Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 50. ${ }^{1}$ Synthesis and Crystal Structures of the Complexes [RuW ${ }_{3}(\mu-$ $\left.\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-\mathrm{CPh})_{2}\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$ and $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)\{\mu-\right.$ $\left.\mathbf{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})\left(\mathrm{PMePh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]^{*}$

Louis J. Farrugia
Department of Chemistry, The University, Glasgow G12 800
John C. Jeffery, Christine Marsden, Paul Sherwood, and F. Gordon A. Stone Department of Inorganic Chemistry, The University, Bristol BS8 1 TS

Abstract

The zero-valent ruthenium compounds $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{8} \mathrm{H}_{10}\right)(\operatorname{cod})\right]\left(\mathrm{C}_{8} \mathrm{H}_{10}=\right.$ cyclo-octa-1,3,5-triene, cod $=$ cyclo-octa-1,5-diene) or [Ru($\left.\left.\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)(\mathrm{cod})\right]\left(\mathrm{C}_{10} \mathrm{H}_{8}=\right.$ naphthalene) react at room temperature in light petroleum with the alkylidynetungsten complexes $\left[W(\equiv C R)(C O)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Ph) to give a chromatographically separable mixture of the cluster compounds [$\mathrm{RuW}_{2}\left(\mu_{3}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{R}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ and $\left[\operatorname{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-\mathrm{CR})_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$. A single-crystal X-ray diffraction study established the molecular structure of the rutheniumtritungsten species containing phenylmethylidyne ligands. The metal-atom core consists of a RuW_{2} triangle [W-Ru 2.775(2) and 2.847(2), W-W 2.610(1) \AA] to which a third tungsten atom is attached via the ruthenium [W-Ru 2.735(2) A]. The 'exo-ligated' tungsten atom carries a terminal CO ligand and a $\mathrm{C}_{5} \mathrm{H}_{5}$ group, with the Ru-W bond asymmetrically bridged by CPh and CO groups. The latter is also η-co-ordinated to one of the tungsten atoms in the RuW_{2} triangle [W-C 2.43(1), W-O $2.05(1) \AA]$ so that it occupies a triply-bridging site. The tungsten atoms in the triangle are ligated by $\mathrm{C}_{5} \mathrm{H}_{5}$ groups, and the ruthenium atom carries a terminal CO ligand. A phenylmethylidyne group symmetrically caps the triangle, and a similar fragment edge-bridges the W-W bond. A carbonyl group bridges the Ru-W edge of the triangle. The compounds [$\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-$ $\left.\mathrm{CR})_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$ react with tertiary phosphines to afford complexes $\left[\mathrm{RuW}_{3}(\mu-\right.$ CO) $\left.\left(\mu_{3}-\eta-\mathrm{CO}\right)\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CR})\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})\left(\mathrm{PR}_{3}^{\prime}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$, $\mathrm{PR}_{3}^{\prime}=\mathrm{PMe}_{3} ; \mathrm{R}=\mathrm{Ph}, \mathrm{PR}_{3}=\mathrm{PMe}_{3}$ or PMePh$)^{\text {}}$) containing ketenyl groups. $\mathrm{An} X$-ray diffraction study on the complex with $\mathrm{R}=\mathrm{Ph}$ and $\mathrm{PR}_{3}^{\prime}=\mathrm{PMe}_{2} \mathrm{Ph}$ established the structure of this class of compound. The core structure of the molecule is remarkably similar to that of its precursor, with the RuW W_{2} triangle 'spiked' by a tungsten atom, and with bridging $\mu-\mathrm{CR}, \mu_{3}-\mathrm{CR}, \mu-\mathrm{CO}$, and $\mu_{3}-\eta-$ CO groups. The important difference is associated with the exo-ligated tungsten which now carries a PMePh_{2} ligand instead of a terminal CO group, and the W -Ru vector is edge-bridged by a μ $\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{O})$ fragment [W-Ru 2.771(1), μ-C-Ru 2.19(1), μ-C-W 2.15(1), $\mu-\mathrm{C}(\mathrm{O})-\mathrm{W} 2.14$ (1), μ -$\mathrm{C}-\mathrm{C}$ 1.39(2) $\AA]$. The i.r. and n.m.r. (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$) spectra of the new compounds are discussed in relation to their structures.

Developing our use of the complex $\left[W\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}(\eta-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] (1a) as a reagent for the synthesis of heteronuclear metal cluster compounds, ${ }^{2}$ we have studied its reactions with the zero-valent ruthenium complexes $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{8} \mathrm{H}_{10}\right)\right.$ $(\operatorname{cod})]\left(\mathrm{C}_{8} \mathrm{H}_{10}=\right.$ cyclo-octa-1,3,5-triene, cod $=$ cyclo-octa-1,5diene $)^{3}$ and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)(\operatorname{cod})\right]\left(\mathrm{C}_{10} \mathrm{H}_{8}=\right.$ naphthalene $) .{ }^{4}$ During the investigation it became necessary to extend the study to (1b), the phenylmethylidyne analogue of (1a), in order to obtain products with crystals suitable for X-ray diffraction studies.

[^0]
Results and Discussion

The reaction between (1a) and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{8} \mathrm{H}_{10}\right)(\mathrm{cod})\right]$ in light petroleum at room temperature afforded a chromatographically separable mixture consisting of a trace of the bridgedalkyne complex $\left[\mathrm{W}_{2}\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, ${ }^{5}$ appreciable amounts of the known compound $\left[\mathrm{RuW}_{2}\left\{\mu_{3}-\right.\right.$ $\left.\left.\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](2 \mathrm{a}){ }^{6}$ and a new cluster complex (3a). Complete identification of the latter was not possible on the basis of the microanalysis and spectroscopic data (see below).

The compound $\left[\mathrm{W}_{2}\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ is a frequent product of reactions of (1a). ${ }^{5}$ The rutheniumditungsten complex (2a) exists as a mixture of two isomers [(A) and $(\mathbf{B})]$ in solution, and is formed in a reaction involving coupling of p-tolylmethylidyne fragments. ${ }^{6}$ In both isomers the alkyne adopts the $\mu_{3}-\left(\eta^{2}-\|\right)$ bridge-bonding mode. ${ }^{7}$ The related complex (2b) with a $\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}$ ligand, has also been prepared, and its isomer (B) structurally characterised by X-ray diffraction. ${ }^{8}$

The reaction between (1a) and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)(\operatorname{cod})\right]$ gave the same three products as those obtained with $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$ $\mathrm{C}_{8} \mathrm{H}_{10}$)(cod)], but since the naphthalene-ruthenium complex

was easier to prepare in our laboratory, it became the favoured precursor for this work.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of (3a) were informative, but even with these data available it was not possible to resolve fully the structure of the complex. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed resonances for $\mathrm{C}_{5} \mathrm{H}_{5}$ groups in three different environments, and three distinct peaks were observed for Me-4 substituents of p-tolylmethylidyne groups. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum was consistent with the ${ }^{1} \mathrm{H}$ in showing three signals for $\mathrm{C}_{5} \mathrm{H}_{5}$ ligands, and three for Me-4 groups (see Experimental section). In addition resonances were observed at $\delta 350.1$ and 348.0 p.p.m. characteristic for $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups edge bridging metal-metal bonds, with a further signal at $\delta 292.8$ suggestive of the presence of a $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ moiety. ${ }^{1}$ An interesting feature of the resonances at $\delta 350.1$ and 292.8 p.p.m. was the observation that two sets of ${ }^{183} \mathrm{~W}-{ }^{13} \mathrm{C}$ satellite peaks were associated with each signal. This feature provided a clear indication that the two p-tolylmethylidyne groups responsible for these signals bridge $W-W$ bonds with the tungsten atoms occupying non-equivalent sites. It was thus evident from the n.m.r. studies that the cluster (3a) contained three $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ and three $W\left(\eta-C_{5} H_{5}\right)$ groups. Persistent attempts to grow crystals of (3a) for an X-ray diffraction study were unsuccessful. In view of this result the reaction between (1b) and $\left[\mathrm{Ru}\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{10} \mathrm{H}_{8}\right)(\operatorname{cod})\right]$ was examined.

Treatment of (1b) with $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)(\operatorname{cod})\right]$ in light petroleum at room temperature afforded a mixture of $\left[R u W_{2}\right.$ -$\left.\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (2c), and a dark green cluster compound (3b). The spectroscopic properties (i.r. and n.m.r.) of the latter showed that it was structurally similar to (3a). Crystals of (3b) were successfully grown, and an X-ray diffraction study was carried out with the results described below. Compound (2c) was characterised by microanalysis, and by i.r. and n.m.r. spectroscopy (see Experimental section). Like the complexes (2a) and (2b), compound (2c) shows seven absorptions in the CO stretching region of the i.r., with band frequencies virtually identical with those of (2a). ${ }^{6}$ Similarly, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (2c) showed resonances for carbonyl ligands at δ 220.9 [WCO, $J(\mathbf{W C}) 167$], 220.7 [WCO, $J(W C) 157$], and 196.5 p.p.m. (RuCO) to be compared with those observed at 221.1, 220.2 , and 195.9 p.p.m. in the spectrum of (2a). The observation of only three resonances in the spectrum of (2c) for the $C O$ ligands indicates that these groups undergo site-exchange on the n.m.r. time-scale, as found for (2a). ${ }^{6}$ Formation of (2c) in the reaction between (1b) and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)\right.$ (cod)] thus provides a further example of alkylidyne group coupling to form a ligated alkyne at a trimetal centre.

