Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 51.Alkylidyne(carbaborane)tungsten-gold and -rhodium Complexes; Crystal Structures of [AuW($\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)$], $\left.\left[R h W(\mu-C R)(C O)_{2}\left(P^{2}\right)_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$, and $\left(\mathrm{RhW}[\mu-C R)(C O)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{8} \mathrm{Me}_{2}\right\}$] ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$) *

Michael Green, Judith A. K. Howard, Alun P. James, Christine M. Nunn, and F. Gordon A. Stone Department of Inorganic Chemistry, The University, Bristol BS8 1 TS

Abstract

Reactions between the bromo(alkylidyne)tungsten complex [W(三CR) $\left.\operatorname{Br}(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ and the salts $\mathrm{Na}_{2}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}^{\prime}\right.$] ($\mathrm{R}^{\prime}=\mathrm{Me}$ or H), followed by treatment with [$\left.\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}$ afford the compounds $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}^{\prime}\right)\right]\left(1 \mathrm{a}, \mathrm{R}^{\prime}=\mathrm{Me} ; 1 \mathrm{~b}, \mathrm{R}^{\prime}=\mathrm{H}\right)$. The salt $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (1c) was prepared from $\left[\mathrm{W}(\equiv \mathrm{CMe}) \mathrm{Br}(\mathrm{CO})_{4}\right]$ and $\mathrm{TI}_{2}[7,8-$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$], with subsequent addition of [NEt_{4}] Cl . Treatment of (1a) or (1b) with [$\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$], in the presence of TIPF ${ }_{6}$, yields the gold-tungsten complexes [$\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\right.$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathbf{R}_{2}^{\prime}$)] (2a, $\mathbf{R}^{\prime}=\mathrm{Me}$; 2b, $\mathbf{R}^{\prime}=\mathrm{H}$). Similarly, (1c) with [$\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$] affords [$\mathrm{AuW}(\mu-$ $\left.\mathrm{CMe})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (2c). The structure of (2a) has been established by X-ray diffraction. The $\mathrm{Au}-\mathrm{W}$ bond $\left[2.780(8) \AA\right.$] is asymmetrically bridged by the $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group [μ-C-Au 2.19(3), $\mu-\mathrm{C}-\mathrm{W} 1.88(3) \AA$]. Treatment of $[\mathrm{AuCl}($ tht $)$] (tht = tetrahydrothiophene) with (1a) gives the salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{AuW}_{2}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]$ (3). The rhodium-tungsten compound [RhW $\left.(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (4a) has been prepared by two routes: from the reaction between (1a) and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ or from (1a) and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\operatorname{cod})\right]\left[\mathrm{PF}_{6}\right]$ (cod = cyclo-octa-1,5-diene). The latter with (1b) yields [RhW (μ-CR) (CO) $\left.2\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ (4b). Compounds (1a) and (1b) react with [$\left.\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{nbd})\right]\left[\mathrm{PF}_{6}\right.$] [$\mathrm{nbd}=$ norbornadiene (bicyclo[2.2.1]hepta-2,5-diene)] to give the complexes [RhW $(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}\right.$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{\mathrm{s}} \mathrm{R}_{2}^{\prime}\right\}$] [5a, $\mathrm{R}^{\prime}=\mathrm{Me}$; 5b, (two isomers), $\mathrm{R}^{\prime}=\mathrm{H}$]. The structures of (4a) and (5a) have been established by X-ray diffraction. Both molecules have Y -shaped WRhP_{2} cores with the $\mathrm{Rh}-\mathrm{W}$ bonds [4a, 2.681 (1), 5a, 2.662(2) \AA] bridged by $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups [4a, $\mu-\mathrm{C}-\mathrm{Rh} 2.068$ (5), $\mu-\mathrm{C}-\mathrm{W}$ $1.880(6) ; 5 a, \mu-C-R h 2.12(2), \mu-C-W 1.84(2) \AA$], and semibridged by a CO ligand [W-C-O, 4a, $\left.160.2(5) ; 5 a, 156(1)^{\circ}\right]$. In (4a), the tungsten atom is ligated by a terminal CO group and the $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ cage. In (5a), the tungsten also carries a terminal CO group but the carbaborane ligand has a $\mathrm{C}_{7} \mathrm{H}_{9}$ [nortricyclene (tricyclo[2.2.1.0 ${ }^{2,6}$] heptane)] fragment attached to the unique boron atom in the open face of the cage. Thus in the formation of (5a) an unprecedented hydroboration reaction has occurred, a cage $\mathrm{B}-\mathrm{H}$ bond having added to the norbornadiene ligand with concomitant $\mathrm{C}-\mathrm{C}$ bond formation. In contrast, treatment of the norbornadiene-containing salt $[R h(d p p e)(n b d)]\left[F_{6}\right]\left(d p p e=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ with (1a) gives [RhW $(\mu-\mathrm{CR})(\mathrm{CO})_{2}(\mathrm{dppe})\left(\eta^{5}-\right.$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$)] (4c). Reactions of (4a) with $\mathrm{PEt}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}$, dppe, and CO are reported. Examination of the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of the complexes (4) and (5) reveal that they undergo dynamic behaviour in solution and possible mechanisms are described and discussed.

The compound $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ shows a reactivity pattern towards low-valent transition-metal complexes similar to that of an alkyne. This property has enabled many heteronuclear dimetal complexes to be prepared, the bonds between tungsten and the various transition elements being bridged by the p-tolylmethylidyne group. ${ }^{2}$. Within the framework of the isolobal model, ${ }^{3}$ this chemistry is capable of

[^0]development in several different ways. Thus the p-tolylmethylidyne group in $\left[W(\equiv C R)(C O)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ can be replaced by ethylidyne, ${ }^{4}$ or the tungsten by molybdenum. ${ }^{5}$ The products obtained from reactions between these species and low-valent metal fragments have their own unique properties. Especially interesting results are to be anticipated, however, when the cyclopentadienyl anion in the alkylidyne-tungsten compounds $\left[W(\equiv C R)(C O)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Me$)$ is replaced by one or other of the groups $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}, \mathrm{HB}(\mathrm{pz})_{3}$ [hydrotris-(pyrazol-1-yl)borate], and $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}{ }_{2}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or H). ${ }^{6}$ We have initiated studies with the hydrotris(pyrazol-1-yl)borato ligand, ${ }^{7}$ and in this paper we describe some work on complexes in which tungsten is ligated by carbaborane groups. \dagger

[^1]There is evidence to suggest that the electron-donor ability and steric requirements of the nido-carbaborane di-anions [$\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}\right]^{2-}$ are similar to those of the pentamethylcyclopentadienyl anion. ${ }^{8}$ Moreover, replacement of the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group in $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ by the carbaborane ligand ${ }^{9}$ places a negative charge on the resultant species. There is thus an isolobal relationship between the groups $W(C O)_{2}\left(\eta-C_{5} R_{5}^{\prime}\right)$
and $\left[\mathrm{W}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}^{\prime}\right)\right]^{-}\left(\mathrm{R}^{\prime}=\mathrm{H}\right.$ or Me$)$ so that synthesis of salts containing the anions $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}^{\prime}\right)\right]^{-}$might be possible, thereby providing valuable reagents for further preparative work. Herein we describe the preparation of such salts and their use in the synthesis of compounds containing bonds between tungsten and gold or rhodium. ${ }^{10}$

O BH

	X	e	R
(1a)	$\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$	CMe	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(1b)	$\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$	CH	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(1c)	NEt_{4}	CMe	Me

- BH

O BH
R
(3) $\mathrm{CMe} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$

Table 1. Analytical ${ }^{0}$ and physical data for the tungsten complexes

			$\mathrm{V}_{\text {max }} .{ }^{6} / \mathrm{cm}^{-1}$			Analysis (\%)	
Compound ${ }^{\text {b }}$	Colour	Yield (\%)	BH			C	H
(1a) $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}(=\mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]^{\text {d }}$	Orange	82	2516 m	1956 s	1874 s	57.4 (57.8)	5.4 (5.1)
(1b) $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}(\# \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]^{e}$	Orange	71	2525 m	$1965 s$	1880 s	55.2 (56.8)	5.0 (4.7)
(1c) $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]^{\delta}$	Yellow	67	2554 m	1955 s	1871 s	34.4 (34.5)	7.9 (6.8)
(2a) $\left[\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$	Orange	62	2554 m	2002 s	1993 s	40.0 (39.9)	3.9 (3.8)
(2b) $\left[\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$	Orange	51	2557 m	2009 s	1941 s	38.9 (38.5)	3.8 (3.5)
(2c) $\left[\mathrm{AuW}(\mu-\mathrm{CMe})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$	Orange	45	2564 m	2004 s	1934 s	35.1 (34.9)	4.2 (3.7)
(3) $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{AuW}_{2}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right]^{g}$	Yellow	81	2531 m	1989 s	1920 s	44.1 (44.0)	5.1 (4.2)
(4a) $\left[\mathrm{RhW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$	Black	67	2553 m	1961 s	1767 s	52.3 (52.5)	4.8 (4.6)
(4b) $\left[\mathrm{RhW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$	Black	57	2564 m	1974 s	1773 s	51.7 (52.1)	4.1 (4.3)
(4c) $\left[\mathrm{RhW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}(\mathrm{dppe})\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$	Orange	59	2552 m	1970 s	1898 m	47.5 (47.7)	4.5 (4.6)
(4d) $\left[\mathrm{RhW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$	Green-black	95	2551 m	1955 s	1761 s	36.2 (36.8)	6.2 (6.1)
(5a) $\left[\mathrm{RhW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{8} \mathrm{Me}_{2}\right\}\right]$	Black	65	2553 m	1961 s	1756 s	56.1 (55.9)	5.2 (4.9)
(5b) $\left[\mathrm{RhW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{10}\right\}\right]$	Black	60	2555 m	1968 s	1767 s	54.8 (55.2)	5.0 (4.7)
(6b) $\left[\mathrm{Rh}(\text { dppe })_{2}\right]\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$	Orange	95	2517 m	1956 s	1874 s	57.5 (56.4)	4.9 (5.0)

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 .{ }^{c}{ }^{\mathrm{I}} \mathrm{I} \mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{d} \mathrm{~N}, 1.3(1.3 \%) .{ }^{e} \mathrm{~N}, 1.6(1.4 \%) .{ }^{f} \mathrm{~N}, 2.8(2.5 \%) .{ }^{\boldsymbol{g}} \mathrm{N}, 0.8(0.8 \%)$.

