1, and the atomic numbering shown in Figure 2. Like many other heteropolyanions, ${ }^{7}$ they contain portions of the well known $\mathrm{Keggin}^{8}\left(\alpha-\mathrm{XW}_{12} \mathrm{O}_{40}{ }^{n-}\right)$ structure. The latter has T_{d} symmetry and contains four groups of three edge-sharing WO_{6} octahedra, with corner sharing between adjacent octahedra of

Table 3. Bond lengths and distances between heavy atoms (\AA) for $\mathrm{K}_{10}\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}(1)$ and $\mathrm{K}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot$ $23 \mathrm{H}_{2} \mathrm{O}$ (2) $[\mathrm{X}, \mathrm{M}=\mathrm{P}, \mathrm{Co}$ in (1) and As, Zn in (2)]

	(1)	(2)		(1)	(2)		(1)	(2)
$\mathrm{X}-\mathrm{O}(25)$	1.54(3)	1.74(2)	$\mathrm{W}(2)-\mathrm{O}(11)$	1.97(2)	1.95(2)	$\mathrm{W}(6)-\mathrm{O}(14)$	1.79(2)	1.91(2)
$\mathrm{X}-\mathrm{O}(26)$	1.56(3)	1.67(2)	$\mathrm{W}(2)-\mathrm{O}(18)$	1.89(2)	1.86 (2)	$\mathrm{W}(6)-\mathrm{O}(18)$	1.98(2)	1.98(2)
$\mathrm{X}-\mathrm{O}(27)$	1.65(3)	1.69(2)	$\mathrm{W}(2)-\mathrm{O}(20)$	1.82(2)	1.90 (2)	$\mathrm{W}(6)-\mathrm{O}(23)$	1.89(2)	1.95(2)
$\mathrm{X}-\mathrm{O}(28)$	1.56(3)	1.68(2)	$\mathrm{W}(2)-\mathrm{O}(26)$	2.50(3)	2.49(3)	$\mathrm{W}(6)-\mathrm{O}(26)$	2.42(3)	2.35(2)
$\mathrm{M}(1)-\mathrm{O}(28)$	2.17 (3)	2.17(2)	W(3)-O(3)	1.75(2)	1.72(2)	$\mathrm{W}(6)-\mathrm{O}(31)$	1.89(2)	1.82(2)
$\mathrm{M}(1)-\mathrm{O}\left(28^{\text {i }}\right.$)	2.24 (3)	2.23(2)	W(3)-O(10)	1.91(2)	1.90(2)	W(7)-O(7)	1.78(2)	1.70(2)
$\mathrm{M}(1)-\mathrm{O}(31)$	1.98 (3)	1.99(2)	$\mathrm{W}(3)-\mathrm{O}(12)$	1.87(2)	1.89(2)	$\mathrm{W}(7)-\mathrm{O}(15)$	1.93(2)	1.97(2)
$\mathrm{M}(1)-\mathrm{O}(32)$	2.04(3)	2.07(2)	W(3)-O(19)	1.88(2)	1.93(2)	W(7)-O(19)	2.03(2)	1.97(2)
$\mathrm{M}(1)-\mathrm{O}(33)$	2.01 (3)	2.11(2)	$\mathrm{W}(3)-\mathrm{O}(21)$	1.88(2)	1.91(2)	$\mathrm{W}(7)-\mathrm{O}(24)$	1.96(2)	1.98(2)
$\mathrm{M}(1)-\mathrm{O}(34)$	2.04 (3)	2.08(2)	$\mathrm{W}(3)-\mathrm{O}(27)$	2.53(3)	2.44(2)	$\mathrm{W}(7)-\mathrm{O}(27)$	2.39 (3)	2.37(3)
$\mathrm{M}(2)-\mathrm{O}(28)$	2.17 (3)	2.18(2)	W(4)-O(4)	1.60(2)	1.72(2)	$\mathrm{W}(7)-\mathrm{O}(32)$	1.80(2)	1.74(2)
$\mathrm{M}(2)-\mathrm{O}(29)$	1.99 (3)	2.05(2)	$\mathrm{W}(4)-\mathrm{O}(14)$	2.01(2)	1.91(2)	$\mathrm{W}(8)-\mathrm{O}(8)$	1.68(2)	1.73(2)
$\mathrm{M}(2)-\mathrm{O}(30)$	2.10 (3)	2.10(2)	$\mathrm{W}(4)-\mathrm{O}(16)$	2.02(2)	2.00(2)	$\mathrm{W}(8)-\mathrm{O}(13)$	1.91(2)	1.87(2)
$\mathrm{M}(2)-\mathrm{O}(33)$	2.11 (3)	2.14(2)	$\mathrm{W}(4)-\mathrm{O}(22)$	2.03(2)	1.97(2)	$\mathrm{W}(8)-\mathrm{O}(20)$	2.10 (2)	2.02(2)
$\mathrm{M}(2)-\mathrm{O}(34)$	2.04(3)	2.13(2)	$\mathrm{W}(4)-\mathrm{O}(25)$	2.36 (2)	2.29(2)	$\mathrm{W}(8)-\mathrm{O}(23)$	1.90(2)	1.92(2)
$\mathrm{M}(2)-\mathrm{O}(35)$	2.15(4)	2.04(3)	$\mathrm{W}(4)-\mathrm{O}(29)$	1.82(2)	1.83(2)	$\mathrm{W}(8)-\mathrm{O}(26)$	2.41(3)	2.34(2)
$\mathrm{W}(1)-\mathrm{O}(1)$	1.71(2)	1.73(2)	W(5)-O(5)	1.66(2)	1.72(2)	W(8)-O(33)	1.88(2)	1.83(2)
$\mathrm{W}(1)-\mathrm{O}(11)$	1.93(2)	1.95(2)	W(5)-O(15)	1.89(2)	1.88(2)	W(9)-O(9)	1.65(2)	1.69(2)
$\mathrm{W}(1)-\mathrm{O}(12)$	1.97(2)	1.92(2)	W(5)-O(17)	1.99(2)	2.06(2)	W(9)-O(13)	1.96(2)	1.93(2)
$\mathrm{W}(1)-\mathrm{O}(16)$	1.80(2)	1.92(2)	$\mathrm{W}(5)-\mathrm{O}(22)$	1.81(2)	1.91(2)	$\mathrm{W}(9)-\mathrm{O}(21)$	2.03(2)	2.03(2)
$\mathrm{W}(1)-\mathrm{O}(17)$	1.92(2)	1.88(2)	$\mathrm{W}(5)-\mathrm{O}(25)$	2.51(3)	2.34(2)	$\mathrm{W}(9)-\mathrm{O}(24)$	1.88(2)	1.87(2)
$\mathrm{W}(1)-\mathrm{O}(25)$	2.55(3)	2.44(2)	$\mathrm{W}(5)-\mathrm{O}(30)$	1.78(2)	1.75(2)	$\mathrm{W}(9)-\mathrm{O}(27)$	2.33(3)	2.35(2)
$\mathrm{W}(2)-\mathrm{O}(2)$	1.73(2)	1.72(2)	$\mathrm{W}(6)-\mathrm{O}(6)$	1.69(2)	1.72(2)	W(9)-O(34)	1.89(2)	1.84(2)
$\mathrm{W}(2)-\mathrm{O}(10)$	1.97(2)	1.95(2)						