The results of the X-ray diffraction study on (3b) are summarised in Table 1, and the molecule is shown in Figure 1. The structure has several noteworthy features. The metal-atom framework comprises a triangle of two tungsten atoms, $\mathbf{W}(1)$ and $W(2)$, and a ruthenium, to which a third tungsten atom [W(3)] is bonded. Such a metal array, designated by the description' 'spiked-metal cluster' or 'metallo-ligated metal cluster,' is relatively uncommon. In tetranuclear metal species it is generally associated with a cluster valence electron (c.v.e.) count of 64 , as found, for example, in $\left[\mathrm{Os}_{4}(\mathrm{CO})_{15}\left(\mathrm{PMe}_{3}\right)\right]^{10}$ or $\left[\mathrm{Re}_{4} \mathrm{H}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{15}\right]^{2-} .{ }^{11}$ The exo-ligated metal atom may either lie in an equatorial 'ligand' position with respect to the metal triangle to which it is attached, or alternatively be in an axial position. The former arrangement has been found for $\left[\mathrm{CrReRh}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{9}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2}\right],{ }^{1} \quad\left[\mathrm{Os}_{4}{ }^{-}\right.$ $\left.(\mathrm{CO})_{15}\left(\mathrm{PMe}_{3}\right)\right],{ }^{10}$ and $\left[\mathrm{Re}_{2} \mathrm{Os}_{3}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{20}\right]$ (two Re atoms 'spiking' the Os_{3} unit). ${ }^{9}$ The latter arrangement occurs in the clusters $\left[\mathrm{Re}_{4} \mathrm{H}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{15}\right]^{2-},{ }^{11} \quad\left[\mathrm{MnOs}_{3}(\mu-\mathrm{H})(\mu-\mathrm{CO})\{\mu-\right.$ $\left.\mathrm{CH}=\mathrm{CH}(\mathrm{Ph})\}(\mathrm{CO})_{11}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right],^{12}$ and $\left[\mathrm{Co}_{2} \mathrm{Mo}_{2}(\mu-\mathrm{CO})_{3}\left(\mu_{4}-\right.\right.$

Table 1. Comparison of selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the compounds $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-\mathrm{CPh})_{2}\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$ (3b) and $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)\{\mu-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})\left(\mathrm{PMePh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$ (4c)

	(3b)	(4c)		(3b)	(4c)
W(1)-W(2)	2.610 (1)	2.617(1)	$\mathrm{W}(1)-\mathrm{Ru}$	$2.775(2)$	2.789(1)
W(1)-C(2)	2.07(2)	2.06(2)	W(1)-C(46)	1.96(1)	1.97(2)
W(1)-C(66)	2.06(2)	2.08(1)	$\mathrm{W}(2)-\mathrm{Ru}$	2.847(2)	2.871(1)
W(2)-C(1)	2.43(1)	2.45(1)	$\mathrm{W}(2)-\mathrm{O}(1)$	2.05(1)	2.07(1)
W(2)-C(46)	2.00 (1)	2.02(1)	W(2)-C(66)	2.09(1)	2.11(1)
W(3)-Ru	2.735(2)	2.771(1)	W(3)-C(1)	1.93(1)	1.93(1)
W(3)-C(4)	1.93(3)	2.14(1)	W(3)-C(56)	1.88(1)	2.15 (1)
W(3)-P		2.462(4)	Ru-C(1)	2.16(1)	2.17(1)
$\mathrm{Ru}-\mathrm{C}(2)$	2.03(2)	2.01(2)	Ru-C(3)	1.88(2)	1.89(2)
Ru-C(56)	2.11(1)	2.19(1)	$\mathrm{Ru}-\mathrm{C}(66)$	2.13(1)	2.13(1)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.30(2)	1.31(2)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.19(2)	1.19(2)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.15(2)	1.15(2)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.21(3)	1.22(2)
$\mathrm{C}(4)-\mathrm{C}(56)$		1.39(2)	$\mathrm{C}(46)-\mathrm{C}(40)$	1.43(2)	1.48(2)
$\mathrm{C}(56)-\mathrm{C}(50)$	1.49(2)	1.49(2)	$\mathrm{C}(66)-\mathrm{C}(60)$	1.44(2)	1.46(2)
$\mathrm{P}-\mathrm{C}(70)$		1.87(2)	P-C(80)		1.83(1)
$\mathrm{P}-\mathrm{C}(90)$		1.86(1)			
W(2)-W(1)-Ru	63.8(1)	64.1(1)	$\mathbf{W}(2)-W(1)-C(2)$	87.7(4)	88.1(4)
$\mathbf{R u}-\mathbf{W}(1)-\mathbf{C}(2)$	46.8(5)	46.0(4)	$W(2)-W(1)-C(46)$	49.3(4)	49.8(4)
$\mathrm{Ru}-\mathrm{W}(1)-\mathrm{C}(46)$	106.7(4)	108.8(4)	C(2)-W(1)-C(46)	100.4(5)	104.4(6)
W (2)-W(1)-C(66)	51.5(4)	51.8(4)	Ru-W(1)-C(66)	49.6(4)	49.3(4)
C(2)-W(1)-C(66)	96.3(6)	95.1(6)	$\mathrm{C}(46)-\mathrm{W}(1)-\mathrm{C}(66)$	97.4(6)	97.2(6)
$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{Ru}$	60.9(1)	60.9(1)	$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{C}(1)$	98.5(4)	97.2(3)
$\mathrm{Ru}-\mathrm{W}(2)-\mathrm{C}(1)$	47.6(3)	47.3(3)	$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{O}(1)$	111.6(3)	109.4(2)
Ru-W(2)-O(1)	77.7(3)	77.2(2)	$\mathrm{C}(1)-\mathrm{W}(2)-\mathrm{O}(1)$	32.4(4)	32.4(4)
W(1)-W(2)-C(46)	48.1(4)	48.1(5)	Ru-W(2)-C(46)	103.0(4)	104.3(4)
C(1)-W(2)-C(46)	115.9(6)	117.0(5)	$\mathrm{O}(1)-\mathrm{W}(2)-\mathrm{C}(46)$	101.9(5)	102.2(5)
$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{C}(66)$	50.4(4)	50.8(3)	$\mathrm{Ru}-\mathrm{W}(2)-\mathrm{C}(66)$	48.2(4)	47.7(4)
$\mathrm{C}(1)-\mathrm{W}(2)-\mathrm{C}(66)$	94.1(5)	93.6(5)	$\mathrm{O}(1)-\mathrm{W}(2)-\mathrm{C}(66)$	125.7(5)	124.9(4)
$\mathrm{C}(46)-\mathrm{W}(2)-\mathrm{C}(66)$	95.2(6)	94.8(6)	Ru-W(3)-P		108.0(1)
Ru-W(3)-C(1)	51.8(4)	51.2(4)	P-W(3)-C(1)		92.2(4)
Ru-W(3)-C(4)	85.3(5)	66.0(4)	P-W(3)-C(4)		79.4(4)
$\mathrm{C}(1)-\mathrm{W}(3)-\mathrm{C}(4)$	86.1(7)	110.0(5)	Ru-W(3)-C(56)	50.5(4)	50.9(4)
$\mathrm{P}-\mathrm{W}(3)-\mathrm{C}(56)$		116.9(4)	$\mathrm{C}(1)-\mathrm{W}(3)-\mathrm{C}(56)$	101.6(6)	101.7(5)
C(4)-W(3)-C(56)	96.8(7)	37.8(6)	W(1)-Ru-W(2)	55.3(1)	55.1(1)
W(1)-Ru-W(3)	143.3(1)	139.3(1)	W(2)-Ru-W(3)	98.0(1)	99.0 (1)
$\mathrm{W}(1)-\mathrm{Ru}-\mathrm{C}(1)$	100.5(4)	99.5(4)	W(2)-Ru-C(1)	55.9(4)	56.2(4)
W(3)-Ru-C(1)	44.5(4)	43.9(4)	W(1)-Ru-C(2)	48.1(5)	47.6(5)
W(2)-Ru-C(2)	82.2(4)	82.4(5)	W(3)-Ru-C(2)	109.8(5)	104.0(5)
$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{C}(2)$	88.9(6)	87.9(6)	W(1)-Ru-C(3)	88.4(5)	88.2(5)
W(2)-Ru-C(3)	131.6(5)	131.9(5)	W(3)-Ru-C(3)	126.7(5)	127.8(5)
$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{C}(3)$	171.1(6)	171.7(6)	$\mathrm{C}(2)-\mathrm{Ru}-\mathrm{C}(3)$	96.7(7)	95.0(6)
W(1)-Ru-C(56)	158.1(5)	150.0(4)	W(2)-Ru-C(56)	140.8(4)	148.5(3)
W(3)-Ru-C(56)	43.2(4)	49.7(3)	$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{C}(56)$	87.1(6)	93.3(5)
$\mathrm{C}(2)-\mathrm{Ru}-\mathrm{C}(56)$	112.3(6)	106.5(6)	$\mathrm{C}(3)-\mathrm{Ru}-\mathrm{C}(56)$	84.4(6)	78.4(6)
$\mathrm{W}(1)-\mathrm{Ru}-\mathrm{C}(66)$	47.4(4)	47.7(3)	W(2)-Ru-C(66)	46.9(4)	47.0(4)
W(3)-Ru-C(66)	134.1(4)	138.3(3)	$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{C}(66)$	100.9(5)	101.6(5)
$\mathrm{C}(2)-\mathrm{Ru}-\mathrm{C}(66)$	95.3(6)	95.3(6)	$\mathrm{C}(3)-\mathrm{Ru}-\mathrm{C}(66)$	85.4(6)	85.9(6)
$\mathrm{C}(56)-\mathrm{Ru}-\mathrm{C}(66)$	151.6(6)	154.0(5)	W(2)-C(1)-W(3)	150.8(8)	156.2(7)
$\mathrm{W}(2)-\mathrm{C}(1)-\mathrm{Ru}$	76.5(5)	76.5(4)	$\mathrm{W}(3)-\mathrm{C}(1)-\mathrm{Ru}$	83.7(5)	84.9(5)
$\mathrm{W}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	57.5(7)	57.5(7)	$\mathrm{W}(3)-\mathrm{C}(1)-\mathrm{O}(1)$	148.1(11)	145.4(10)
$\mathrm{Ru}-\mathrm{C}(1)-\mathrm{O}(1)$	127.7(10)	127.5(9)	$\mathrm{W}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	90.1(8)	90.1 (8)
$\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{Ru}$	85.1(7)	86.4(6)	$\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	145.2(12)	144.5(12)
$\mathrm{Ru}-\mathrm{C}(2)-\mathrm{O}(2)$	129.5(12)	128.8(12)	Ru-C(3)-O(3)	175.8(18)	179.1(9)
$\mathrm{W}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	177.8(16)	147.8(11)	$\mathrm{W}(3)-\mathrm{C}(4)-\mathrm{C}(56)$		71.68 (8)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(56)$		138.4(13)	W(1)-C(46)-W(2)	82.6(5)	82.1(6)
W(1)-C(46)-C(40)	143.3(11)	138.7(10)	W(2)-C(46)-C(40)	134.0(10)	139.2(10)
$\mathrm{W}(3)-\mathrm{C}(56)-\mathrm{Ru}$	86.4(5)	79.3(4)	$\mathrm{W}(3)-\mathrm{C}(56)-\mathrm{C}(4)$		70.6(8)
Ru-C(56)-C(4)		96.6(9)	W(3)-C(56)-C(50)	143.6(11)	137.6(9)
$\mathrm{Ru}-\mathrm{C}(56)-\mathrm{C}(50)$	128.9(10)	126.6(9)	$\mathrm{C}(4)-\mathrm{C}(56)-\mathrm{C}(50)$		127.7(12)
$\mathrm{W}(1)-\mathrm{C}(66)-\mathrm{W}(2)$	78.1(5)	77.4(5)	W(1)-C(66)-Ru	83.0(6)	83.0(5)
$\mathrm{W}(2)-\mathrm{C}(66)-\mathrm{Ru}$	84.9(5)	85.3(5)	$\mathrm{W}(1)-\mathrm{C}(66)-\mathrm{C}(60)$	138.9(10)	135.1(9)
$\mathrm{W}(2)-\mathrm{C}(66)-\mathrm{C}(60)$	131.8(11)	132.7(8)	$\mathrm{Ru}-\mathrm{C}(66)-\mathrm{C}(60)$	121.3(10)	124.9(9)