Table 2. Hydrogen-1 and carbon-13 n.m.r. data ${ }^{\text {a }}$ for the complexes

Compound	${ }^{1} \mathrm{H}(\delta){ }^{\text {b,c }}$	${ }^{13} \mathrm{C}(8){ }^{\text {d }}$
(1a)	2.07 (s, $6 \mathrm{H}, \mathrm{Me}$), 2.18 (s, $3 \mathrm{H}, \mathrm{Me}-4$), $7.25-7.70$ (m, $34 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ and Ph)	$\begin{aligned} & 298.3[C \equiv \mathrm{~W}, J(\mathrm{WC}) 198], 226.8[\mathrm{CO}, J(\mathrm{WC}) 182], \\ & 147.9\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 135.1-125.0\left(\mathrm{C}_{6} \mathrm{H}_{4} \text { and } \mathrm{Ph}\right), 29.9 \\ & (\mathrm{Me}), 21.4(\mathrm{Me}-4) \end{aligned}$
(1b)	2.20 (s, $3 \mathrm{H}, \mathrm{Me}-4$), $7.21-7.54$ (m, $34 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ and Ph)	293.9 [$C \equiv \mathrm{~W}, J(\mathrm{WC}) 200], 225.0$ [CO, $J(\mathrm{WC}) 184]$, $148.3\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 133.4-125.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$), 21.4$ (Me-4)
(1c)	$1.23\left[\mathrm{t}, 12 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{HH}) 8\right], 1.93(\mathrm{~s}, 6 \mathrm{H}$, Me), 2.04 ($\mathrm{s}, 3 \mathrm{H}, \equiv \mathrm{CMe}$), $3.37\left[\mathrm{q}, 8 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $J(\mathrm{HH}) 8]$	309.7 ($\mathrm{C} \equiv \mathrm{W}$), 225.8 (CO), $51.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 44.9$ (Me), $21.0(\equiv \mathrm{CMe}), 7.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$
(2a)	$\begin{aligned} & 2.15(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 7.11,7.28 \\ & {\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.50-7.75(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph})} \end{aligned}$	$\begin{aligned} & 292.9[\mathrm{~d}, \mu-\mathrm{C}, J(\mathrm{PC}) 28], 220.0[\mathrm{CO}, J(\mathrm{WC}) 162] \\ & 149.0\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 141.1-127.3\left(\mathrm{C}_{6} \mathrm{H}_{4} \text { and } \mathrm{Ph}\right) \\ & 31.2(\mathrm{Me}), 22.1(\mathrm{Me}-4) \end{aligned}$
(2b)	$\begin{aligned} & 2.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 7.07,7.21\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4},\right. \\ & J(\mathrm{AB}) 8], 7.48-7.60(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	286.7 [d, $\mu-\mathrm{C}, J(\mathrm{PC}) 31], 218.0$ [CO, $J(\mathrm{WC}) 167]$, $141.1\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 133.2-128.1\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$), 21.4$ (Me-4)
(2c)	$\begin{aligned} & 1.99(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.55(\mathrm{~s}, 3 \mathrm{H}, \mu-\mathrm{CMe}), 7.07-7.41(\mathrm{~m}, 15 \\ & \mathrm{H}, \mathrm{Ph}) \end{aligned}$	301.9 [d, $\mu-\mathrm{C}, J(\mathrm{PC}) 29], 218.8$ [CO, $J(\mathrm{WC})$ 167], 133.5-127.3 (Ph), 40.8 (Me), 29.5 (μ-CMe)
(3)	$\begin{aligned} & 2.29(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-4), 2.34(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}), 7.01-7.11(\mathrm{~m}, \\ & \left.8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.31-7.52(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	$\begin{aligned} & 283.6(\mu-\mathrm{C}), 221.5[\mathrm{CO}, J(\mathrm{WC}) 156], 145.7 \\ & {\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 140.1-126.1\left(\mathrm{C}_{6} \mathrm{H}_{4} \text { and } \mathrm{Ph}\right), 21.6(\mathrm{Me}),} \\ & 20.7(\mathrm{Me}-4) \end{aligned}$
(4a)	1.90 (s, $6 \mathrm{H}, \mathrm{Me}$), 2.44 (s, $3 \mathrm{H}, \mathrm{Me}-4$), $7.12-7.35$ (m, $34 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ and Ph)	$\begin{aligned} & 343.1[\mathrm{~d}, \mu-\mathrm{C}, J(\mathrm{RhC}) 30], 236.1[\mathrm{~d}, \mathrm{CO}, J(\mathrm{RhC}) 17] \text {, } \\ & 151.2\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 139.2-124.3\left(\mathrm{C}_{6} \mathrm{H}_{4} \text { and } \mathrm{Ph}\right), 27.7 \\ & (\mathrm{Me}), 20.7(\mathrm{Me}-4) \end{aligned}$
(4b)	2.36 (s, $3 \mathrm{H}, \mathrm{Me}-4$), $7.07-7.31$ (m, $34 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ and Ph)	
(4c)	$\begin{aligned} & 2.10(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.40[\mathrm{~d}, 4 \mathrm{H}, \\ & \left.\mathrm{PCH}_{2}, J(\mathrm{PH}) 20\right], 6.49\left[\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{HH}) 7\right], \\ & 7.32-7.46\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \text { and } \mathrm{Ph}\right) \end{aligned}$	$\begin{aligned} & 300.1[\mathrm{~d}, \mu-\mathrm{C}, J(\mathrm{RhC}) 24], 224.7(\mathrm{CO}), 154.6 \\ & {\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.9-126.5\left(\mathrm{C}_{6} \mathrm{H}_{4} \text { and } \mathrm{Ph}\right), 29.7(\mathrm{Me}),} \\ & 25.9\left[\mathrm{~d}, \mathrm{PCH}_{2}, J(\mathrm{PC}) 24\right], 21.0(\mathrm{Me}-4) \end{aligned}$
(4d)	$\begin{aligned} & 1.00\left[\mathrm{~d} \text { of } \mathrm{t}, 18 \mathrm{H}, \mathrm{MeCH}_{2} \mathrm{P}, J(\mathrm{PH}) 15, J(\mathrm{HH}) 8\right] \\ & 1.69\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{MeCH} \mathrm{P}_{2} \mathrm{P}\right), 2.15(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.36(\mathrm{~s}, 3 \\ & \mathrm{H}, \mathrm{Me}-4), 7.21,7.42\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right] \end{aligned}$	335.4 [d, $\mu-\mathrm{C}, J(\mathrm{RhC}) 22], 236.8$ [d, CO, $J(\mathrm{RhC}) 12]$, 134.1, 130.8 [C^{1} and $\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 128.2, $126.2\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 29.4 (Me), 21.6 (Me-4), 19.6 [d, $\mathrm{MeCH}_{2} \mathrm{P}, J(\mathrm{PC}) 27$], $7.8\left(\mathrm{MeCH}_{2} \mathrm{P}\right)$
$(5 a){ }^{e}$	$\begin{aligned} & 0.54-1.79\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{7} \mathrm{H}_{9}\right), 1.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.09(\mathrm{~s}, \\ & 3 \mathrm{H}, \mathrm{Me}), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 6.76,6.98\left[(\mathrm{AB})_{2}, 4 \mathrm{H},\right. \\ & \left.\mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.00-7.32(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	338.2 [d, $\mu-\mathrm{C}, J(\mathrm{RhC}) 28], 256.2$ (br, CO) 222.5 (br, CO), $152.0\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 138.4-126.7\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$)$, 37.7, $36.8\left[\mathrm{C}^{1}\right.$ and $\left.\mathrm{C}^{5}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right], 30.2\left[\mathrm{C}^{6}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right], 29.3$, 28.9 (Me), 21.6 (Me-4), $19.1\left[\mathrm{C}^{3}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right], 11.5,11.3$ [C^{2} and $\mathrm{C}^{4}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)$]
$(5 b)^{e}$	$\begin{aligned} & 0.51-1.50\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{7} \mathrm{H}_{9}\right), 2.38,2.40(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), \\ & 6.98-7.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.05-7.32(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	341.7 (br, μ-C), 251.1 (br, CO), 223.1 (br, CO), 152.2, $151.4\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 139.6-125.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$)$, 43.7, 41.4, 37.8, 36.7 [C^{1} and $\left.\mathrm{C}^{5}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right], 29.7,29.3$ $\left[\mathrm{C}^{6}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right], 21.1(\mathrm{Me}-4), 19.7,19.0\left[\mathrm{C}^{3}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)\right], 11.4$, 11.1, 10.8, 10.5 [C^{2} and $\mathrm{C}^{4}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)$]
(6b)	$2.08 \text { (s, } 6 \mathrm{H}, \mathrm{Me}), 2.13\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.23(\mathrm{~s}, 3 \mathrm{H},$ $\mathrm{Me}-4), 7.03-7.38\left(\mathrm{~m}, 44 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ and Ph$)$	$\begin{aligned} & 297.9(\mathrm{C} \equiv \mathrm{~W}), 227.5(\mathrm{CO}), 149.0\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.1- \\ & 128.0\left(\mathrm{C}_{6} \mathrm{H}_{4} \text { and } \mathrm{Ph}\right), 29.8(\mathrm{Me}), 28.7\left[\mathrm{t}, \mathrm{CH}_{2} \mathrm{P}, J(\mathrm{PC})\right. \\ & 24], 21.6(\mathrm{Me}-4) \end{aligned}$
mical shifts groups occ ${ }_{4}$, with mea	p.m., coupling constants in Hz . Measurements at ambie oad unresolved signals in the range $\delta 0-3$. ${ }^{d}$ Hydrogen ts in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{e}$ For numbering of $\mathrm{C}_{7} \mathrm{H}_{9}$ groups	ratures. ${ }^{b}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. ${ }^{\text {c }}$ Proton resonances for upled, chemical shifts are positive to high frequency of ucture of (5a). Signal for C^{7} of C_{7} ring not observed.