$\mathrm{K}(1)-\mathrm{O}(2)$	2.72(5)	2.69(3)	$\mathrm{K}(3)-\mathrm{O}(1)$	3.37(6)	3.30(4)	K(4)-O(8)	2.94(5)	2.94(5)
$\mathrm{K}(1)-\mathrm{O}(5)$	2.86(5)	2.90(3)	$\mathrm{K}(3)-\mathrm{O}(2)$	2.77(5)	2.90 (3)	$\mathrm{K}(4)-\mathrm{O}(12)$	2.99(5)	3.11(3)
$\mathrm{K}(1)-\mathrm{O}(9)$	2.83(5)	2.82(3)	$\mathrm{K}(3)-\mathrm{O}(5)$	3.25(6)	3.26(4)	$\mathrm{K}(4)-\mathrm{O}(38)$	2.83(6)	2.65 (4)
$\mathrm{K}(1)-\mathrm{O}(24)$	3.27 (5)	3.25 (3)	$\mathrm{K}(3)-\mathrm{O}(8)$	2.84(5)	2.73(3)	$\mathrm{K}(4)-\mathrm{O}(40)$	2.80(6)	2.78 (4)
$\mathrm{K}(1)-\mathrm{O}(36)$	3.06 (6)	3.12(4)	$\mathrm{K}(3)-\mathrm{O}(11)$	3.05(5)	3.04(3)	$\mathrm{K}(4)-\mathrm{O}(42)$	2.80(6)	2.94(4)
$\mathrm{K}(1)-\mathrm{O}(38)$	2.71(6)	2.78(4)	$\mathrm{K}(3)-\mathrm{O}(30)$	2.75(5)	2.81(3)	$\mathrm{K}(5)-\mathrm{O}(6)$	2.78 (5)	2.74(3)
$\mathrm{K}(1)-\mathrm{O}(43)$	2.86(6)	2.87(4)	$\mathrm{K}(3)-\mathrm{O}(35)$	3.23(6)	3.29(4)	$\mathrm{K}(5)-\mathrm{O}(10)$	2.80(5)	2.82(3)
$\mathrm{K}(2)-\mathrm{O}(3)$	2.77(5)	2.77(3)	$\mathrm{K}(3)-\mathrm{O}(41)$	3.10(6)	3.11(4)	$\mathrm{K}(5)-\mathrm{O}(13)$	3.03(5)	3.04(3)
$\mathrm{K}(2)-\mathrm{O}(5)$	$2.96(5)$	2.83(3)	$\mathrm{K}(3)-\mathrm{O}(42)$	2.72 (6)	2.90(4)	$\mathrm{K}(5)-\mathrm{O}(20)$	$2.85(5)$	2.89 (3)
$\mathrm{K}(2)-\mathrm{O}(6)$	3.11(5)	3.10(3)	$\mathrm{K}(3)-\mathrm{O}(45)$	$3.21(6)$	$3.21(4)$	$\mathrm{K}(5)-\mathrm{O}(21)$	2.85 (5)	2.80 (3)
$\mathrm{K}(2)-\mathrm{O}(18)$	2.96 (5)	2.93(4)	$\mathrm{K}(4)-\mathrm{O}(1)$	2.89(5)	2.81(3)	$\mathrm{K}(5)-\mathrm{O}(37)$	2.75(6)	2.85(4)
$\mathrm{K}(2)-\mathrm{O}(39)$	3.01(6)	2.92(4)	$\mathrm{K}(4)-\mathrm{O}(3)$	3.20(5)	3.24(4)	$\mathrm{K}(5)-\mathrm{O}(40)$	2.65(6)	2.79(4)
$\mathrm{K}(2)-\mathrm{O}(41)$	2.67(6)	$2.59(6)$	$\mathrm{K}(4)-\mathrm{O}(7)$	2.71(5)	2.72(3)	K(5)-O(43)	2.80(6)	2.77(4)
$\mathrm{K}(2)-\mathrm{O}(44)$	2.67(6)	2.59(4)						
W(1)... W(2)	$3.721(5)$	3.745 (3)	$\mathrm{W}(7) \ldots \mathrm{W}(9)$	3.404(5)	3.404(3)	X ... W ${ }^{\text {(1) }}$	$3.715(10)$	3.730(6)
W(1) ... W ${ }^{\text {(}}$)	$3.715(5)$	3.730(3)	W(8) ... W ${ }^{(9)}$	$3.715(5)$	3.728(3)	X... W (2)	$3.681(10)$	3.699(6)
W(1) $\cdot .$. W(4)	3.455(5)	3.432(3)	W(4) \cdots M $\mathbf{2}^{\text {i }}$)	3.569(9)	3.624(7)	X...W W ${ }^{\text {(}}$	3.725(10)	3.719(6)
W(1) $\cdot .$. W(5)	3.467(5)	$3.445(3)$	W(5) $\cdot .$. M $\mathbf{2}^{\text {i }}$)	3.581(9)	$3.639(7)$	X... W ${ }^{\text {(4) }}$	3.531(10)	3.539(6)
W(2) \cdots W(3)	3.723(5)	3.730(3)	W(6) $\cdot \cdots \mathrm{M}(1)$	3.547(9)	3.542(6)	X...W ${ }^{\text {(5) }}$	3.576(10)	3.574(6)
W(2) \cdots W(6)	3.468(5)	3.442(3)	W(7) $\cdot .$. M(${ }^{1}$)	$3.551(9)$	3.569(7)	X...W(6)	3.533(10)	$3.557(6)$
W(2) \cdots W(8)	3.437(5)	3.447(3)	$\mathrm{W}(8) \cdots \mathrm{M}(1)$	3.590(9)	3.633(6)	X...W(7)	3.582(10)	3.573(6)
W(3) \cdots W(7)	3.478(5)	3.452(3)	$\mathrm{W}(9) \cdots \mathrm{M}\left(1^{\text {i }}\right.$)	3.593(9)	$3.614(6)$	$\mathrm{X} \cdot \mathrm{}$. W(8)	3.533(10)	3.570 (6)
W(3) . . W W ${ }^{\text {(}}$	$3.451(5)$	3.451(3)	$\mathrm{W}(8) \cdots \mathrm{M}(2)$	3.499(9)	3.500 (6)	X...W(9)	3.548(10)	3.546 (6)
W(4) \cdots W(5)	$3.381(5)$	$3.367(3)$	$\mathrm{W}(9) \cdots \mathrm{M}(2)$	3.494(9)	3.498(6)	X $\cdot . . \mathrm{M}(1)$	3.300 (14)	$3.359(10)$
W(4) \cdots W(6)	$3.672(5)$	3.707(3)	M(1) $\cdots \mathrm{M}\left(1^{\text {i }}\right.$)	$3.305(12)$	3.455(10)	$\mathrm{X} \cdot \ldots \mathrm{M}\left(\mathbf{1}^{\mathbf{i}}\right)$	$3.302(14)$	$3.359(10)$
W(5) ... W ${ }^{(7)}$	3.683(5)	3.700(3)	$\mathrm{M}(1) \cdots \mathrm{M}\left(2^{\text {i }}\right.$)	3.192(12)	3.248(10)	$\mathrm{X} \cdot \ldots \mathrm{M}\left(2^{\text {i }}\right.$)	3.264(14)	3.333(10)
W(6) \cdot. $\mathrm{W}(8)$	3.418(5)	3.417(3)	$\mathrm{M}\left(1^{\text {i }}\right.$) $\cdots \mathrm{M}\left(2^{\text {i }}\right.$)	3.164(12)	3.243(10)			