$\left.\eta-\mathrm{CO})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right] .{ }^{13}$ The recently reported cluster compound $\left[\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})_{2}\left(\mu_{4}-\mathrm{C}\right)(\mathrm{CO})_{10}\left\{\mathrm{P}\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]^{14}$ contains a platinum-spiked Os_{3} triangle with the $\mathrm{Pt}-\mathrm{Os}$ vector inclined to it at 75°. The c.v.e. count for this $\mathrm{Os}_{3} \mathrm{Pt}$ species is 62 ;
this being rationalised in terms of the presence of the platinum atom in an essentially square-planar 16 -electron environment. Compound (3b) contains a carbonyl ligand $\mathrm{C}(1) \mathrm{O}(1)$ attached to three metal centres $[\mathrm{Ru}, \mathrm{W}(2)$, and $\mathrm{W}(3)]$ in the $\mu_{3}{ }^{-}$

Figure 1. Molecular structure of $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-\mathrm{CPh})_{2}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{CPh})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right](3 \mathrm{~b})$, showing the crystallographic numbering
η^{2} bonding mode. If it is assumed that this group functions as a four-electron donor, the c.v.e. count for ($\mathbf{3 b}$) is 60 , indicating that it is unsaturated. Consistent with this property, the $\mathrm{W}(1)-\mathrm{W}(2)$ distance $[2.610(1) \AA]$ is relatively short, indicative of some multiplicity in this bond. The 46 c.v.e. complexes $\left[\mathrm{FeW}_{2}\left\{\mu_{3}-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{15}$ and $\left[\mathrm{ReW}_{2}(\mu-\mathrm{Br})\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{3}{ }^{-}\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{16}$ are also unsaturated and have $\mathrm{W}-\mathrm{W}$ separations of 2.747 (1) and $2.620(1)$ A, respectively. However, too much reliance should not be placed on correlating these metal-metal distances with the unsaturation of the clusters since these parameters are highly sensitive to other factors. Thus in the anion $\left[\mathrm{W}_{2}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{8}\right]^{2-}$, with 32 c.v.e. and a formal $\mathrm{W}=\mathrm{W}$ bond, the metal-metal separation is $2.9945(5) \AA .{ }^{17}$

The ruthenium-tungsten distances in (3b) $[\mathrm{W}(1)-\mathrm{Ru}$ $2.775(2), \mathrm{W}(2)-\mathrm{Ru} 2.847(2)$, and $\mathrm{W}(3)-\mathrm{Ru} 2.735(2) \AA]$ are similar to those found in the compounds $[\mathrm{RuW}(\mu-\mathrm{Cl})(\mu-$ $\left.\mathrm{CMe})(\mathrm{Cl})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right][2.769(1) \AA]$ and $\left[\mathrm{RuW}_{2}\right.$ -$\left.\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \quad[2.835(1) \text { and } 3.026(1) \AA]^{8}$ Because of the considerable variation in $\mathrm{Ru}-\mathrm{W}$ distances in (3b), these parameters do not allow any conclusions to be drawn concerning the site of the electron deficiency.

The exo-ligated tungsten atom [W(3)] lies significantly $[1.251(1) \AA]$ out of the plane defined by $W(1) W(2) R u$, with the $\mathrm{W}(3)-\mathrm{Ru}$ vector inclined at an angle of 27.2° to this plane. The core metal-atom geometry is thus very approximately that of an equatorial metallo-substituted triangle.

Each tungsten atom bears an $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand as expected, and the ruthenium atom carries a terminal CO group. The $\mathrm{RuW}(1) \mathrm{W}(2)$ triangle is capped by a $\mu_{3}-\mathrm{CPh}$ ligand in an approximately symmetrical fashion $[\mathrm{W}(1)-\mathrm{C}(66)$ 2.06(2), W(2)-C(66) 2.09(1), and $\mathrm{Ru}-\mathrm{C}(66) 2.13(1) \AA]$. The $\mathrm{W}(1)-\mathrm{W}(2)$ bond is essentially symmetrically bridged by a CPh group [W(1)-C(46) 1.96(1), W(2)-C(46) 2.00(1) \AA]. A similar $\mu-\mathrm{CW}_{2}$ ring occurs in $\left[\mathrm{ReW}_{2}(\mu-\mathrm{Br})\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}\right.\right.$ 4) $\left.(\mu-\mathrm{CO})(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ with $\mu-\mathrm{C}-\mathrm{W}$ distances of $1.99(1)$ and $1.95(1) \AA .^{16}$ These μ-C-W distances all reflect a degree of multiplicity in the bonds to which they refer. Typically $\mu-\mathrm{C}=\mathrm{W}$ bonds in dimetallacyclopropene ring systems occur in the range $1.91-2.03 \AA \AA^{18}$

The $\mathrm{Ru}-\mathrm{W}(1)$ vector in (3b) is bridged by a carbonyl group [Ru-C(2) 2.03(2), W(1)-C(2) 2.07(2) \AA]. Some slight asymmetry is revealed in the bridge by differences in the $\mathrm{Ru}-\mathrm{C}(2)-\mathrm{O}(2)$ and $\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ angles, 129.5(12) and $145.2(12)^{\circ}$ respectively, indicating a stronger attachment to the tungsten atom.

A major feature of interest in the structure is the coordination of the $\mathrm{C}(1) \mathrm{O}(1)$ ligand. This asymmetrically bridges the $\mathrm{Ru}-\mathrm{W}(3)$ bond $[\mathrm{Ru}-\mathrm{C}(1) 2.16(1), \mathrm{W}(3)-\mathrm{C}(1) 1.93(1) \AA$; $\left.\mathrm{Ru}-\mathrm{C}(1)-\mathrm{O}(1) 128(1), \mathrm{W}(3)-\mathrm{C}(1)-\mathrm{O}(1) 148(1)^{\circ}\right]$ and is also π bonded to $\mathbf{W}(2)[W(2)-C(1) 2.43(1), W(2)-O(1) 2.05(1) \AA]$. The $\mathrm{W}(3) \mathrm{Ru}(1) \mathrm{C}(1) \mathrm{O}(1)$ fragment is non-planar with $\mathrm{O}(1)$ lying 0.11 (1) \AA above the mean plane of $\mathrm{RuW}(3) \mathrm{C}(1)$, and with $\mathrm{W}(2)$ being $0.87(1) \AA$ below this plane.