Results and Discussion

Addition of a tetrahydrofuran (thf) solution of the salt $\mathrm{Na}_{2}[7,8-$ $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right]$ to a solution of $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Br}(\mathrm{CO})_{4}\right]$ in the same solvent at $-40^{\circ} \mathrm{C}$, followed by treatment of the mixture with $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}$, afforded the orange compound $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (1a). A similar synthesis employing $\mathrm{Na}_{2}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ gave $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ (1b). The salt $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (1c) was prepared by adding $\mathrm{Tl}_{2}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right.$] to a thf solution of $\left[\mathrm{W}(\equiv \mathrm{CMe}) \mathrm{Br}(\mathrm{CO})_{4}\right]$ at $-40^{\circ} \mathrm{C}$, with subsequent addition of [NEt_{4}] Cl . The compounds (1) were characterised by microanalysis and by their spectroscopic properties (Tables 1 and 2).

The presence of the alkylidyne ligand was established by the ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra which showed characteristic signals for the ligating carbon nuclei at $\delta 298.3$ (1a), 293.9 (1b), and 309.7 p.p.m. (1c). The chemical shifts of these signals are very similar to those observed for the alkylidyne carbon nuclei in the compounds $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \delta 300.1\right.$; $\mathrm{R}=\mathrm{Me}, \delta 311.4$ p.p.m.). ${ }^{11}$ The i.r. spectra of (1) show broad bands at $c a .2525 \mathrm{~cm}^{-1}$, characteristic of B-H stretching frequencies, and two bands in the CO stretching region. The latter occur at $c a .30 \mathrm{~cm}^{-1}$ to low frequency of the corresponding bands in the spectra of $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{R}=\mathrm{Me}$ or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$). This presumably results from the presence of the negative charge on tungsten in the anionic complexes, and the
increased electron-donor properties of the carbaborane ligands. ${ }^{8}$
Having characterised the salts (1) they were used to prepare dimetal complexes with heteronuclear metal-metal bonds. Thus the gold-tungsten compounds $\left[\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\right.\right.$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}^{\prime}{ }_{2}$)] (2a, $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{R}^{\prime}=\mathrm{Me} ; \mathbf{2 b}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4^{-}}$ Me-4, $\mathbf{R}^{\prime}=\mathbf{H} ; \mathbf{2 c}, \mathbf{R}=\mathbf{R}^{\prime}=\mathbf{M e}$) were synthesised by treating [$\left.\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ with the appropriate salt (1) in thf, and in the presence of TIPF_{6} to remove chloride as insoluble TlCl. The compounds (2) are less labile than their cyclopentadienyl analogues $\left[\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right] \quad(\mathrm{R}=$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ or Me). ${ }^{12}$ The latter dissociate in solution, affording equilibrium mixtures containing the species $[A u\{W(\equiv C R)$ -$\left.\left.(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]^{+}$and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$. Interestingly, the synthesis of (2a) was sometimes accompanied by formation of traces of the salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Au}\left\{\mathrm{W}\left(=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}\right.\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right\}_{2}$] (3), discussed further below.

The compounds (2) were characterised in the usual manner (Tables 1-3). In particular, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra showed resonances for the μ-C groups at $\delta 292.9$ (2a), 286.7 (2b), and 301.9 p.p.m. (2c). Each signal was a doublet, as expected, due to ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling (Table 2). The corresponding resonances in the spectra of the salts $\left[\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ [PF_{6}] occur at $\delta 292.6\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ and 304.7 p.p.m. $(\mathrm{R}=\mathrm{Me}){ }^{12}{ }^{12}$

In order to establish firmly the structure of the new complexes, an X-ray diffraction study was carried out on (2a). The results are summarised in Table 4, and the molecule is shown in Figure 1. Poor crystal quality, and the presence in the lattice of a disordered molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, prevented a precise determination. However, the salient features of the molecular structure are readily apparent. The gold-tungsten bond is spanned by the p-tolylmethylidyne group with $\mathrm{Au}-\mathrm{W} 2.780(8)$, $\mathrm{Au}-\mathrm{C}(41)$ 2.19 (3), and W-C(41) 1.88(3) \AA. These distances may be compared with those found ${ }^{12}$ in the alkylidene complex $[\mathrm{AuW}\{\mu$ $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] [Au-W 2.729(1), $\mu-$

Table 3. Phosphorus- 31 n.m.r. data ${ }^{a}$ for the tungsten gold and -rhodium complexes

Compound	${ }^{31} \mathrm{P}(\mathrm{\delta}){ }^{\text {b }}$
(2a)	56.1 (AuP)
(2b)	56.8 (AuP)
(2c)	55.1 (AuP)
(4a)	32.2 [d, RhP, J(RhP) 166]
(4b)	34.5 [d, RhP, J(RhP) 164]
(4c)	70.6 [d, RhP, J(RhP) 166]
(4d)	31.4 [d, RhP, J(RhP) 159]
(5a)	33.9 [d, RhP, J (RhP) 166]
(5b)	34.6 [d, RhP, J (RhP) 164]
(6b)	57.6 [d, RhP,$J(\mathrm{RhP})$ 131]

${ }^{a}$ Chemical shifts (δ) in p.p.m., coupling constants in Hz . Measurements at ambient temperatures in $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{b}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external).
$\mathrm{C}-\mathrm{Au} 2.27(1)$, and $\mu-\mathrm{C}-\mathrm{W} 2.06$ (1) \AA A. The tungsten atom in (2a) carries the $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ cage and two CO groups, the latter are essentially linear and orthogonal. The gold atom is coordinated by the PPh_{3} group [Au-P 2.27(1) \AA] which lies transoid to the $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligand [$\left.\mathrm{P}-\mathrm{Au}-\mathrm{C}(41) 163(1)^{\circ}\right]$. This is consistent with the above mentioned ${ }^{31} \mathrm{P}^{13} \mathrm{C}$ coupling (28 Hz) associated with the μ-C resonance in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (2a) (Table 2).

Both in (2a) and in $\left[\mathrm{AuW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ relatively short $\mu-\mathrm{C}-\mathrm{W}$ separations are accompanied by relatively long μ - $\mathrm{C}-\mathrm{Au}$ distances, so that the μ $\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ and $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligands asymmetrically bridge their respective metal-metal bonds. In several complexes containing dimetallacyclopropene rings the $\mu-\mathrm{C}-\mathrm{W}$ separations are in the range $1.91(1)-2.03(1) \AA$, corresponding to a $\mathrm{C}=\mathrm{W}$ bond. ${ }^{13}$ However, the μ-C-W distance in (2a) [1.88(3) \AA] is only slightly longer than that found for the $\mathrm{C} \equiv \mathrm{W}$ bond $[1.82(2)$ $\AA]$ in $\left[W\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .^{11 a}$ In contrast, the μ-C-Au separation [2.19(3) \AA] is significantly longer than $\mu-\mathrm{C}-\mathrm{W}$, being comparable with the carbon-to-gold σ bond distance $\left[2.13(3) \AA\right.$] in $\left[\mathrm{AuMe}\left(\mathrm{PPh}_{3}\right)\right] .{ }^{14}$ The dimensions of the $\mathrm{Au}(\mu-\mathrm{C}) \mathrm{W}$ ring in (2a) correlate with the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ chemical shift for the μ-C group ($\delta 292.9$ p.p.m.). This resonance is close to that recorded (298.3 p.p.m.) for the terminally bound ptolylmethylidyne ligand in (1a) the precursor to (2a). Generally signals for alkylidyne-carbon atoms bridging two metal centres ${ }^{13}$ are appreciably more deshielded than those found in the spectra of compounds (2). The structural and n.m.r. data thus suggest that the bonding within the three-membered rings in (2) might be represented by (A) or (B), rather than (C). If convention is followed of treating the carbaborane ligand as a

Figure 1. Molecular structure of $\left[\mathrm{AuW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right.$ -$\left.\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{a})$ showing the atom-numbering scheme

Table 4. Selected internuclear distances (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{AuW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{2 a})$