different groups. The removal of three adjacent corner sharing octahedra (i.e. related by a C_{3} axis of the anion) gives an $\alpha-\mathrm{A}-\mathrm{XW}_{9} \mathrm{O}_{34}{ }^{n-}$ anion; the removal of one trio of edge-sharing octahedra gives an $\alpha-\mathrm{B}_{-} \mathrm{XW}_{9} \mathrm{O}_{34}{ }^{n-}$ anion. The $\alpha, \beta, \mathrm{A}$, and B notation is discussed, and the Keggin-derivative structures are illustrated, elsewhere. ${ }^{7.9}$ Single-crystal X-ray studies have revealed an $\alpha-\mathrm{A}-\mathrm{PW}$, moiety in several tungstophosphates. ${ }^{10,11}$ The present anions, however, each contain two $\alpha-\mathrm{B}^{-\mathrm{XW}_{9}}$, units ($\mathrm{X}=\mathrm{P}$ or As). The oxygen atoms 'exposed' in the notional formation of these units, including one oxygen of each XO_{4} tetrahedron, are shared with the planar set of four Co or Zn atoms, M, which thus act as the filling in a sandwich. The M atoms have distorted octahedral co-ordination. The ligand oxygens on $\mathrm{M}(1)$ are all shared with XW_{9} units, but one oxygen,
$\mathbf{O}(35)$, on $\mathbf{M}(2)$ is unshared. Chemical analysis in conjunction with the location of 70 oxygens in the anions requires that each anion contains four non-acidic H atoms, and these are assigned to the two terminal $O(35)$ atoms to give aqua ligands, as in the $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{XW}_{11} \mathrm{O}_{39}\right)\right]^{-5}$ series. ${ }^{12}$