Carbonyl groups co-ordinated to metals in a manner similar to $\mathrm{C}(1) \mathrm{O}(1)$ have been the subject of a recent review. ${ }^{19}$ The overall co-ordination of the $\mu_{3}-\mathrm{C}(1) \mathrm{O}(1)$ ligand in (3b) has features in common with that found for the $\mu_{4}-\eta-\mathrm{CO}$ ligand in $\left[\mathrm{Co}_{2} \mathrm{Mo}_{2}(\mu-\mathrm{CO})_{3}\left(\mu_{4}-\eta-\mathrm{CO}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]^{13}$ The latter, like ($\mathbf{3 b}$) (60 c.v.e.), is unsaturated, but has a 62 c.v.e. count if the $\mu_{4}-\mathrm{CO}$ ligand is regarded as contributing six electrons to the cluster. Horwitz and Shriver ${ }^{19}$ have proposed a function, $\Omega=\exp (\mathbf{M}-\mathrm{C}$ distance $/ \mathrm{M}-\mathrm{O}$ distance), to measure the extent of interaction of a metal M with the C and O ends of a CO ligand to which it is attached in an η^{2} manner. For ($\mathbf{3 b}$) $\Omega=$ 3.27, whilst for $\left[\mathrm{Co}_{2} \mathrm{Mo}_{2}(\mu-\mathrm{CO})_{3}\left(\mu_{4}-\eta-\mathrm{CO}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{5}\right)_{2}\right] \Omega=3.16$. Thus in (3b) there is a greater interaction between $W(2)$ and $O(1)$ versus $C(1)$ than there is between the molybdenum atom in the $\mathrm{Co}_{2} \mathrm{Mo}_{2}$ species and the oxygen and carbon atoms of the CO group to which it is η^{2} bound. Hitherto the largest Ω value for a π CO ligand-metal interaction was that (3.16) for $\left[\mathrm{Co}_{2} \mathrm{Mo}_{2}(\mu-\mathrm{CO})_{3}(\mu 4-\eta-\mathrm{CO})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}$] (see Figure 4 of ref. 19) which, together with that (3.27) for (3b), reflects the oxophilic nature of molybdenum and tungsten. The $\mathrm{C}(1)-\mathrm{O}(1)$ bond length $[1.30(2) \AA]$ in (3b) is comparable with the C-O bond distance [1.283(3) \AA] for the $\mu_{4}-\eta$-CO ligand in $\left[\mathrm{Co}_{2} \mathrm{Mo}_{2}(\mu-\mathrm{CO})_{3}\left(\mu_{4}-\eta-\mathrm{CO}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]$. Unfortunately the higher estimated standard deviation (e.s.d.) for (3b) precludes a precise comparison between the two complexes.

Having established the molecular structure of (3b) it was possible to interpret fully the i.r. and n.m.r. data for this complex, and those of (3a) also, since the latter must have the same structure, on account of similarities in spectroscopic properties.

The $\mu_{3}-\eta$ - CO ligand in the complexes (3) reveals itself in the i.r. spectra with bands at $1380 \mathrm{~cm}^{-1}$ (3a, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and 1384 $\mathbf{c m}^{-1}$ [3b, in tetrahydrofuran (thf)]. When measured in a KBr disc the $\mu_{3}-\eta-\mathrm{CO}$ absorption for (3b) occurs at $1375 \mathrm{~cm}^{-1}$. In the complex $\left[\mathrm{Nb}_{3}\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$ the corresponding peak is at $1330 \mathrm{~cm}^{-1},{ }^{20}$ in which the $\mu_{3}-\eta$-CO ligand formally acts as a six-electron donor. The $\eta-\mathrm{C}-\mathrm{O}$ distance is 1.30 (1) \AA, similar to that found for (3b). This suggests that the $\mu_{3}-\eta$-CO groups present in (3) are highly activated, although formally acting as four-electron donors.

The i.r. spectra of (3a) and (3b) also have bands at 1734 and $1745 \mathrm{~cm}^{-1}$, respectively, and these absorptions may be assigned to the $\mu-\mathrm{CO}$ groups. Moreover, as expected, two i.r. bands corresponding to terminal CO ligands also appear in each spectrum [(3a), 1972 and 1936 ; (3b) 1976 and $1933 \mathrm{~cm}^{-1}$].

We have already mentioned above that the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (3) showed resonances corresponding to the presence of two edge-bridging and one triply-bridging p tolylmethylidyne groups. For (3b), signals for the ligated carbon atoms of the phenylmethylidyne groups occur at $\delta 349.0,347.2$ ($\mu-\mathrm{C}$), and 291.9 p.p.m. ($\mu_{3}-\mathrm{C}$). Resonances in the spectra of (3a) and (3b) at $\delta 290.4$ [$J(W C) 187 \mathrm{~Hz}$] and 289.5 p.p.m., respectively, are assigned to the $\mu_{3}-\eta$-CO ligand, and signals at δ 275.8 (3a) and 275.5 p.p.m. (3b) to the μ-CO group. The two terminal CO groups present in each complex give rise to resonances at $\delta 215.3$ [WCO, $J(W C) 201 \mathrm{~Hz}$] and 205.5 (RuCO) (3a), and at 214.5 [WCO, $J(W C) 197 \mathrm{~Hz}$] and 206.3 p.p.m. (RuCO) (3b). As for (3a), the non-equivalent $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ groups in (3b) are revealed in the ${ }^{1} \mathrm{H}$ and the ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra by
the appearance of three peaks in each spectrum (see Experimental section).
Since the cluster compounds (3) are electronically unsaturated it was of interest to investigate their reactivity towards tertiary phosphines, in order to determine the effect of addition of an electron-pair donor to these molecules. With PMe_{3}, both (3a) and (3b) yielded products having similar structures, as inferred from comparison of their spectroscopic properties. However, attempts to grow crystals of these complexes, (4a) and (4b) respectively, for study by X-ray diffraction were unsuccessful. Attention was then directed at using PMePh_{2} as a reagent since this tertiary phosphine often affords crystalline products in situations where PMe_{3} does not. Treatment of (3b) with $\mathbf{P M e P h}_{2}$ in dichloromethane gave a product (4c), similar to (4a) and (4b). Single crystals of (4c) could be grown, and an X-ray diffraction study was carried out with the results summarised in Table 1, and with the structure shown in Figure 2. This work established that the compounds (4) should be formulated as $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CR})\right.$ -$\left.\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})\left(\mathrm{PR}_{3}{ }^{\prime}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right] \quad\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \quad \mathrm{PR}^{\prime}{ }_{3}=\right.$ PMe_{3} (4a); $\mathrm{R}=\mathrm{Ph}, \mathrm{PR}_{3}^{\prime}=\mathrm{PMe}_{3}$ (4b) or PMePh_{2} (4c)].
The structure of (4c) (Figure 2) is very similar to that of (3b), and it is for this reason that the selected internuclear distances and angles for both complexes are presented together in Table 1.

In (4c) the metal atoms retain the 'spiked triangle' arrangement, and the $\mu_{3}-\eta-\mathrm{CO}$ ligand remains attached to $\mathrm{Ru}, \mathrm{W}(3)$, and $\mathrm{W}(2)$. The major difference occurs at $\mathrm{W}(3)$ and its mode of attachment to the ruthenium atom. This is best seen in Figure 3, which compares the core structures of (3b) and (4c). Thus the result of treatment of the former with PMePh_{2} is to replace the CO group on $W(3)$ with the phosphine ligand, and this is accompanied by migration of a CO molecule to the edgebridging phenylmethylidyne fragment. Hence in (4c) the $\mathrm{Ru}-\mathrm{W}(3)$ bond is bridged by a ketenyl group $\mathrm{C}(56)(\mathrm{Ph}) \mathrm{C}(4)$ $\mathrm{O}(4)$ [$\mathrm{Ru}-\mathrm{C}(56)$ 2.19(1), W(3)-C(56) 2.15(1), W(3)-C(4) 2.14(1), and $\mathrm{C}(4)-\mathrm{C}(56) 1.39(2) \AA]$. Apart from this significant change, the molecular parameters for (4c) and (3b) are remarkably similar.