Au-W	$2.780(8)$	$\mathrm{Au}-\mathrm{C}(41)$	2.19(3)	W-C(41)	1.88(3)	$\mathrm{Au}-\mathrm{P}$	2.27(1)
W-C(5)	1.93(3)	W-C(6)	1.85(4)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.19(4)	$\mathrm{C}(6)-\mathrm{O}(6)$	1.21(4)
W-C(2)	2.50 (4)	W-C(3)	2.48(4)	W-B(4)	2.34(3)	W-B(5)	2.34(4)
W-B(6)	2.38(4)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.44(3)	P-C(11)	1.81(2)	$\mathrm{P}-\mathrm{C}(21)$	1.79(2)
P-C(31)	1.80(2)						
W-Au-P	154.0(3)	W-Au-C(41)	42.4(7)	Au-W-C(41)	51.9(9)	P-Au-C(41)	163(1)
$\mathrm{C}(5)-\mathrm{W}-\mathrm{C}(6)$	84(1)	$\mathrm{C}(5)-\mathrm{W}-\mathrm{C}(41)$	92(1)	C(6)-W-C(41)	77(1)	$\mathrm{Au}-\mathrm{W}-\mathrm{C}(5)$	81(1)
$\mathrm{Au}-\mathrm{W}-\mathrm{C}(6)$	125.3(8)	$\mathrm{Au}-\mathrm{C}(41)-\mathrm{W}$	86(1)	$\mathrm{Au}-\mathrm{C}(41)-\mathrm{C}(42)$	111(2)	W-C(41)-C(42)	163(2)
$\mathrm{Au}-\mathrm{P}-\mathrm{C}(11)$	112.4(8)	$\mathrm{Au}-\mathrm{P}-\mathrm{C}(21)$	112.1(7)	$\mathrm{Au}-\mathrm{P}-\mathrm{C}(31)$	113.0(6)	$\mathrm{W}-\mathrm{C}(5)-\mathrm{O}(5)$	177(3)

Table 5. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[R h W\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](\mathbf{4 a})$

W-Rh	2.681(1)	Rh-C(a)	$2.068(5)$	W-C(a)	1.880(6)	$\mathbf{R h - P (1)}$	2.346(2)
$\mathrm{Rh}-\mathrm{P}(2)$	2.281(2)	W-C(01)	2.032(6)	W-C(02)	2.018(9)	Rh-C(01)	$2.105(6)$
$\mathrm{C}(01)-\mathrm{O}(01)$	1.186(8)	$\mathrm{C}(02)-\mathrm{O}(02)$	1.126(11)	W-C(2)	2.450(6)	W-C(3)	2.409(3)
W-B(4)	2.361 (8)	W-B(5)	2.414(7)	W-B(6)	2.404(7)	$\mathrm{C}(\mathrm{a})-\mathrm{C}(\mathrm{a} 1)$	1.476(8)
$\mathrm{C}(2)-\mathrm{Me}(2)$	1.551(10)	$\mathrm{C}(3)-\mathrm{Me}$ (3)	1.534(8)	$\mathbf{P}(1)-\mathrm{C}(11)$	1.827(6)	P(1)-C(21)	1.854(4)
$\mathrm{P}(1)-\mathrm{C}(31)$	1.839(4)	$\mathbf{P}(2)-\mathrm{C}(41)$	1.831(6)	$\mathbf{P}(2)-\mathrm{C}(51)$	1.837(5)	$\mathrm{P}(2)-\mathrm{C}(61)$	1.828(4)
W-Rh-P(1)	129.7(1)	W-Rh-P(2)	128.4(1)	$\mathrm{W}-\mathrm{Rh}-\mathrm{C}(\mathrm{a})$	44.3(2)	$\mathrm{Rh}-\mathrm{W}-\mathrm{C}(\mathrm{a})$	50.3(2)
W-C(a)-Rh	85.4(2)	W-Rh-C(01)	48.4(2)	Rh-W-C(01)	50.8(2)	W-C(01)-Rh	80.8(2)
$\mathbf{P}(1)-\mathrm{Rh}-\mathrm{C}(\mathrm{a})$	129.6(2)	$\mathbf{P}(1)-\mathbf{R h}-\mathrm{C}(01)$	110.8(2)	$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(\mathrm{a})$	119.0(2)	$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(01)$	103.9(2)
$\mathbf{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$	98.8(1)	$\mathrm{C}(\mathrm{a})-\mathrm{W}-\mathrm{C}(01)$	100.2(2)	$\mathrm{C}(\mathrm{a})-\mathrm{Rh}-\mathrm{C}(01)$	92.0(2)	$\mathrm{C}(02)-\mathrm{W}-\mathrm{C}(01)$	90.2(3)
C(02)-W-Rh	82.1(2)	$\mathrm{C}(02)-\mathrm{W}-\mathrm{C}(\mathrm{a})$	89.6(3)	$\mathrm{W}-\mathrm{C}(02)-\mathrm{O}(02)$	176.9(5)	$\mathrm{W}-\mathrm{C}(01)-\mathrm{O}(01)$	160.2(5)
$\mathrm{Rh}-\mathrm{C}(01)-\mathrm{O}(01)$	118.9(4)	W-C(a)-C(al)	153.9(4)	$\mathrm{Rh}-\mathrm{C}(\mathrm{a})-\mathrm{C}(\mathrm{a} 1)$	120.7(4)		

Table 6. Selected internuclear distances (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{8} \mathrm{Me}_{2}\right\}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 a)$

W-Rh	2.662(2)	R $\mathrm{h}-\mathrm{C}(71)$	$2.119(15)$	W-C(71)	1.84(2)	Rh-P(1)	2.287(4)
Rh-P(2)	2.351(5)	W-C(4)	2.07(2)	W-C(5)	1.93(2)	Rh-C(4)	2.05(2)
$\mathrm{C}(4)-\mathrm{O}(4)$	1.17(3)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.19(3)	W-C(2)	2.36(2)	W-C(3)	2.46(2)
W-B(4)	2.39(2)	W-B(5)	2.47(2)	W-B(6)	2.38(2)	$\mathrm{C}(71)-\mathrm{C}(72)$	1.49(3)
$\mathrm{C}(2)-\mathrm{Me}(2)$	1.53(3)	$\mathrm{C}(3)-\mathrm{Me}(3)$	1.52(3)	$\mathrm{P}(1)-\mathrm{C}(11)$	1.80(1)	$\mathrm{P}(1)-\mathrm{C}(21)$	1.81(1)
P(1)-C(31)	1.82(1)	$\mathrm{P}(2)-\mathrm{C}(41)$	1.82(1)	$\mathrm{P}(2)-\mathrm{C}(51)$	1.82(1)	$\mathrm{P}(2)-\mathrm{C}(61)$	1.80(2)
$\mathrm{B}(5)-\mathrm{C}(\mathrm{n} 1)$	1.64(4)						
W-Rh-P(1)	129.6(1)	W-Rh-P(2)	130.0(1)	W-Rh-C(71)	43.6(4)	Rh-W-C(71)	52.4(5)
W-C(71)-Rh	84.1(7)	W-Rh-C(4)	50.1(5)	Rh-W-C(4)	49.3(5)	W-C(4)-Rh	80.6(7)
$\mathbf{P}(1)-\mathrm{Rh}-\mathrm{C}(71)$	109.2(4)	$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(4)$	110.3(5)	$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(71)$	138.5(5)	$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(4)$	107.0(5)
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$	98.7(2)	$\mathrm{C}(71)-\mathrm{W}-\mathrm{C}(4)$	99.4(6)	$\mathrm{C}(71)-\mathrm{Rh}-\mathrm{C}(4)$	91.7(7)	C(4)-W-C(5)	94.5(8)
$\mathrm{C}(5)-\mathrm{W}-\mathrm{Rh}$	77.9(5)	$\mathrm{C}(5)-\mathrm{W}-\mathrm{C}(71)$	85.5(8)	$\mathrm{W}-\mathrm{C}(4)-\mathrm{O}(4)$	156(1)	W-C(5)-O(5)	175(2)
$\mathrm{Rh}-\mathrm{C}(4)-\mathrm{O}(4)$	124(1)	W-C(71)-C(72)	160(1)	$\mathrm{Rh}-\mathrm{C}(71)-\mathrm{C}(72)$	116.4(9)		

four-electron donor, (\mathbf{C}) is unsatisfactory in implying 17 and 15 valence-electron counts, respectively, at the tungsten and gold atoms.

(A)

(B)

(C)

The 'semibridging' carbyne representation (A) would account for the short $\mathrm{W}-\mathrm{C}(41)$ distance in (2a), and the chemical shifts for the μ-C resonances in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of the three complexes (2) being similar to those in the spectra of their precursors (1). However, an attractive alternative is (\mathbf{B}), involving a three-centre two-electron interaction, formed by a combination of the orbitals of $\mathrm{Au}(s p), \mathrm{C}\left(s p^{2}\right)$, and
$\mathrm{W}\left(d^{2} s p^{3}\right)$, and denoted by the half-arrow. ${ }^{15} \mathrm{~A}$ similar representation has been proposed for $\left[\mathrm{AuW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{12}$

As mentioned above, in the synthesis of (2a) formation of trace amounts of the salt (3) was sometimes observed. The latter may be prepared in good yield from the reaction between (1a) and $[\mathrm{AuCl}($ tht $)]$ (tht $=$ tetrahydrothiophene) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Compound (3) was characterised by the data given in Tables 1 and 2. The resonance in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum at $\delta 283.6$ p.p.m. for the μ-C nuclei compares with a similar resonance at $\delta 295.8$ in the related cationic species $\left[\mathrm{Au}\left\{\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}(\eta\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{\xi_{2}}\right]^{+}$. The latter has been structurally characterised ${ }^{16}$ by X-ray diffraction, and (3) would be expected to have a similar structure in which two $\left[4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{W}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right.\right.$ -$\left.\left.\mathrm{Me}_{2}\right)\right]^{-}$fragments adopt a distorted tetrahedral arrangement around a central Au^{+}cation. Compounds (3) and $[\mathrm{Au}\{\mathrm{W}$ $\left.\left.\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$ provide a good example of the isolobal model. Replacement of $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$in the latter by $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}{ }^{2-}$ in the former changes the complex from being cationic in nature to being anionic, with $\mathrm{C} \equiv \mathrm{W}$ groups behaving formally as ligands in both species.