The $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ anions in the K^{+}salts have crystallographic symmetry 1, but almost exact non-crystallographic symmetry $2 / m$ (see Figure 2); the two-fold axis passes through $\mathrm{M}(1)$ and $\mathrm{M}\left(1^{i}\right)$, and the mirror plane through $\mathrm{W}(1)$, P or As, $\mathrm{M}(2)$, and inversion-related atoms. The $\mathrm{P} \ldots \mathrm{Co}$, P...W, Co...W, Co... Co, and W...W distances in $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ are similar to those in $\left[\mathrm{Co}_{9}-\right.$ $\left.(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{3}\right]^{16-}$, which also contains $\alpha-\mathrm{B}_{-} \mathrm{PW}_{9}$ units. 3 The biggest change in the skeletal distances

Figure 2. Numbering of atoms for $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$
in going from $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ to $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$ $\left.\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ is in $\mathrm{M}(1) \cdots \mathrm{M}\left(1^{1}\right)\left(3.31,3.45 \mathrm{~A}^{2}\right.$ respectively) with smaller increases in some M..WW distances. Corresponding $P(A s) \cdots W$ and $W \cdots W$ distances in the two anions (Table 3) are not significantly different, despite the somewhat greater size of As (av. P-O 1.58, av. As-O $1.70 \AA$). Also, the average bond length about a given W atom is the same in the two anions, as is the average $\mathrm{W}-\mathrm{O}$ bond length, for an oxygen atom of a given connectivity (Table 4). Thus, any strain introduced by the substitution of As for P is taken up as small changes in bond angles.