Complexes in which metal atoms are ligated by ketenyl groups are well established. ${ }^{21}$ Formation of ($\mathbf{4 c}$) is a consequence of coupling of an alkylidyne group with CO to produce a $\mathrm{C}=\mathrm{C}$ bond. This process has been observed previously in the synthesis of the trinuclear metal species $\left[\mathrm{PPh}_{4}\right]_{2}-$ $\left[\mathrm{Fe}_{3}\left\{\mu_{3}-\eta-\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O})\right\}(\mathrm{CO})_{9}\right]^{22}$ and $\left[\mathrm{Rh}_{2} \mathrm{~W}(\mu-\mathrm{CO})\left(\mu_{3}-\right.\right.$ $\left.\mathrm{CO})\left\{\mu_{3}-\eta-\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O})\right\}(\mathrm{CO})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]{ }^{21}$ which contain ketenyl ligands bridging three rather than two metal atoms. In compound ($\mathbf{4 c}$) the bonding of the ketenyl group is somewhat similar to that of the related ligand in the dimetal complex $\left[\mathrm{PtW}\left\{\mu-\eta-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O})\right\}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)(\operatorname{cod})(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$]. ${ }^{23}$

The i.r. spectrum of (4c) shows a band at $1976 \mathrm{~cm}^{-1}$ due to the terminal CO ligand bonded to ruthenium, while a band at 1735 cm^{-1} is attributed to the $\mathrm{Ru}(\mu-\mathrm{CO}) \mathrm{W}$ group. An absorption at $1341 \mathrm{~cm}^{-1}$ can be assigned to the $\mu_{3}-\eta-\mathrm{CO}$ ligand, and compares with that at $1384 \mathrm{~cm}^{-1}$ in the spectrum of the precursor (3b). Complex (4c) also shows a band at $1636 \mathrm{~cm}^{-1}$ which is attributed to the $\mathrm{C}=\mathrm{O}$ group of the ketenyl ligand. In $\left[\mathrm{PtW}\left\{\mu-\eta-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O})\right\}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)(\operatorname{cod})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ a similar absorption occurs at $1625 \mathrm{~cm}^{-1} \cdot{ }^{23}$ In compounds (4a) and (4b) bands below $1600 \mathrm{~cm}^{-1}$ are difficult to assign, but both species show characteristic absorptions for the $\mathrm{Ru}(\mathrm{CO}), \mu-\mathrm{CO}$, and $\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O})$ groups $[1974,1735$, and 1623 (4a); 1975 , 1735 , and $\left.1636 \mathrm{~cm}^{-1}(4 \mathrm{~b})\right]$.

Figure 2. Molecular structure of $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)\{\mu-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})\left(\mathrm{PMePh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$ (4c), showing the crystallographic numbering

(3b)

(4c)

Figure 3. The co-ordination environments of the metal atoms and the $\mu_{3}-\eta-\mathrm{CO}$ ligand in compounds (3b) and (4c)

The n.m.r. spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$) of the compounds (4) can be interpreted on the basis of the structure established for (4c) by X-ray diffraction, and resonances and assignments are listed in the Experimental section. Noteworthy are the two signals for the ligated carbon atoms of the ketenyl group μ $C(\mathrm{R}) C(\mathrm{O})$. These resonances occur as doublets due to ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling, the signal for the $C(\mathrm{R}) \mathrm{C}(\mathrm{O})$ nucleus being less deshielded than that for $\mathrm{C}(\mathrm{R}) C(\mathrm{O})[(4 \mathrm{a}), 114.2$ and 222.2; (4b) 114.4 and 221.2 ; and (4 c) 111.9 and 220.6 p.p.m. respectively]. In their ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra the complexes show a singlet signal with strong ${ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}$ coupling, as expected for the presence of a $W\left(\mathrm{PR}^{\prime}{ }_{3}\right)$ group $\{(\mathbf{4 a}), 1.31$ [$J(\mathbf{W P})$ 330]; (4b), 1.92 [J(WP) 330]; and (4c) 25.88 p.p.m. [J (WP) 215 Hz$]\}$.

As far as we are aware, formation of the compounds (4) from (3) provides the first examples of reactions where addition of a donor molecule to a cluster compound forces migration of a CO group onto a co-ordinated alkylidyne ligand. Without labelling experiments it is not possible to be certain of the source of the CO group which forms the ketenyl moiety. There are two possibilities for an associative process. In the simplest, the CO ligand terminally bound to the tungsten atom in (3) migrates to the edge-bridging alkylidyne group as the tertiary phosphine approaches the tungsten centre. However, a more complex reaction might occur involving the $\mu_{3}-\eta-\mathrm{CO}$ fragment. The latter might form a $\mathrm{C}-\mathrm{C}$ bond with the μ-CR ligand, with concomitant transfer of the terminal CO group to the triplybridging site.

In view of the results with PMe_{3} and PMePh_{2}, we also investigated reactions of the compounds (3) with CO and with $\mathrm{H}_{2}\left(2 \mathrm{~atm}, c a .20 \times 10^{4} \mathrm{~Pa}\right)$. No reaction occurred with the latter, and the CO treatment led to decomposition and formation of (2a) or (2c), respectively.
The compounds (3) and (4) join a growing number of species having alkylidyne ligands at both edge- and triply-bridging
sites. Other tetranuclear metal clusters with both $\mu-\mathrm{CR}$ and $\mu_{3}-\mathrm{CR}$ ligands are the complexes $\left[\mathrm{MPtW}_{2}(\mu-\mathrm{CR})\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{CR})(\mathrm{CO})_{4}(\operatorname{cod})\left(\eta-\mathrm{C}_{5} \mathrm{R}^{\prime}\right)_{2}\right]\left(\mathrm{M}=\mathrm{Ni}\right.$ or $\mathrm{Pt}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$, $\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{M}=\mathrm{Ni}$ or $\mathrm{Pt}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{R}^{\prime}=\mathrm{Me} ; \mathrm{M}=\mathrm{Pt}$, $\left.R=R^{\prime}=\mathrm{Me}\right) .{ }^{24}$ Four trimetal compounds are known with both edge- and triply-bridging p-tolylmethylidyne groups, viz. $\left[\mathrm{ReW}_{2}(\mu-\mathrm{Br})(\mu-\mathrm{L})\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{3}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](\mathrm{L}=\mathrm{CO}$ or O$),{ }^{16}\left[\mathrm{OsW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6}-\right.\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, and $\left[\mathrm{OsW}_{2}(\mathrm{H})(\mu-\mathrm{H})\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\mathrm{Me}-4)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$. ${ }^{25}$

Experimental

The experimental techniques used and the instrumentation employed have been described in previous parts of this series..$^{8.26}$ Light petroleum refers to that fraction b.p. $40-60^{\circ} \mathrm{C}$. The compounds $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\mathrm{C}_{6} \mathrm{H}_{4}-$ $\mathrm{Me}-4),{ }^{27}\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{8} \mathrm{H}_{10}\right)(\mathrm{cod})\right],{ }^{3,28}$ and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)(\operatorname{cod})\right]^{4}$ were prepared by methods described elsewhere. For n.m.r. data, chemical shifts are given in p.p.m., with coupling constants in Hz . For ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra chemical shifts are relative to SiMe_{4} (0.00 p.p.m.), and for the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra the chemical shifts are relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external) with positive values representing shifts to high frequency of the reference.

Synthesis of the Compounds $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-\right.$ $\left.\mathrm{CR})_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Ph$)$.-(i) A mixture of (1a) $(0.41 \mathrm{~g}, 1.0 \mathrm{mmol})$ and [$\left.\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{8} \mathrm{H}_{10}\right)(\operatorname{cod})\right]$ $(0.11 \mathrm{~g}, 0.33 \mathrm{mmol})$ was stirred in light petroleum $\left(15 \mathrm{~cm}^{3}\right)$ at room temperature for 24 h . Solvent was removed in vacuo, and the residue, as a slurry in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum $\left(15 \mathrm{~cm}^{3}\right.$, 1:9), was transferred to an alumina column ($2 \times 20 \mathrm{~cm}$) for chromatography. Elution with the same solvent mixture afforded unreacted (1a) (0.10 g). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 4$, gradually increasing to $1: 1$) afforded a pink eluate followed by an orange band. The pink eluate gave a trace of the compound $\left[\mathrm{W}_{2}\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (identified by i.r. ${ }^{5}$), and the orange eluate yielded the complex $\left[\mathrm{RuW}_{2}\left\{\mu_{3}-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{7}\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (2a) (0.07 g) (identified by i.r. ${ }^{6}$). Elution with pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded, after removal of solvent in vacuo, dark green microcrystals of $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right](3 a)(0.10 \mathrm{~g}, 24 \%)$ (Found: C, $40.8 ; \mathrm{H}, 2.9$. $\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{RuW}_{3}$ requires $\mathrm{C}, 40.7 ; \mathrm{H}, 2.8 \%$); $v_{\text {max. }}$. (CO) at 1972 s , $1936 \mathrm{~s}, 1734 \mathrm{~m}$, and $1380 \mathrm{~m} \mathrm{~cm}^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). N.m.r.: ${ }^{1} \mathrm{H}$ $\left(\mathrm{CDCl}_{3}\right), \delta 2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.44(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}-4$), 4.97 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 5.28 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 5.54 (s, 5 H , $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $6.0-7.3\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{\mathrm{H}} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right), \delta$ 350.1 [$\mu-\mathrm{C}, J(\mathrm{WC}) 152,140], 348.0[\mu-\mathrm{C}, J(\mathrm{WC}) 162], 292.8$ [$\mu_{3}-$ C, J (WC) 98, 92], 290.4 [$\mu_{3}-\eta-\mathrm{CO}, J(\mathrm{WC})$ 187], 275.8 ($\mu-\mathrm{CO}$), 215.3 [WCO, J (WC) 201], 205.5 (RuCO), 166.9, 164.8, 160.6 $\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 135.8,134.0,133.8 \quad\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 129.0-121.6$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 101.7,96.9,94.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.3,21.2$, and $20.7(\mathrm{Me}-4)$.