Reactions between the compounds (1) and various rhodium complexes were next investigated. Treatment of $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with (1a) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature affords the black crystalline complex $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\right.\right.$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$)] (4a). The latter may also be prepared from $\left[\mathrm{Rh}^{\left.\left(\mathrm{PPh}_{3}\right)_{2}(\operatorname{cod})\right]\left[\mathrm{PF}_{6}\right](\operatorname{cod}=\text { cyclo-octa-1,5-diene) and (1a) }}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This route was also used to obtain [$\mathrm{RhW}(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ (4b) using (1b) as the reagent. Data for (4a) and (4b) are given in Tables $1-3$. Although it was not possible to obtain a ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (4b), due to its low solubility, that of (4a) (Table 2) showed a characteristic resonance [$\delta 343.1$ p.p.m., $J(\mathrm{RhC}) 30$ $\mathrm{Hz}]$ for the $\mu-\mathrm{C}$ group.

In contrast with the reactions between $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cod})\right]-$

$O B H$
$\quad L-L$
(4a) $\mathrm{CMe} \mathrm{PPh}_{3}$
(4b) $\mathrm{CH} \mathrm{PPh}_{3}$
(4c) CMe dppe
(4d) $\mathrm{CMe}_{\mathrm{PEt}}^{3}$

(I)

(5a)

(II)
$\bigcirc \mathrm{BH} \oplus \mathrm{B} \quad \mathrm{CH}$
(5b)

Figure 2. Molecular structure of $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right.$ $\left.\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (4a) showing the atom-numbering scheme
[PF_{6}] and (1a) or (1b), those between the alkylidyne(carbaborane)tungsten salts and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{nbd})\right]\left[\mathrm{PF}_{6}\right][\mathrm{nbd}=$ norbornadiene (bicyclo[2.2.1] hepta-2,5-diene)] followed a different pathway, yielding the complexes $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{8} \mathrm{R}^{\prime}{ }_{2}\right\}\right]\left(5 \mathrm{a}, \mathrm{R}^{\prime}=\mathrm{Me} ; \mathbf{5 b}, \mathrm{R}^{\prime}=\right.$ H). It was evident from the i.r. and n.m.r. data for the compounds (5) (Tables 1-3) that they had the same basic structural features as (4a) and (4b), but that the nbd ligand had become attached to the carbaborane cage in some manner. In order to

Figure 3. Molecular structure of $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2^{-}}\right.$ $\left.\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{8} \mathrm{Me}_{2}\right\}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{a})$ showing the atom-numbering scheme
resolve the molecular structures of these two types of compound, X-ray diffraction studies were carried out on (4a) and (5a). Selected bond distances and angles are given in Tables 5 and 6, and the structures are shown in Figures 2 and 3, respectively.

Compound (4a) has a Y-shaped WRhP ${ }_{2}$ core bridged on the one side by the p-tolylmethylidyne group and semibridged on the other by a CO ligand [W-C(01)-O(01) $160.2(5)^{\circ}$]. The $\mathrm{Rh}-\mathrm{W}$ separation $[2.681(1) \AA$] lies between those found in $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)\right]$ $\left[\begin{array}{ll}2.769(1) & \AA\end{array}\right]^{17}$ and $\left[\mathrm{RhW}(\mu-\mathrm{CO})_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$
[2.587(1) $\AA] .{ }^{18}$ The latter, like (4a), is a 30 valence-electron dimetal species, and in accord with the unsaturation it is reasonable to invoke the presence of rhodium-tungsten double bonds in both species. The $W-C(a)[1.880(6) \AA]$ separation in (4a) is shorter than the $W-\mu$-C distance $[1.913(14) \AA]$ in the 34 valence-electron dimetal complex $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)\right] .{ }^{17}$ Moreover, in the latter the $R h-\mu-C$ bond $[2.048(14) \AA]$ is somewhat shorter than $R h-C(a)$ $[2.068(5) \AA]$. The data thus show that the $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligand is more displaced towards the tungsten in (4a) than in [RhW $(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)\right]$.
The dimensions of the $\mu-\mathrm{CRhW}$ ring in (4a), and the presence of the semibridging carbonyl group $\mathrm{C}(01) \mathrm{O}(01)$, lead to representation (D) for the bridge system, giving 18 and 16 electron counts at the tungsten and rhodium centres, respectively. However, the i.r. spectrum of (4a) shows a carbonyl stretching band

(D)

(E)
at $1767 \mathrm{~cm}^{-1}$, implying that in solution a more symmetrically bridging CO ligand might be present. This would lead to representation (\mathbf{E}) for the bridge system, similar to that invoked to account for the metal-metal bonding in the compounds $\left[\mathrm{MRh}(\mu-\mathrm{CO})_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{M}=\mathrm{Mo}$ or W$) .{ }^{19}$ For the molecules ($\mathbf{4 a}$) and ($\mathbf{4 b}$) various electron distributions which differ little in energy are probably possible, leading to their dynamic behaviour, discussed below.

In (4a) the atoms $C(a)$ and $C(01)$ are not coplanar with the Rh and W atoms, the planes defined by $R h C(a) W$ and $\mathrm{RhC}(01) \mathrm{W}$ being inclined by 13° to one another. The tungsten carries the $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$ ligand and an essentially terminally bound CO group [$\mathrm{W}-\mathrm{C}(02)-\mathrm{O}(02) 176.9(5)^{\circ}$]. The rhodium atom is ligated by the two PPh_{3} groups $\left[\mathrm{P}(1)-\mathrm{Rh}^{-\mathrm{P}}(2)\right.$ $\left.98.8(1)^{\circ}\right]$ but the $\mathrm{P}-\mathrm{Rh}$ distances $[2.346(2)$ and $2.281(2) \AA]$ are appreciably different. The phosphorus $P(1)$, more transoid to the $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligand, is associated with the longer $\mathrm{P}-\mathrm{Rh}$ separation. This is a common feature of $M\left(P R_{3}\right)_{2}(R=$ alkyl or aryl) fragments ligated by $\mathrm{C} \equiv \mathrm{W}$ or $\mathrm{C}=\mathrm{W}$ bonds, and is evidently due to the transoid influence of the bridging $\mu-C R, \mu-C(O M e) R$, or $\mu-\mathrm{C}=\mathrm{CH}_{2}$ groups. ${ }^{20}$

The geometry of the central core of (5a) (Figure 3) is very similar to that of (4a). The Y-shaped WRhP P_{2} fragment is again bridged and semibridged by $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ and CO groups, respectively. The angle between the planes $W C(4) R h$ and $\mathrm{WC}(71) \mathrm{Rh}$ is 20°, compared with 13° for the corresponding angle in (4a). The $R h-W$ distance $[2.662(2) \AA]$ is perceptively shorter than that in (4a). However, the novel feature of the structure of (5a) is the attachment of the nortricyclene(tricyclo[2.2.1.0 ${ }^{2.6}$]heptane) fragment to the carbaborane cage at $B(5)$.

In the formation of (5a) an unprecedented hydroboration of the $\mathrm{C}_{7} \mathrm{H}_{8}$ ligand has thus occurred, a cage $\mathrm{B}-\mathrm{H}$ bond having added to the organic moiety. This is accompanied by $\mathrm{C}-\mathrm{C}$ bond formation yielding the nortricyclene system. The reaction very probably proceeds with retention of the $\mathrm{C}_{7} \mathrm{H}_{8}$ ligand at the dimetal centre. Thus no reaction was observed on treatment of (4a) with nbd in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It is likely that in the synthesis of (5a) a $\mathrm{B}-\mathrm{H}$ group is activated at the $\mathrm{Rh}-\mathrm{W}$ centre. This idea is supported by the existence in the molecular structures of $\left[\mathrm{Rh}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]^{21}$ and $\left[\mathrm{MoW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\eta^{3}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]^{22}$ of $\mathrm{B}-\mathrm{H} \rightarrow \mathrm{M}(\mathrm{M}=\mathrm{Rh}$

or Mo) bonds. Moreover, it has recently been found that the molybdenum-tungsten species undergoes a reaction with hex-3yne which results in hydroboration of the bridging p tolylmethylidyne group. The $\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ fragment thus produced becomes attached in the final product to the central boron atom of the open pentagonal face of the carbaborane cage, viz. $\mathbf{B}(5)$ of Figure 3.

Treatment of $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{nbd})\right]\left[\mathrm{PF}_{6}\right]$ with (1b) afforded the black crystalline complex $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{10}\right\}\right](5 b)$, characterised by the data given in Tables $1-3$. Examination of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra of (5b) revealed that it was formed as a mixture of two isomers, which were produced in $c a$. equal amounts, based on peak intensities in the spectra. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum is the most informative (Table 2), there being twelve peaks assignable to the $\mathrm{C}_{7} \mathrm{H}_{9}$ group. For two nortricyclene substituents in different environments fourteen resonances would be anticipated, however, we assume that the signal due to the C^{7} nucleus in both isomers is not seen. Thus in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of $(5 a)$ the $\mathrm{C}_{7} \mathrm{H}_{9}$ fragment gives risk to six rather than seven peaks. It is also noticeable that in the spectrum of ($5 \mathbf{b}$) the resonance for the $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligand is very broad, suggestive of overlapping peaks. Moreover, the appearance of two signals in the spectrum for C^{1} nuclei of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups, also suggests the presence of the isomers. It seems probable that the two isomers of (5b), (I) and (II) correspond to the $\mathrm{C}_{7} \mathrm{H}_{9}$ group being attached either to $B(5)$ or to $B(4)[B(6)]$ (see Figure 3) of the open face of the carbaborane ligand.