The anions can be regarded as consisting of two $\mathrm{XW}_{9} \mathrm{M}_{3}$ units with two M atoms, $M(1)$ and $M\left(1^{i}\right)$, in common. Each $\mathrm{XW}_{9} \mathrm{M}_{3}$ group taken alone has the $\beta-\mathrm{XW}_{12} \mathrm{O}_{40^{n-}}$ structure (known for $\mathrm{X}=\mathrm{Si}^{13}$) which differs from the α or Keggin structure by a 60° rotation of one set of three edge-linked octahedra. Here, the \mathbf{M}_{3} set has been rotated. The rotation serves to increase the distance between the aqua ligand $\mathrm{O}(35)$ on $\mathrm{M}(2)$ in one $\mathrm{XW}_{9} \mathrm{M}_{3}$ unit and a $\mathrm{W}-\mathrm{O}-\mathrm{W}$ bridging oxygen in the other unit. It is remarkable that $\mathrm{H}_{2} \mathrm{O}(35)$ cannot be replaced by, e.g., pyridine, acetonitrile, or thiocyanate, in contrast with the rapid replacement of $\mathrm{H}_{2} \mathrm{O}$ in such anions as [Co$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{PW}_{11} \mathrm{O}_{39}\right)\right]^{5-}(\mathrm{aq}) .^{12}$ In the crystal, $\mathrm{O}(35)$ makes several contacts with oxygens outside the $\mathrm{M}(2) \mathrm{O}_{6}$ octahedron. The shortest are with $\mathrm{O}(4)$ in the adjacent anion along c and with a lattice water molecule $\mathrm{O}(36)$ \{respectively $2.65,2.74 \AA$ for $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ and $2.70,2.69 \AA$ for $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{-}\right.$ $\left.\left.\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}\right\}$, but significantly the next-shortest contacts are with the terminal oxygen atoms $O(8)$ and $O(9)$ on $W(8)$ and $\mathrm{W}(9)\left\{3.11,3.33 \AA\right.$ in $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-} ; 3.10,3.27 \AA$ in $\left.\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}\right\}$, and these may represent weak hydrogen bonds whose stabilising energy would be lost on replacement of $\mathrm{H}_{2} \mathrm{O}(35)$. We return to this point later.

[^1]Table 4. Mean bond lengths (\AA) in $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$

Complex	(1)	(2)
M, X	Co, P	Zn, As
X-O	1.58	1.70
M-O	2.09	2.11
W(1)-O	1.98	1.98
W(2,3)-O	1.97	1.97
W(4,5)-O	1.96	1.95
W(6,7)-O	1.96	1.96
W(8,9)-O	1.97	1.95
All W-O	1.968	1.962
W-O, O also bonded to:		
Unshared	1.69	1.72
W(corner sharing)	1.92	1.92
W(edge sharing)	1.94	1.95
Two W, X	2.44	2.38
M	1.84	1.82

Table 5. ${ }^{183} \mathrm{~W}$ N.m.r. data for anions $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ in ca. $60 \% \mathrm{D}_{2} \mathrm{O}$ at 303 K . The upper and lower entries in each pair are respectively for $\mathrm{X}=\mathrm{P}$ and $\mathrm{X}=$ As. Entries connecting W atoms of the same type are chemical shifts (p.p.m.) relative to $2 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{Na}_{2} \mathrm{WO}_{4}(\pm 0.1 \mathrm{~Hz})$, other entries are ${ }^{2} J$ coupling constants $(\mathrm{Hz})(\pm 0.2$ Hz for $\mathrm{X}=\mathrm{P}, \pm 0.4 \mathrm{~Hz}$ for $\mathrm{X}=\mathrm{As}$)