Compound (3a) was also obtained ($0.10 \mathrm{~g}, 24 \%$) from (1a) $(0.41 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{10} \mathrm{H}_{8}\right)(\operatorname{cod})\right](0.11 \mathrm{~g}, 0.33$ mmol), using the same method as described above.
(ii) Reaction between ($\mathbf{1 b}$) $(0.39 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\left[\mathrm{Ru}\left(\eta^{6}\right.\right.$ $\left.\left.\mathrm{C}_{10} \mathrm{H}_{8}\right)(\operatorname{cod})\right](0.11 \mathrm{~g}, 0.33 \mathrm{mmol})$, using the same procedure as for the synthesis of (3a), gave orange microcrystals of $\left[\mathrm{RuW}_{2}-\right.$ $\left.\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (2c) $(0.07 \mathrm{~g}, 20 \%$) \{(Found: C, $38.2 ; \mathrm{H}, 2.1 . \mathrm{C}_{31} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{RuW}{ }_{2}$ requires $\mathrm{C}, 38.2 ; \mathrm{H}, 2.1 \%$); $v_{\text {max }}$. CO) at $2065 \mathrm{~m}, 2047 \mathrm{vs}, 2012 \mathrm{~m}, 1991 \mathrm{vs}, 1983 \mathrm{vs}, 1917 \mathrm{~s}$, and $1836 \mathrm{w} \mathrm{cm}^{-1}$ (pentane); n.m.r.: ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta 5.04(\mathrm{~s}, 10 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $6.76-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}){ }^{13} \mathrm{C}-\left\{{ }^{2} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Cl}_{2}\right), \delta 220.9$ [WCO, $J(\mathrm{WC})$ 167], 220.7 [WCO, $J(\mathrm{WC})$ 157], $196.5(\mathrm{RuCO}), 159.6-124.6(\mathrm{CPh})$, and $\left.92.9\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}$, and dark green microcrystals of $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-\mathrm{CPh})_{2}\left(\mu_{3^{-}}\right.\right.$

Table 2. Atomic positional parameters (fractional co-ordinates $\times 10^{5}$ for W and Ru and $\times 10^{4}$ for all other atoms) for complex (3b)

Atom	x	y	z	Atom	x	y	z
W(1)	$65637(6)$	$36856(5)$	$63609(4)$	$\mathrm{C}(41)$	$4402(14)$	$799(13)$	$7110(11)$
$\mathrm{W}(2)$	$69039(6)$	$46034(5)$	$83418(4)$	$\mathrm{C}(42)$	$3238(16)$	$-168(15)$	$7179(11)$
$\mathrm{W}(3)$	$71625(6)$	$82211(5)$	$86080(5)$	$\mathrm{C}(43)$	$2286(16)$	$137(15)$	$7609(11)$
$\mathrm{Ru}(1)$	$75394(11)$	$62666(10)$	$72130(8)$	$\mathrm{C}(44)$	$2369(18)$	$1366(17)$	$7983(13)$
$\mathrm{C}(1)$	$6545(14)$	$6503(12)$	$8538(10)$	$\mathrm{C}(45)$	$3511(15)$	$2294(14)$	$7914(11)$
$\mathrm{C}(2)$	$5843(15)$	$5029(13)$	$6364(10)$	$\mathrm{C}(46)$	$5610(13)$	$3040(12)$	$7363(10)$
$\mathrm{C}(3)$	$8508(18)$	$6332(13)$	$6125(12)$	$\mathrm{C}(50)$	$8177(14)$	$8770(13)$	$6610(11)$
$\mathrm{C}(4)$	$8701(19)$	$8426(14)$	$9384(14)$	$\mathrm{C}(51)$	$9001(17)$	$10063(16)$	$6997(13)$
$\mathrm{C}(10)$	$5520(16)$	$1800(13)$	$5027(11)$	$\mathrm{C}(52)$	$9250(20)$	$10720(20)$	$6290(10)$
$\mathrm{C}(11)$	$6790(18)$	$1907(14)$	$5315(11)$	$\mathrm{C}(53)$	$8700(20)$	$10160(20)$	$5360(20)$
$\mathrm{C}(12)$	$7676(15)$	$2900(17)$	$5066(12)$	$\mathrm{C}(54)$	$7960(20)$	$8960(20)$	$4960(20)$
$\mathrm{C}(13)$	$6976(18)$	$3453(15)$	$4648(11)$	$\mathrm{C}(55)$	$7721(17)$	$8281(16)$	$5622(13)$
$\mathrm{C}(14)$	$5651(17)$	$2766(15)$	$4633(11)$	$\mathrm{C}(56)$	$7828(14)$	$8127(12)$	$7370(11)$
$\mathrm{C}(20)$	$8196(18)$	$3892(19)$	$9058(12)$	$\mathrm{C}(60)$	$9579(13)$	$5120(12)$	$7388(10)$
$\mathrm{C}(21)$	$8638(17)$	$5136(17)$	$9573(14)$	$\mathrm{C}(61)$	$10042(15)$	$4173(14)$	$7102(11)$
$\mathrm{C}(22)$	$7730(20)$	$5370(20)$	$10110(10)$	$\mathrm{C}(62)$	$11329(16)$	$4399(15)$	$7182(12)$
$\mathrm{C}(23)$	$6648(16)$	$4293(18)$	$9927(11)$	$\mathrm{C}(63)$	$12221(16)$	$5590(15)$	$7571(12)$
$\mathrm{C}(24)$	$6970(18)$	$3346(14)$	$9304(12)$	$\mathrm{C}(64)$	$11813(17)$	$6553(15)$	$7894(12)$
$\mathrm{C}(30)$	$5211(17)$	$8428(18)$	$9021(17)$	$\mathrm{C}(65)$	$10527(16)$	$6316(15)$	$7805(12)$
$\mathrm{C}(31)$	$5550(30)$	$8900(20)$	$8290(10)$	$\mathrm{C}(66)$	$8229(14)$	$4889(12)$	$7317(10)$
$\mathrm{C}(32)$	$6710(30)$	$9950(20)$	$8700(30)$	$\mathrm{O}(1)$	$5815(10)$	$5642(8)$	$8871(7)$
$\mathrm{C}(33)$	$6970(30)$	$10010(20)$	$9680(20)$	$\mathrm{O}(2)$	$4932(12)$	$5207(10)$	$6125(8)$
$\mathrm{C}(34)$	$6050(20)$	$9090(20)$	$9870(20)$	$\mathrm{O}(3)$	$9163(13)$	$6382(11)$	$5498(10)$
$\mathrm{C}(40)$	$4521(13)$	$2044(12)$	$7470(10)$	$\mathrm{O}(4)$	$9640(14)$	$8556(12)$	$9897(11)$

Table 3. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) for complex (4c)

Atom	x	y	z	Atom	x	y	z
W(1)	6840 (1)	$6348(1)$	8071(1)	C(43)	9324	5011	5924
W(2)	$4831(1)$	6 293(1)	7 149(1)	C(44)	9393	5614	5963
W(3)	$4033(1)$	8 119(1)	7150 (1)	C(45)	8523	5916	6369
Ru	$5038(1)$	7 275(1)	$8047(1)$	C(46)	6720 (14)	5 966(7)	7 172(8)
P	$1646(4)$	$7896(2)$	$6856(2)$	C(50)*	$5438(11)$	8 595(4)	8671 (5)
C(1)	4 585(12)	7 338(6)	6 954(6)	C(51)	4785	8902	9169
$\mathrm{O}(1)$	4 954(9)	6 980(4)	$6477(4)$	C(52)	5521	9267	9618
$\mathrm{C}(2)$	6 997(15)	7 219(7)	$7850(8)$	C(53)	6911	9325	9569
$\mathrm{O}(2)$	$7719(10)$	7 584(5)	7 647(6)	C(54)	7564	9018	9071
C(3)	$5355(15)$	7 334(6)	$9005(9)$	C(55)	6828	8653	8622
$\mathrm{O}(3)$	5 531(12)	7 368(5)	$9591(6)$	C(56)	4 626(15)	8 194(6)	8 220(6)
C(4)	3 228(15)	8 156(6)	8 139(7)	C(60)*	3 908(9)	6 122(4)	$8716(4)$
$\mathrm{O}(4)$	2 249(10)	8 240(5)	$8476(5)$	C(61)	4136	5555	8941
C(10)*	8 798(22)	$5827(12)$	8 352(7)	C(62)	3310	5310	9416
C(11)	7809	5601	8775	C(63)	2256	5632	9667
C(12)	7448	6045	9231	C(64)	2028	6199	9442
C(13)	8213	6547	9090	C(65)	2854	6444	8967
C(14)	9047	6412	8546	C(66)	4 782(12)	$6372(6)$	8219(7)
C(20)*	$3704(14)$	$5406(5)$	$7169(7)$	C(70)	884(14)	7 392(7)	$7472(7)$
C(21)	2687	5832	7233	C(80)*	1 188(11)	7 559(4)	6027 (4)
C(22)	2565	6150	6612	C(81)	2180	7415	5579
C(23)	3506	5921	6165	C(82)	1819	7154	4953
C(24)	4211	5461	6509	C(83)	466	7036	4775
C(30)*	$5145(16)$	8 372(5)	6 134(6)	C(84)	- 525	7180	5223
C(31)	5937	8571	6713	C(85)	-164	7442	5848
C(32)	5170	8990	7054	C(90)*	535(9)	8 544(4)	$6809(5)$
C(33)	3904	9049	6685	C(91)	215	8809	6180
C(34)	3889	8667	6116	C(92)	-557	9314	6150
C(40)*	7 584(10)	5616 (5)	$6737(5)$	C(93)	-1010	9555	6749
C(41)	7515	5013	6698	C(94)	-689	9290	7378
C(42)	8385	4711	6291	C(95)	83	8785	7407

* Atom of a rigid group, remaining atoms in the group have identical standard deviations.
$\mathrm{CPh})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}$] (3b) ($0.11 \mathrm{~g}, 27 \%$) \{(Found: C, 38.9; H, 2.3. $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{RuW}_{3}$ requires $\mathrm{C}, 39.1, \mathrm{H}, 2.4 \%$); $\mathrm{v}_{\text {max. }}$ (CO) at 1976s, $1933 \mathrm{~s}, 1745 \mathrm{~m}$, and $1384 \mathrm{~cm}^{-1}$ (thf); n.m.r.: ${ }^{1} \mathrm{H}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta 5.14\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.56\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.77(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $6.38-7.59\left(\mathrm{~m},{ }_{15} \mathrm{H}, \mathrm{Ph}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at $\left.-40^{\circ} \mathrm{C}\right), \delta 349.0,347.2(\mu-\mathrm{C}), 291.9\left(\mu_{3}-\mathrm{C}\right), 289.5$
($\left.\mu_{3}-\eta-\mathrm{CO}\right), 275.5$ ($\mu-\mathrm{CO}$), 214.5 [WCO, $J(\mathrm{WC})$ 197], 206.3 $(\mathrm{RuCO}), 169.5,167.6,163.4\left[\mathrm{C}^{1}(\mathrm{Ph})\right], 127.6-122.6(\mathrm{Ph}), 102.0$, 97.2 , and $94.8\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ \}.