The complex $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}(\right.$ dppe $)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}{ }^{-}\right.$ $\left.\left.\mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]\left(4 \mathrm{c}\right.$, dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) was prepared by treating $[\mathrm{Rh}(\mathrm{dppe})(\mathrm{nbd})]\left[\mathrm{PF}_{6}\right]$ with (1a) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The compound was characterised in the usual manner (Tables 1-3), from which it was apparent that the nbd ligand present in the precursor $[\mathrm{Rh}(\mathrm{dppe})(\mathrm{nbd})]\left[\mathrm{PF}_{6}\right]$ had not become incorporated in the carbaborane cage of the product.

Reactions between (4a) and some donor molecules were also investigated as part of our studies. Treatment of (4a) with PEt_{3} in excess afforded $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}-\right.$ ($\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}$)] (4d), quantitatively. The spectroscopic data for this species showed that it was structurally similar to (4a). However, when (4a) was treated with $\mathrm{PMe}_{2} \mathrm{Ph}$, the product was the salt $\left[\mathrm{Rh}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$ $\left.\left.\mathrm{Me}_{2}\right)\right]$ (6a). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum showed a doublet resonance at $\delta-4.3$ p.p.m. $[J(\mathrm{RhP}) 137 \mathrm{~Hz}]$, consistent with the presence of the $\left[\mathrm{Rh}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]^{+}$cation. The i.r. spectrum had CO stretching bands at 1956 and $1874 \mathrm{~cm}^{-1}$, characteristic of the anion of (1a) (Table 1). In a similar reaction, excess of dppe with (4a) affords the salt $\left[\mathrm{Rh}(\mathrm{dppe})_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}{ }^{-}\right.$

(i)

(iv)

(v)

(vi)

Scheme. $R=C_{6} H_{4} \mathrm{Me}-4 ; Y=\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}^{\prime}{ }_{2}, \mathrm{R}^{\prime}=\mathrm{Me}(4 a), \mathrm{R}^{\prime}=\mathrm{H}(4 \mathrm{~b}) ; Y=\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{8} \mathrm{R}_{2}^{\prime}, \mathrm{R}^{\prime}=\mathrm{Me}(5 a), \mathrm{R}^{\prime}=\mathrm{H}(5 b)$
$\left.\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](6 \mathrm{~b})$, data for which are given in Tables 1-3. Treatment of (4a) with one equivalent of dppe gives a mixture of (4c), (6b), and unreacted (4a). The stability of (4d) towards excess of PEt_{3} must be associated with its greater basicity compared with $\mathrm{PMe}_{2} \mathrm{Ph}$ or dppe. The $\mathrm{Rh}\left(\mathrm{PEt}_{3}\right)_{2}$ fragment evidently becomes more firmly attached to the $\mathrm{C} \equiv \mathrm{W}$ group than is possible for the $\mathrm{Rh}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ or $\mathrm{Rh}($ dppe $)$ moieties. Carbon monoxide reacts at 1 atm with (4a) in thf to give $\left[\mathrm{Rh}(\mathrm{CO})_{3}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](6 \mathrm{c})$, characterised by its i.r. spectrum. Carbonyl stretching bands at 1956 and $1874 \mathrm{~cm}^{-1}$ identified the anion, while bands at 2035 and $2024 \mathrm{~cm}^{-1}$ were characteristic of the cation. ${ }^{23}$

It was evident from the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of the compounds (4) and (5) that at room temperature these species undergo dynamic behaviour, since only one phosphorus resonance is observed (Table 3). Although detailed variabletemperature n.m.r. studies (${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$) on all the complexes were not possible, due to low solubility in some instances, sufficient data became available to delineate the dynamic process occurring. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (4a) (Table 2) shows only one resonance for the CO ligands at δ 236.1 p.p.m., with $J(\mathrm{RhC}) 17 \mathrm{~Hz}$. This can be explained by the exchange process $(i) \rightleftarrows(i i) \rightleftarrows$ (iii) shown in the Scheme, which would make the CO ligands chemically equivalent on the n.m.r. time-scale. The PPh_{3} groups would also become equivalent by this mechanism, leading to one ${ }^{31} \mathrm{P}$ signal as is observed in the spectra of (4a)-(4d).

Compound (5a) is asymmetric, due to the presence of the chiral atom C(n1) (Figure 3). This feature renders it impossible in this compound for CO^{a} and CO^{b} (Scheme) to become chemically equivalent, with the corollary that the two PPh_{3} ligands also could not become equivalent by the exchange mechanism $(i) \rightleftarrows($ ii $) \rightleftarrows$ (iii). Since only one signal is observed at room temperature in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, whereas two CO resonances occur in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, a different explanation is required. Site exchange of the PPh_{3} ligands could be achieved in this complex, and in (4) also, via the process $(i i) \rightleftarrows(v)$ involving rotation of the RhP_{2} fragments, and this coupled with the other transformations indicated in the Scheme would account for the data observed.

An interesting feature of the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (5a)
is that the shifts for the CO groups vary with temperature. The signals at 256.2 and 222.5 p.p.m. in the room temperature spectrum become 258.8 and 219.2 p.p.m. at $-20^{\circ} \mathrm{C}$, and 266.6 and 212.1 p.p.m. at $-60^{\circ} \mathrm{C}$. This behaviour may be explained if the relative populations of the diastereoisomers (i) and (iii) (Scheme) are temperature dependent. However, exchange of CO ligands persists at $-60^{\circ} \mathrm{C}$, otherwise four resonances rather than two would be observed. At $-60^{\circ} \mathrm{C}$, rotation of the $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ group in (5a) ceases since the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum adopts an ABX pattern, with signals at $\delta 35.7$ [d of d, $J(\mathrm{PP})$ $32, J\left(\mathrm{RhP}^{1}\right) 180 \mathrm{~Hz}$] and 28.8 p.p.m. [d of d, $J(\mathrm{PP}) 32, J\left(\mathrm{RhP}^{2}\right)$ 152 Hz].

The work described in this paper establishes the salts (1) as useful precursors in organometallic chemistry. It has also been shown that the carbaborane ligand is not innocent in all of the reactions; the formation of the compounds (5) representing a novel hydroboration of a co-ordinated nbd group. The gold-tungsten complexes (2) and (3) are analogues of the previously reported cationic species $\left[\mathrm{AuW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$and $\left[\mathrm{AuW}_{2}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\mathrm{Me}-4$ or Me), and their synthesis correlates with the isolobal mapping of $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2^{-}}\right.$ $\left.\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}\right)\right]^{-\quad}(\mathrm{R}=\mathrm{Me}$ or H$)$.

Experimental

Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. Experiments were carried out using Schlenk-tube techniques, under a dry oxygen-free nitrogen atmosphere. All separations by chromatography were carried out on $2 \times 20 \mathrm{~cm}$ columns, packed with Brockman activity II alumina. The compounds $\left[\mathrm{NHMe}_{3}\right]\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{Me}_{2}\right], \quad\left[\mathrm{NHMe}_{3}\right]\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]$, ${ }^{24}$ $\left[\mathrm{W}(\equiv \mathrm{CR}) \mathrm{Br}(\mathrm{CO})_{4}\right]\left(\mathrm{R}=\mathrm{Me}^{25}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4^{26}\right)$, $[\mathrm{AuCl}(\mathrm{L})]$ $\left(\mathrm{L}=\mathrm{PPh}_{3}{ }^{27}\right.$ or $\left.\operatorname{tht}^{28}\right),\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{29}\left[\mathrm{Rh}^{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}_{2}\right]$ $\left[\mathrm{PF}_{6}\right]\left(\mathrm{L}_{2}=\operatorname{cod}\right.$ or nbd), and $[\mathrm{Rh}(\mathrm{dppe})(\mathrm{nbd})]\left[\mathrm{PF}_{6}\right]^{23}$ were prepared by literature methods. The i.r. spectra were measured with Nicolet MX-10 or MX-5 spectrophotometers, and n.m.r. spectra were recorded with JNM FX 90Q and FX 200 instruments. Analytical and other data for the new compounds are given in Table 1.

Synthesis of the Salts $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -
 $\mathrm{Na}_{2}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right.$] was prepared by refluxing [NHMe_{3}]-$\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{Me}_{2}\right](1.1 \mathrm{~g}, 5.0 \mathrm{mmol})$ and $\mathrm{NaH}(2 \mathrm{~g}$, from a 60% dispersion in mineral oil) in thf ($40 \mathrm{~cm}^{3}$) for 10 h . The resulting solution was decanted and added to $\left[W\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Br}-\right.$ $\left.(\mathrm{CO})_{4}\right](2.41 \mathrm{~g}, 5.0 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$. After warming to room temperature, $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}(2.87 \mathrm{~g}, 5.0$ mmol) was added and the solution stirred for 15 min . Solvent was removed in vacuo, and the orange residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\left(1: 1,50 \mathrm{~cm}^{3}\right)$. The extract was evaporated in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and chromatographed, using the same solvent as eluate. Solvent was removed in vacuo from the solution, and the residue was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 2,30 \mathrm{~cm}^{3}$) at $-20^{\circ} \mathrm{C}$ to give orange microcrystals of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6}\right.\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](1 \mathrm{a})(4.28 \mathrm{~g})$.
In a similar preparation, a solution of $\mathrm{Na}_{2}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$, obtained from [NHMe_{3}] $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right](0.98 \mathrm{~g}, 5.0 \mathrm{mmol})$ and excess $\mathrm{NaH}(2 \mathrm{~g})$ by refluxing in thf $\left(50 \mathrm{~cm}^{3}\right)$ for 3 h , was added to a thf $\left(10 \mathrm{~cm}^{3}\right)$ solution of $\left[W\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Br}(\mathrm{CO})_{4}\right](2.41$ $\mathrm{g}, 5.0 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After adding $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}(5 \mathrm{mmol})$ the salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ (1b) (3.61) was isolated as a finely divided orange powder.