	$\mathrm{W}(1)$	$\mathrm{W}(2,3)$	$\mathrm{W}(8,9)$	$\mathrm{W}(6,7)$	$\mathrm{W}(4,5)$	${ }^{2} J(\mathbf{P}-\mathrm{O}-\mathrm{W})$
Line	A	B	C	D	E	
	A	C	B	D	E	
$\mathrm{W}(1)$	-90.7	19.6			7.3	1.3
	-79.7	19.6			6.2	
$\mathrm{~W}(2,3)$	19.6	-105.8	7.1	7.1		1.1
	19.6	-99.6	5.8	5.8		
$\mathrm{~W}(8,9)$		7.1	-117.8	9.0		See text
		5.8	-93.9	9.0		
$\mathbf{W}(6,7)$		7.1	9.0	-130.5	23.7	1.8
		5.8	9.0	-126.1	25.0	
$\mathbf{W}(4,5)$	7.3			23.7	-135.6	1.6
	6.2			25.0	-129.0	

(Figures 3 and 4). The lines have relative intensities 2:4:4:4:4 in order of decreasing frequency, and will be referred to as A, B, C, D, and E . Frequencies are listed in Table 5 . The spectrum of $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ (Figure 3) is very similar to that obtained earlier at lower resolution. ${ }^{2}$ The five-line spectra and intensity patterns are expected if the $2 / m$ symmetry effective for the anions in the crystal is retained in solution. The groups of symmetry-equivalent W atoms are $\mathrm{W}\left(1,1^{i}\right), \mathrm{W}\left(2,2^{\mathrm{i}}, 3,3^{i}\right)$, $W\left(4,4^{i}, 5,5^{i}\right), W\left(6,6^{i}, 7,7^{i}\right)$, and $W\left(8,8^{i}, 9,9^{i}\right)$, where the superscript denotes inversion at the anion centre (see also Figure 2). Lines $\mathrm{A}, \mathrm{B}, \mathrm{D}$, and E in $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ (Figure 3) are split as the result of ${ }^{2} J\left({ }^{31} \mathrm{P}-\mathrm{O}-{ }^{183} \mathrm{~W}\right)$ heteronuclear coupling $(1-1.8 \mathrm{~Hz})$. Line C is discussed below. Also, homonuclear ${ }^{2} J\left({ }^{183} \mathrm{~W}-\mathrm{O}-{ }^{183} \mathrm{~W}\right)$ coupling creates weak satellite lines near the feet of all five main lines in each spectrum. Coupling constants are included in Table 5. Previous work ${ }^{14}$ has established that the ${ }^{2} J(\mathbf{W}-\mathrm{O}-\mathrm{W})$ values are smaller if the WO_{6} octahedra share an edge (weak coupling, $5-10 \mathrm{~Hz}$) than if they share a corner (strong coupling, $15-26 \mathrm{~Hz}$). Line A belongs to $\mathrm{W}(1)$, from its intensity. Line B for the As anion and line C for the P anion show only weak coupling and must therefore be attributed to $W(8,9)$. Lines A and B in the spectrum of $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$ $\left.\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ show strong coupling with the same ${ }^{2} J$ values. Line B for this anion is therefore attributed to $W(2,3)$ which alone share octahedron corners with $\mathrm{W}(1)$. For the same reason, line C in the spectrum of $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ is

Figure 3. (a) ${ }^{183} \mathrm{~W} 15.0046-\mathrm{MHz}$ n.m.r. spectrum of $\mathrm{Li}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]\left(0.6 \mathrm{~mol} \mathrm{~kg}{ }^{-1}\right.$ in ca. $60 \% \mathrm{D}_{2} \mathrm{O}$ at $303 \mathrm{~K}, 7000$ scans, reference 2 mol dm ${ }^{-3} \mathrm{Na}_{2} \mathrm{WO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$). (b) Line C after Gaussian deconvolution of free induction decay