Reactions of the Compounds $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mu-\right.$ $\left.\mathrm{CR})_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Ph$)$ with

Tertiary Phosphines.-(i) Compound (3a) ($0.18 \mathrm{~g}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{PMe}_{3}(0.14 \mathrm{mmol})$, and the mixture stirred for 30 h , after which the i.r. spectrum showed that little of (3a) remained. Solvent was removed in vacuo, and the residue was transferred as a slurry in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($5 \mathrm{~cm}^{3}, 1: 1$) to an alumina column ($2 \times 7 \mathrm{~cm}$). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ removed a trace of green (3a). Elution with MeOH gave a red solution, from which solvent was removed in vacuo to give red microcrystals of $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\right.\right.$ η-CO) $\left\{\mu\right.$-C(C66 $\left.\left.\mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O})\right\}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.$ 4)(CO) $\left.\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right](4 \mathrm{a})(0.14 \mathrm{~g}, 72 \%$) (Found: $\mathrm{C}, 40.8 ; \mathrm{H}$, 3.4. $\mathrm{C}_{46} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{PRuW}_{3}$ requires $\mathrm{C}, 41.0 ; \mathrm{H}, 3.4 \%$); $\mathrm{v}_{\text {max }}$. (CO) at $1974 \mathrm{~s}, 1735 \mathrm{~m}$, and $1623 \mathrm{~m} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. N.m.r.: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right)$, $\delta 1.58$ [d, $9 \mathrm{H}, \mathrm{MeP}, J(\mathrm{PH})$ 10], $2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.36(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}-4$), 2.57 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 4.98 [d, $\left.5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}, J(\mathrm{PH}) 2\right], 5.04$ (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), $5.75\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $6.84-7.74\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, at $\left.-40^{\circ} \mathrm{C}\right), \delta 346.5(\mu-\mathrm{C}), 286.9$ [$\left.\mu_{3}-\mathrm{C}, J(\mathrm{WC}) 98\right], 278.3(\mu-\mathrm{CO}), 276.1$ [d, $\left.\mu_{3}-\eta-\mathrm{CO}, J(\mathrm{PC}) 10\right]$, 222.2 [d, $\left.\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) C(\mathrm{O}), J(\mathrm{PC}) 22\right], 200.0(\mathrm{RuCO})$, 166.4, 164.6, $147.0\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right.$], 134.9-122.8 $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 114.2$ [d, $\left.\mu-C\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}), J(\mathrm{PC}) 5\right], 101.8,97.5,95.6\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.4$, 21.2, 21.0 (Me-4), and 20.4 [d, MeP, $J(P C) 34] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CDCl}_{3}\right), \delta 1.31$ [$J(\mathrm{WP})$ 330].
(ii) The reaction between (3b) $(0.16 \mathrm{~g}, 0.13 \mathrm{mmol})$ and PMe_{3} (0.13 mmol) was carried out in a similar manner, thereby giving red microcrystals of $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)\{\mu-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{O})\}-\right.$ $\left.(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$ (4b) $(0.12 \mathrm{~g}, 73 \%)$ (Found: C, 40.0; H, 3.0. $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{PRuW}_{3}$ requires $\mathrm{C}, 39.6 ; \mathrm{H}$, 3.0%); $v_{\text {max. }}(\mathrm{CO})$ at $1975 \mathrm{~s}, 1735 \mathrm{~m}$, and $1636 \mathrm{~m} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. N.m.r.: ' ${ }^{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), \delta 1.59$ [d, $\left.9 \mathrm{H}, \mathrm{MeP}, J(\mathrm{PH}) 10\right], 4.99$ [d, 5 $\left.\mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}, J(\mathrm{PH}) 1\right], 5.06\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.76\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $6.81-7.88(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \delta 346.7$ $(\mu-\mathrm{C}), 286.8$ ($\left.\mu_{3}-\mathrm{C}\right), 277.2(\mu-\mathrm{CO}), 275.7$ [d, $\left.\mu_{3}-\eta-\mathrm{CO}, J(\mathrm{PC}) 7\right]$, 221.2 [d, $\mu-\mathrm{C}(\mathrm{Ph}) C(\mathrm{O}), J(\mathrm{PC}) 22], 199.9$ (RuCO), 170.1, 167.6, 150.6 [$^{1}(\mathrm{Ph})$], $128.6-122.6(\mathrm{Ph}), 114.4$ [d, $\mu-C(\mathrm{Ph}) \mathrm{C}(\mathrm{O})$, $J(\mathrm{PC}) 7], 102.0,97.7,95.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and 20.7 [d, MeP, $\left.J(\mathrm{PC}) 34\right]$; ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right), \delta 1.92$ [J(WP) 330].
(iii) Similarly, ($\mathbf{3 b}$) $(0.20 \mathrm{~g}, 0.16 \mathrm{mmol})$ with $\mathrm{PMePh}_{2}(0.16$ $\mathrm{mmol})$ gave red microcrystals of $\left[\mathrm{RuW}_{3}(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)\{\mu-\right.$ $\left.\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)(\mathrm{CO})\left(\mathrm{PMePh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right] \quad(4 \mathrm{c})$ ($0.16 \mathrm{~g}, 69 \%$) (Found: C, 44.2; H, 3.0. $\mathrm{C}_{53} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{PRuW}_{3}$ requires $\mathrm{C}, 44.2 ; \mathrm{H}, 3.0 \%$); $\mathrm{v}_{\text {max. }}$. CO) at $1976 \mathrm{~s}, 1735 \mathrm{~m}, 1636 \mathrm{~m}$, and $1341 \mathrm{~m} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. N.m.r.: ${ }^{1} \mathrm{H}, \delta 2.27$ [d, $3 \mathrm{H}, \mathrm{MeP}$, $J(\mathrm{PH}) 10], 4.65\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.83\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.71(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$) , and $6.91-7.88$ (br m, $25 \mathrm{H}, \mathrm{Ph}$); ${ }^{13} \mathrm{C}-\left\{{ }^{\mathrm{I}} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at $-40^{\circ} \mathrm{C}$), $\delta 347.4$ [$\left.\mu-\mathrm{C}, J(\mathrm{WC}) 141\right], 288.8\left[\mu_{3}-\mathrm{C}\right.$, $J(W C)$ 95], 277.6, 277.5 ($\mu-\mathrm{CO}$ and $\mu_{3}-\eta-\mathrm{CO}$), 220.6 [d, $\mu-$ $\mathrm{C}(\mathrm{Ph}) C(\mathrm{O}), J(\mathrm{PC})$ 18], 199.7 (RuCO), 170.1, 167.1, 150.3 [$\mathrm{C}^{1}(\mathrm{Ph})$], 136.7-121.9(Ph), 111.9 [d, $\left.\mu-C(\mathrm{Ph}) \mathrm{C}(\mathrm{O}), J(\mathrm{PC}) 6\right]$, 101.5, 97.7, $97.1\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and 18.0 [d, $\left.\mathrm{MeP}, J(\mathrm{PC}) 40\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CDCl}_{3}\right), \delta 25.88$ [J(WP) 215].

Crystal Structure Determination of (3b).-Crystals of (3b) were grown as black prisms from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum. Diffracted intensities were collected at 293 K from a crystal of dimensions ca. $0.39 \times 0.34 \times 0.06 \mathrm{~mm}$ with well developed faces of the type (101), ($\overline{1} 0 \overline{1}$), ($10 \overline{1}$), (101), (010), and (0 I 0). Data were collected on an Enraf-Nonius CAD-4F diffractometer. Of the 3621 unique data collected ($\theta-2 \theta$ scans, $2 \theta \leqslant 42^{\circ}$), 3230 had $I \geqslant 2.0 \sigma(I)$ and only these were used in structure solution and refinement, after the data had been corrected for Lorentz polarisation and X-ray absorption effects. The last was by an analytical method. ${ }^{29}$
Crystal data. $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{RuW}_{3}, M=1227$, triclinic, $a=$ 11.244(5), $b=12.204(2), c=13.987$ (2) $\AA, \alpha=108.33(2), \beta=$ $90.20(3), \gamma=110.99(3)^{\circ}, U=1686(1) \AA^{3}, Z=2, D_{\mathrm{c}}=2.42 \mathrm{~g}$ $\mathrm{cm}^{-3}, F(000)=1136$, space group $P \mathrm{I}$ (no. 2), Mo- $K_{\alpha} X$ -
radiation (graphite monochromator), $\bar{\lambda}=0.71069 \AA, \mu($ Mo$\left.K_{\alpha}\right)=109.10 \mathrm{~cm}^{-1}$.