Synthesis of the Salt $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right.\right.$ $\left.\mathrm{Me}_{2}\right)$].-The compound $\mathrm{Tl}_{2}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right]$ was prepared by treating [NHMe_{3}][7,8-C $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{Me}_{2}\right]$ (1.0 g) with $\mathrm{Tl}\left(\mathrm{O}_{2} \mathrm{CMe}\right)(3.0 \mathrm{~g})$ and $\mathrm{NaOH}(3.2 \mathrm{~g})$ in water $\left(80 \mathrm{~cm}^{3}\right)$. The yellow precipitate thus obtained was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ $20 \mathrm{~cm}^{3}$) and used without further purification.

Treatment of $\left[\mathrm{W}(\equiv \mathrm{CMe}) \mathrm{Br}(\mathrm{CO})_{4}\right](2.16 \mathrm{~g}, 5.0 \mathrm{mmol})$ with $\mathrm{Tl}_{2}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right](3.40 \mathrm{~g}, 6.0 \mathrm{mmol})$ in thf $\left(20 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$ for 30 min afforded a yellow solution containing a small amount of solid. The mixture was filtered through a Celite pad (ca. 4 cm), and [$\left.\mathrm{NEt}_{4}\right] \mathrm{Cl}(1.00 \mathrm{~g}, 6.0 \mathrm{mmol})$ was added to the resulting solution. After stirring at room temperature (10 min), solvent was removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 1,50 \mathrm{~cm}^{3}$). Solvent was removed in vacuo, and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ $\left(2 \times 20 \mathrm{~cm}^{3}\right)$ affording $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$ $\left.\left.\mathrm{Me}_{2}\right)\right](\mathbf{1 c})(1.87 \mathrm{~g})$ as a yellow powder.

Synthesis of the Gold-Tungsten Complexes.-(i) The compounds (1a) $(1.04 \mathrm{~g}, 1.0 \mathrm{mmol}),\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.49 \mathrm{~g}, 1.0$ $\mathrm{mmol})$, and $\mathrm{TIPF}_{6}(0.52 \mathrm{~g}, 1.5 \mathrm{mmol})$ were stirred together in thf $\left(15 \mathrm{~cm}^{3}\right)$ for 20 min . Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 1,20 \mathrm{~cm}^{3}$) and chromatographed, eluting with the same solvent mixture. Solvent was removed in vacuo from an orange eluate and the residue was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 4$, $\left.10 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$, yielding orange crystals of $[\mathrm{AuW}(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](2 \mathrm{a})(0.60 \mathrm{~g})$.
(ii) Similarly, (1b) ($1.02 \mathrm{~g}, 1.0 \mathrm{mmol}),\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.49 \mathrm{~g}$, $1.0 \mathrm{mmol})$, and $\mathrm{TIPF}_{6}(0.52 \mathrm{~g}, 1.5 \mathrm{mmol})$ were stirred together in thf $\left(15 \mathrm{~cm}^{3}\right)$ for 20 min . Orange crystals of $\left[\mathrm{AuW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$ 4)(CO) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ (2b) (0.48 g) were isolated, as described for (2 a).
(iii) Treatment of (1c) $(0.28 \mathrm{~g}, 0.50 \mathrm{mmol})$ with $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ $(0.25 \mathrm{~g}, 0.50 \mathrm{mmol})$ in the presence of $\mathrm{TIPF}_{6}(0.26 \mathrm{~g}, 0.75 \mathrm{mmol})$ in thf ($15 \mathrm{~cm}^{3}$) for 20 min afforded an orange mixture. Solvent was removed in vacuo, and the residue was extracted with toluene ($25 \mathrm{~cm}^{3}$). Removal of the latter in vacuo, and crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum $(1: 4,10$ cm^{3}) at $-20^{\circ} \mathrm{C}$, afforded orange crystals of [AuW($\mu-\mathrm{CMe}$)-$\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{n}^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (2c) (0.20 g).
(iv) Compound (1a) ($0.52 \mathrm{~g}, 0.50 \mathrm{mmol})$ and [$\mathrm{AuCl}($ tht $)](0.08$ $\mathrm{g}, 0.25 \mathrm{mmol}$) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ for 5 min . The
mixture was filtered through a Celite pad ($c a .4 \mathrm{~cm}$), and solvent was removed in vacuo. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 10 \mathrm{~cm}^{3}$), and dried in vacuo affording $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ -$\left[\mathrm{AuW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)_{2}\right](3)(0.35 \mathrm{~g})$ as a yellow powder.

Synthesis of the Rhodium-Tungsten Compounds.-(i) Compounds (1a) $(0.52 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](0.46 \mathrm{~g}$, 0.50 mmol) were stirred together in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ for 4 h . Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 1,30 \mathrm{~cm}^{3}$) and chromatographed. Elution with the same solvent mixture afforded a green eluate. Removal of solvent in vacuo, and crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 2,30 \mathrm{~cm}^{3}$) at $-20^{\circ} \mathrm{C}$ gave black crystals of $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](4 \mathrm{a})(0.30 \mathrm{~g})$.

Compound (4a) may also be obtained by treating [Rh$\left.\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cod})\right]\left[\mathrm{PF}_{6}\right](0.44 \mathrm{~g}, 0.50 \mathrm{mmol})$ with (1a) $(0.52 \mathrm{~g}, 0.50$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ for 10 min . Black crystals of (4a) $(0.38 \mathrm{~g})$ may be isolated as described above.
(ii) In a similar synthesis, (1b) ($0.51 \mathrm{~g}, 0.50 \mathrm{mmol}$) and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cod})\right]\left[\mathrm{PF}_{6}\right](0.44 \mathrm{~g}, 0.50 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ for 10 min . Black crystals of $[\mathrm{RhW}(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ (4b) (0.31 g) were isolated, as described for (4a).
(iii) Treatment of compound (1a) ($0.52 \mathrm{~g}, 0.50 \mathrm{mmol}$) with $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{nbd})\right]\left[\mathrm{PF}_{6}\right](0.43 \mathrm{~g}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ cm^{3}) for 30 min afforded a green-brown solution. Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum $\left(1: 1,30 \mathrm{~cm}^{3}\right)$ and chromatographed. Elution with the same solvent mixture gave a brown eluate. Removal of solvent in vacuo, and crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum $\left(1: 2,30 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ gave black crystals of $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{\mathbf{9}^{-}}\right.\right.$ $\left.\left.\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{8} \mathrm{Me}_{2}\right\}\right](5 \mathrm{a})(0.39 \mathrm{~g})$.
(iv) In a similar synthesis, ($\mathbf{1 b}$) ($0.51 \mathrm{~g}, 0.50 \mathrm{mmol}$) and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{nbd})\right]\left[\mathrm{PF}_{6}\right](0.43 \mathrm{~g}, 0.50 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ for 30 min . Black crystals of $[\mathrm{RhW}(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9}\left(\mathrm{C}_{7} \mathrm{H}_{9}\right) \mathrm{H}_{10}\right\}\right](5 \mathrm{~b})(0.36 \mathrm{~g})$ were isolated, as described for (5a).
(v) Treatment of compound (1a) $(0.42 \mathrm{~g}, 0.40 \mathrm{mmol})$ with $[\mathrm{Rh}(\mathrm{dppe})(\mathrm{nbd})]\left[\mathrm{PF}_{6}\right](0.30 \mathrm{~g}, 0.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ for 30 min afforded an orange solution. Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 1,30 \mathrm{~cm}^{3}$) and chromatographed. Elution with the same solvent mixture gave an orange eluate. Removal of solvent in vacuo afforded orange microcrystals of $[\mathrm{RhW}(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}(\mathrm{dppe})\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right](4 \mathrm{c})(0.24 \mathrm{~g})$.
(vi) Excess $\mathrm{PEt}_{3}\left(0.2 \mathrm{~cm}^{3}\right)$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution of (4a) $(0.23 \mathrm{~g}, 0.20 \mathrm{mmol})$, and the mixture was stirred for 1 h . Volatile material was removed in vacuo, and the residue was washed with light petroleum ($2 \times 10 \mathrm{~cm}^{3}$). Greenblack crystals of $\left[\mathrm{RhW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (4d) $(0.16 \mathrm{~g})$ were obtained, after crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 2,20 \mathrm{~cm}^{3}$) at $-20^{\circ} \mathrm{C}$.
(vii) $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution of (4a) $(0.28 \mathrm{~g}, 0.25 \mathrm{mmol})$ was treated with dppe ($0.20 \mathrm{~g}, 0.50 \mathrm{mmol}$), and the mixture was stirred for 1 h . Solvent was removed in vacuo and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$. Orange microcrystals of $\left[\mathrm{Rh}(\text { dppe })_{2}\right]\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ (6b) $(0.33 \mathrm{~g})$ were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 1,10$ cm^{3}) at $-20^{\circ} \mathrm{C}$.