Figure 4. ${ }^{183} \mathrm{~W} 15.0046-\mathrm{MHz}$ n.m.r. spectra of $\mathrm{Li}_{10}\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]\left(0.6 \mathrm{~mol} \mathrm{~kg}{ }^{-1}\right.$ in $\mathrm{ca} .60 \% \mathrm{D}_{2} \mathrm{O}$ at 303 K , reference $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ $\mathrm{Na}_{2} \mathrm{WO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$). (a) One-dimensional spectrum, 10600 scans. (b) Two-dimensional (COSY-45) spectrum (not symmetrised) (single arrows denote weak couplings and paired arrows denote strong couplings)
assigned to $W(2,3)$. There remain the pairs of atoms $W(4,5)$ and $W(6,7)$ whose expected strong coupling to one another is seen in lines D and E. Line D in each spectrum is assigned to $W(6,7)$ [weak coupling to $W(2,3)$ and to $W(8,9)$], and line E to $W(4,5)$ [weak coupling to $\mathbf{W}(1)$ only]. These assignments are supported
by the COSY-45 two-dimensional spectrum (Figure 4) which shows the coupling pattern described above. No splitting of line C , assigned to $\mathrm{W}(8,9)$, can be seen in the spectrum of $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ in $\mathrm{D}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ (Figure 3). However, Gaussian convolution shows that line C has solvent-
dependent fine structure. In $\mathrm{H}_{2} \mathrm{O}$ (external lock) it is weakly resolved into two peaks separated by $c a .0 .9 \mathrm{~Hz}$. This splitting may result from coupling to ${ }^{31} \mathrm{P}$. However, convolution of line C recorded in $c a .50 \% \mathrm{D}_{2} \mathrm{O}$ reveals a triplet structure, with a separation of $c a .2 \mathrm{~Hz}$ between the outer lines (Figure 3). The triplet could be an overlapping pair of doublets which might indicate that the mirror-plane effective symmetry of the anion was inexact for $W(8)$ and $W(9)$ only. An alternative explanation, however, is that we are seeing the effect on the $W(8,9)$ resonance of slow isotope exchange between H in the anion, close to $W(8)$ and $W(9)$, and solvent $H\left(\beta\right.$-effect $\left.{ }^{15}\right)$. We have observed a similar phenomenon for the $\left[\mathrm{P}_{2} \mathrm{~W}_{21} \mathrm{O}_{71^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{6-}$ anion. ${ }^{11}$ In the present case, the hydrogen atoms belong to the $\mathrm{H}_{2} \mathrm{O}$ ligand, $\mathrm{O}(35)$, on $\mathrm{Zn}(2)$ which (see above) may form hydrogen bonds to the terminal oxygen atoms on $\mathrm{W}(8)$ and $\mathrm{W}(9)$. Slow H/D exchange on $\mathrm{O}(35)$ in $50 \% \mathrm{D}_{2} \mathrm{O}$ then gives three $W(8,9)$ resonances in the ratio $1: 2: 1$, corresponding to the isotopomeric forms $\mathrm{H}_{2} \mathrm{O}, \mathrm{HDO}, \mathrm{D}_{2} \mathrm{O}$ of the aqua ligand. No resolution of the corresponding line, B , for $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ could be achieved for reasons of linewidth. Because the main features of the anions are already clear, and because of the expense of the n.m.r. work, we have not pursued this matter further. We note, however, that although our tentative interpretation that slow H/D exchange is taking place on $\mathrm{H}_{2} \mathrm{O}$ bound to Zn is clearly invalid if the ligand is undergoing the rapid exchange with bulk water which would normally be expected, the inability of even small, stericallyunhindered species to replace ligand $\mathrm{H}_{2} \mathrm{O}$ in $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}(\mathrm{X}=\mathrm{P}$ or As) is consistent with a marked reduction in the lability of the $\mathrm{H}_{2} \mathrm{O}-\mathrm{M}$ bond in these complexes.

Further Comments.- It is reasonable to suppose that in the synthesis of the anions described above, a nonatungstate heteropolyanion is first formed and then reacts with $\mathrm{M}^{2+}(\mathrm{aq})$. Two groups of workers have reported ${ }^{16.17}$ the preparation of Na^{+}or K^{+}salts of $\left[\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{9-}$ anions ($\mathrm{X}=\mathrm{P}$ or As). Each anion exists in isomeric α - or β-forms which differ in their polarographic behaviour ${ }^{17}$ and which on acidification give the α - and $\beta-\left[\mathrm{XW}_{11} \mathrm{O}_{39}\right]^{7-}$ anions respectively (i.e. the $\alpha-$ and β [$\left.\mathrm{XW}_{12} \mathrm{O}_{40}\right]^{3-}$ structures with one W and its terminal oxygen atom missing). Both the α - and $\beta-\left[\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{9-}$ anions can potentially exist in both A and B forms depending on whether they are derived from the parent $\left[\mathrm{XW}_{12} \mathrm{O}_{40}\right]^{3-}$ anion by the removal of three adjacent corner-linked WO_{6} octahedra or three edgedlinked ones. The $\beta-\left[\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{9-}$ anions are presumed to be of type A , as the $\beta-\left[\mathrm{B}-\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{9-}$ structure would include a WO_{6} group with three terminal O atoms and would be expected to be unstable for that reason. ${ }^{7}$ A salt described as $\mathrm{Na}_{8} \mathrm{H}[\beta$ $\left.\mathrm{PW}_{9} \mathrm{O}_{34}\right] \cdot 24 \mathrm{H}_{2} \mathrm{O}^{18}$ reacts rapidly with aqueous M^{2+} to give $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ if previously air-dried at $140^{\circ} \mathrm{C}$, but gives a different initial product if previously dried at $60^{\circ} \mathrm{C}$ or
below. ${ }^{2}$ Recent studies ${ }^{19}$ of this ' β - PW_{g} ' salt using solid-state ${ }^{31} \mathrm{P}$ n.m.r. indicate, however, that the anion is the α-A isomer which is converted on heating to the $\alpha-\mathrm{B}$ form present as a constituent of the $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ anions. There is obviously scope for X-ray studies of the $\left[\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{9-}$ anions themselves, if disorder-free single crystals come to hand.