The metal atoms were located by direct methods, and all remaining non-hydrogen atoms were found by conventional difference-Fourier methods. The aryl carbon atoms, and atoms $C(33)$ and $C(46)$ were refined with isotropic thermal parameters. Attempts to refine the latter two carbon atoms with anisotropic thermal parameters were not successful, probably reflecting our inability to correct adequately the severe absorption effects in this structure. All remaining non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included in calculated positions with fixed isotropic thermal parameters of $0.05 \AA^{2}$. Refinement by full-matrix least squares led to $R 0.039\left(R^{\prime}=0.046\right)$ and a weighting scheme of the form $w^{-1}=\sigma^{2}(F)$ gave a satisfactory weight analysis. The final electron-density difference synthesis showed no peaks $\geqslant 1.6$ or $\leqslant-1.7 \mathrm{e} \AA^{-3}$, with the largest peaks lying close to the metal atoms. Scattering factors with corrections for anomalous dispersion were from ref. 30 . All computations were carried out on a Gould-SEL $32 / 27$ computer using the GX system of programs. ${ }^{31}$

Crystal Structure Determination of (4c).-Crystals of (4c) grow from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum as small black parallelepipeds. Diffracted intensities were collected at 293 K from a crystal of dimensions ca. $0.16 \times 0.09 \times 0.07 \mathrm{~mm}$ with well developed faces of the type $(100),\left(\begin{array}{ll}1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1\end{array}\right),\binom{0}{I},\left(\begin{array}{ll}0 & 0\end{array}\right)$, and (00 I). Data were collected on a Nicolet $P 3 m$ diffractometer. Of the 4208 unique data ($\theta-2 \theta$ scans, $2 \theta \leqslant 45^{\circ}$), 3737 had $I \geqslant 1.5 \sigma(I)$ and only these were used in structure solution and refinement, after the data had been corrected for Lorentz polarisation and X-ray absorption effects. The last was by an empirical method based on azimuthal scan data. ${ }^{32}$

Crystal data. $\mathrm{C}_{53} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{PRuW}_{3}, M=1427$, monoclinic, $a=9.928(1), b=23.080(3), c=19.588(2) \AA, \beta=93.242(9)^{\circ}$, $U=4481.1(9) \AA^{3}, Z=4, D_{\mathrm{c}}=2.11 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2696$, space group $P 2_{1} / c$ (no. 14), Mo- $K_{\alpha} X$-radiation (graphite monochromator), $\bar{\lambda}=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=82.50 \mathrm{~cm}^{-1}$.

The structure was solved and all non-hydrogen atoms were located by conventional heavy-atom and difference Fourier methods. All atoms were refined with anisotropic thermal parameters but the cyclopentadienyl and phenyl rings were constrained to rigid idealised geometries. Hydrogen atoms were not included. Refinement by blocked-cascade least squares led to $R=0.039\left(R^{\prime}=0.038\right)$, and a weighting scheme of the form $w^{-1}=\left[\sigma^{2}(F)+0.00046|F|^{2}\right]$ gave a satisfactory weight analysis. The final electron-density difference synthesis showed no peaks $\geqslant 0.7$ or $\leqslant-1.0$ e \AA^{-3}. Scattering factors and corrections for anomalous dispersion are from ref. 30. All computations were carried out on an Eclipse Data General computer with the SHELXTL system of programs. ${ }^{32}$ Atom coordinates for (3b) and (4c) are given in Tables 2 and 3, respectively.

Acknowledgements

We thank the S.E.R.C. for support and for research studentships (to C. M. and P. S.).

References

1 Part 49, J. A. Abad, E. Delgado, M. E. Garcia, M. J. Grosse-Ophoff, I. J. Hart, J. C. Jeffery, M. S. Simmons, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., preceding paper,
2 F. G. A. Stone, Pure Appl. Chem., 1986, 58, 529; in 'Inorganic Chemistry: Toward the 21 st Century,' ed. M. H. Chisholm, ACS Symp. Ser., 1983, 211, 383.
3 P. Pertici, G. Vitulli, M. Paci, and L. Porri, J. Chem. Soc., Dalton Trans., 1980, 1961.

4 M. Crocker, Ph.D. Thesis, Bristol University, 1985.
5 M. Green, J. C. Jeffery, S. J. Porter, H. Razay, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1982, 2475; M. Green, S. J. Porter, and F. G. A. Stone, ibid., 1983, 513; M. Green, J. A. K. Howard, S. J. Porter, F. G. A. Stone, and D. C. Tyler, ibid., 1984, 2553.
6 L. Busetto, M. Green, B. Hessner, J. A. K. Howard, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1983, 519.

7 M. G. Thomas, E. L. Muetterties, R. O. Day, and V. W. Day, J. Am. Chem. Soc., 1976, 98, 4645.
8 J. A. K. Howard, J. C. V. Laurie, O. Johnson, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1985, 2017.
9 M. R. Churchill and F. J. Hollander, Inorg. Chem., 1978, 17, 3546.
10 F. W. B. Einstein, L. R. Martin, R. K. Pomeroy, and P. Rushman, J. Chem. Soc., Chem. Commun., 1985, 345.
11 V. G. Albano, G. Ciani, M. Freni, and P. Romiti, J. Organomet. Chem., 1975, 96, 259.
12 A. B. Antonova, S. V. Kovalenko, E. D. Korniyets, A. A. Johansson, Yu. T. Struchkov, and A. I. Yanovsky, J. Organomet. Chem., 1984, 267, 299.
13 P. Brun, G. M. Dawkins, M. Green, A. D. Miles, A. G. Orpen, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1982, 926.

14 L. J. Farrugia, A. D. Miles, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1985, 2437.
15 L. Busetto, J. C. Jeffery, R. M. Mills, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 101.

16 G. A. Carriedo, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1984, 1597.
17 M. R. Churchill and S. W. Y. Chang, Inorg. Chem., 1974, 13, 2413.
18 J. A. Abad, L. W. Bateman, J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 2075.

19 C. P. Horwitz and D. F. Shriver, Adv. Organomet. Chem., 1984, 23, 219.

20 W. A. Hermann, H. Biersack, M. L. Ziegler, K. Weidenhammer, R. Siegel, and D. Rehder, J. Am. Chem. Soc., 1981, 103, 1692.
21 J. C. Jeffery, C. Marsden, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1985, 1315 and refs. therein.
22 F. Dahan and R. Mathieu, J. Chem. Soc., Chem. Commun., 1984, 432.
23 J. C. Jeffery, C. Sambale, M. F. Schmidt, and F. G. A. Stone, Organometalics, 1982, 1, 1597.
24 G. P. Elliott, J. A. K. Howard, T. Mise, I. Moore, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 2091.

25 Yun Chi and J. R. Shapley, Organometallics, 1985, 4, 1900.
26 M. R. Awang, R. D. Barr, M. Green, J. A. K. Howard, T. B. Marder, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1985, 2009.
27 E. O. Fischer, T. Selmayr, F. R. Kreissl, and U. Schubert, Chem. Ber., 1977, 110, 2574; E. O. Fischer, T. L. Lindner, G. Huttner, P. Friedrich, F. R. Kreissl, and J. O. Besenhard, ibid., p. 3397.
28 P. Pertici and G. Vitulli, Inorg. Synth., 1983, 22, 178.
29 P. Coppens, ‘Crystallographic Computing,' ed. F. R. Ahmed, Munksgaard, Copenhagen, 1970, p. 255.
30 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4.
31 P. R. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.
32 G. M. Sheldrick, SHELXTL programs for use with the Nicolet P3m X-ray system, University of Cambridge, 1976; updated Göttingen, 1981.

[^0]: * $1,2-\mu$-Carbonyl- μ_{3}-[η-carbonyl- $\left.C\left(\mathrm{Ru}^{1}, \mathrm{~W}^{3.4}\right), O\left(\mathrm{~W}^{3}\right)\right]$-1,4-dicar-bonyl-2,3,4-tris(η-cyclopentadienyl)-1,4;2,3-di- μ-phenylmethylidyne-$1,2,3-\mu_{3}$-phenylmethylidyne-cyclo-rutheniumtritungsten $(3 R u-W, W$-W) and $1,2-\mu$-carbonyl- $\mu_{3}-\left[\eta\right.$-carbonyl- $\left.C\left(\mathrm{Ru}^{1}, \mathbf{W}^{3.4}\right), O\left(\mathbf{W}^{3}\right)\right]-1$-car-bonyl-2,3,4-tris(η-cyclopentadienyl)-4-methyldiphenylphosphine- μ - [2-oxo-1-phenylethenyl- $\left.C^{1}\left(\mathrm{Ru}^{1}, \mathrm{~W}^{4}\right), C^{2}\left(\mathrm{~W}^{4}\right)\right]-2,3-\mu$-phenylmethylidyne-$1,2,3-\mu_{3}$-phenylmethylidyne-cyclo-rutheniumtritungsten $(3 R u-W, W$-W) respectively.

 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii-xx.