Acknowledgements

We thank the Centre de Pharmacologie C.N.R.S., Montpellier, for access to the Bruker WP-360 spectrometer (G. F. T. and C. M. T.).

References

1 T. J. R. Weakley, H. T. Evans, J. S. Showell, G. F. Tourné, and C. M. Tourné, J. Chem. Soc., Chem. Commun., 1973, 139.
2 R. G. Finke, M. Droege, J. R. Hutchinson, and O. Gansow, J. Am. Chem. Soc., 1981, 103, 1587.
3 T. J. R. Weakley, J. Chem. Soc., Chem. Commun., 1984, 1406.
4 G. M. Sheldrick, SHELX-76 Program for Crystal Structure Determination, University of Cambridge, 1975.
5 J. M. Stewart, P. A. Machin, C. Dickinson, H. L. Ammon, H. Heck, and H. Flack, XRAY-76 System, University of Maryland, 1976.
6 C. Brevard, R. Schimpf, G. F. Tourné, and C. M. Tourné, J. Am. Chem. Soc., 1983, 105, 7059.
7 M. T. Pope, 'Heteropoly and Isopoly Oxometalates,' SpringerVerlag, Berlin, 1983.
8 J. F. Keggin, Nature (London), 1933, 131, 908; Proc. R. Soc. London $A, 1934,144,75$.
9 G. Hervé and A. Tézé, Inorg. Chem., 1977, 16, 2115.
10 H. D'Amour, Acta Crystallogr., Sect B, 1976, 32, 729; J. Fuchs and R. Palm, Z. Naturforsch., Teil B, 1984, 39, 757.

11 C. M. Tourné, G. F. Tourné, and T. J. R. Weakley, J. Chem. Soc., Dalton Trans., 1986, 2237.
12 L. C. W. Baker and J. S. Figgis, J. Am. Chem. Soc., 1970, 92, 3794; T. J. R. Weakley, J. Chem. Soc., Dalton Trans., 1973, 341.

13 K. Y. Matsumoto, A. Kobayashi, and Y. Sasaki, Bull. Chem. Soc. Jpn., 1975, 48, 3146.
14 J. Lefebvre, F. Chauveau, P. Doppelt, and C. Brevard, J. Am. Chem. Soc., 1981, 103, 4589; W. H. Knoth, P. J. Domaille, and D. C. Roe, Inorg. Chem., 1983, 22, 198.
15 D. Gagnaire and M. Vincendon, J. Chem. Soc., Chem. Commun., 1977, 509.
16 C. Tourné, A. Revel, G. Tourné, and M. Vendrell, C.R. Acad. Sci., Ser. C, 1973, 277, 643.
17 R. Contant, J-M. Fruchard, G. Hervé, and A. Tézé, C.R. Acad. Sci., Ser. C, 1974, 278, 199.
18 R. Massart, R. Contant, J-M. Ciabrini, and M. Fournier, Inorg. Chem., 1977, 16, 2916.
19 W. H. Knoth, P. J. Domaille, and R. D. Farlee, Organometallics, 1985, 4, 62.

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1986, Issue 1, pp. xvii-xx.

[^1]: ${ }^{183} \mathrm{~W}$ N.M.R. Spectra.-The ${ }^{183} \mathrm{~W}$ nucleus has spin $\frac{1}{2}$ and is 14.28% abundant. The $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ and $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{\text {io- }}$ anions both show five-line spectra