Crystal Structure Determinations.-(a) Orange crystals of (2a) were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:2) at $-20^{\circ} \mathrm{C}$, and that chosen for study was ca. $0.15 \times 0.35 \times$ 0.50 mm . Diffracted intensities were measured on a Nicolet

Table 7. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) for complex (2a) with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
W	64(1)	$7088(1)$	6 636(1)	C(46)	1026	2103	5874
Au	655(1)	5 111(1)	7 631(1)	C(47)	686	3345	6015
P	804(4)	4 177(8)	8 554(3)	C(42)	987	4014	6592
C(12)*	$2013(9)$	$2951(18)$	$9500(7)$	C(48)	$2033(16)$	216(35)	$6160(15)$
C(13)	2605	1971	9742	C(5)	882(17)	$8327(38)$	$7136(15)$
C(14)	2751	933	9365	$\mathrm{O}(5)$	$1398(11)$	9 083(26)	7 424(10)
C(15)	2306	876	8747	C(6)	401(15)	7360 (34)	6047 (13)
C(16)	1714	1856	8506	O(6)	573(11)	7 443(25)	$5627(10)$
C(11)	1568	2894	8882	C(2)	-698(16)	9 262(41)	$6717(15)$
C(22)*	$1267(8)$	7 078(20)	9 050(7)	C(3)	-907(20)	8 896(49)	6 027(18)
C(23)	1364	8291	9460	B(4)	- $1087(17)$	6 905(42)	5860 (16)
C(24)	1113	8142	9909	B(5)	- 1010 (19)	$6008(45)$	6 566(17)
C(25)	765	6779	9949	B(6)	-751(17)	7 579(40)	7 077(15)
C(26)	668	5566	9538	B(7)	-1780(23)	8 324(52)	5 613(21)
C(21)	920	5716	9089	B(8)	- $1872(18)$	6 637(43)	$5969(17)$
C(32)*	-625(10)	3 624(17)	8 173(7)	B(9)	-1 662(22)	6 946(55)	$6755(20)$
C(33)	-1225	2821	8146	$\mathrm{B}(10)$	-1 507(25)	$8815(59)$	6 865(22)
C(34)	-1146	1438	8472	$\mathrm{B}(11)$	-1 527(29)	$9850(68)$	6 164(26)
C(35)	-466	859	8824	B(12)	-2 155(24)	8 346(56)	$6139(22)$
C(36)	133	1663	8851	$\mathrm{Me}(2)$	-620(22)	10 044(51)	$5731(19)$
C(31)	54	3046	8525	$\mathrm{Me}(3)$	-204(19)	$10718(45)$	7 043(17)
C(41)	628(14)	$5306(31)$	6720 (12)	$\mathrm{Cl}(1)$	1 979(12)	2 833(30)	$1819(12)$
C(43)*	1 629(9)	3 439(20)	$7027(6)$	$\mathrm{Cl}(2)$	1 269(12)	2321 (28)	595(11)
C(44)	1969	2197	6885	$\mathrm{Cl}(3)$	$2307(15)$	$1908(35)$	$1388(14)$
C(45)	1668	1529	6309	$\mathrm{Cl}(4)$	1071(16)	$3127(38)$	996(15)

* Pivot atom of rigid group; remaining atoms in the group have identical standard deviations.

Table 8. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) for complex (4a) with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
W	$2685(1)$	2670 (1)	269(1)	C(62)*	$6498(4)$	$3188(3)$	4 984(3)
Rh	3 981(1)	2 298(1)	2043(1)	C(63)	7718	3430	5465
P(1)	$5431(2)$	$1375(1)$	2 576(1)	C(64)	8508	3908	4985
P (2)	$4478(2)$	3 122(1)	3 361(1)	C(65)	8077	4144	4024
C(01)	4 392(6)	3 220(4)	992(4)	C(66)	6857	3902	3543
$\mathrm{O}(01)$	$5339(4)$	3 701(3)	$1175(3)$	C(61)	6067	3424	4023
C(02)	3 296(7)	1620 (5)	-19(5)	C(2)	2 609(6)	3 564(4)	-1 204(4)
$\mathrm{O}(02)$	3 594(6)	1 028(4)	-215(4)	C(3)	2 222(5)	4076 (4)	-459(4)
C(12)*	6 366(4)	958(2)	1147 (3)	$\mathrm{Me}(3)$	$3111(7)$	$4828(4)$	128(5)
C(13)	7103	1152	547	H(3a)	3110	4699	777
C(14)	7858	1975	578	H(3b)	2883	5397	-73
C(15)	7875	2604	1208	H(3c)	3903	4835	75
C(16)	7137	2409	1808	Me(2)	3 905(6)	$3778(5)$	- $1305(5)$
C(11)	6382	1586	1778	H(2a)	4510	3858	-702
C(22)*	5991 (3)	954(3)	4 518(3)	H(2b)	4038	4278	-1724
C(23)	6742	855	5438	H(2c)	3950	3247	-1578
C(24)	7988	1101	5627	B(4)	$1025(7)$	3 418(5)	-140(5)
C(25)	8484	1445	4894	B(5)	647(7)	2 417(5)	-770(5)
C(26)	7734	1544	3974	B(6)	$1756(7)$	2 541(5)	-1414(5)
C(21)	6487	1299	3786	B(9)	- 192(7)	3 289(6)	- 1 192(5)
C(32)*	$5376(3)$	-472(3)	$2728(4)$	B(10)	245(7)	$2733(6)$	-1989(6)
C(33)	4810	-1356	2615	B(12)	299(7)	3 900(6)	-2 129(5)
C(34)	3566	-1564	2210	B(11)	$1499(7)$	3 457(6)	-2 259(5)
C(35)	2887	-887	1919	$\mathrm{B}(7)$	$1798(7)$	4 408(5)	-1653(5)
C(36)	3453	-3	2032	B(8)	797(7)	$4317(5)$	-965(5)
C(31)	4697	205	2437	H(a2)	998(50)	477(37)	617(39)
C(42)*	3 466(4)	3 308(2)	$4801(3)$	H(a3)	-433(72)	-572(51)	$1397(55)$
C(43)	2846	3003	5470	H(a5)	33(58)	$1213(42)$	3 448(45)
C(44)	2460	2095	5596	H(a6)	1393 (54)	$2325(39)$	$2729(42)$
C(45)	2694	1492	5053	C(a)	2 192(5)	$1997(4)$	$1256(4)$
C(46)	3314	1797	4384	C(al)*	1 297(3)	1433(3)	$1671(3)$
C(41)	3700	2705	4258	C(a2)	701	628	1253
C(52)*	$4705(3)$	4 999(3)	3 297(3)	C(a3)	-127	68	1641
C(53)	4239	5784	3068	C(a4)	-359	311	2447
C(54)	3032	5759	2552	C(a5)	237	1115	2865
C(55)	2292	4950	2265	C(a6)	1066	1676	2477
C(56)	2757	4165	2494	C(a41)	$-1211(7)$	-309(5)	2 903(6)
C(51)	3964	4189	3010				

* Pivot atom of rigid group; remaining atoms in the group have identical standard deviations.

Table 9. Atomic positional parameters (fractional co-ordinates) for complex (5a) with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
Rh	$0.48676(11)$	0.195 53(9)	$0.20396(7)$	C(66)	0.6049 (10)	$0.3815(10)$	0.2059 (7)
W	0.649 53(7)	0.011 46(5)	$0.20658(4)$	C(61)	0.510 6(10)	0.417 2(10)	0.160 0(7)
$\mathrm{P}(1)$	$0.2964(4)$	$0.2611(4)$	0.264 8(3)	C(71)	0.6081 (14)	0.104 4(12)	0.279 5(10)
$\mathbf{P}(2)$	0.473 8(4)	0.325 6(4)	0.1180 (3)	C(73)	0.542 3(11)	0.1320 (9)	$0.4160(8)$
$\mathrm{C}(12)$	0.247 3(12)	0.223 6(7)	$0.4174(8)$	C(74)	$0.5407(11)$	0.1757 (9)	$0.4827(8)$
C(13)	0.233 3(12)	0.162 7(7)	0.477 4(8)	C(75)	0.6047 (11)	0.2371 (9)	0.484 9(8)
C(14)	0.253 5(12)	0.064 6(7)	$0.4654(8)$	C(76)	0.670 2(11)	0.254 7(9)	0.420 4(8)
C(15)	0.287 6(12)	0.027 3(7)	0.393 6(8)	C(77)	$0.6717(11)$	$0.2110(9)$	$0.3537(8)$
C(16)	0.301 6(12)	0.088 2(7)	0.333 6(8)	C(72)	$0.6078(11)$	0.149 6(9)	$0.3515(8)$
C(11)	0.281 4(12)	0.186 4(7)	0.345 5(8)	C(78)	0.605(3)	0.280(3)	0.559(2)
C(22)	$0.1815(10)$	0.253 4(9)	0.139 4(7)	C(4)	0.504(2)	0.0767 (11)	0.1437 (10)
C(23)	0.084 4(10)	$0.2517(9)$	0.104 6(7)	O(4)	0.435 3(12)	0.078 5(9)	0.1016 (7)
C(24)	-0.024 3(10)	$0.2617(9)$	$0.1467(7)$	C(5)	0.744(2)	0.0823 (14)	$0.1558(11)$
C(25)	-0.036 O(10)	0.273 3(9)	0.223 7(7)	O(5)	0.8070 (13)	0.1240 (11)	0.128 9(9)
C(26)	$0.0610(10)$	0.2750 (9)	0.258 6(7)	C(2)	0.623(2)	-0.140 2(12)	0.214 1(11)
C(21)	0.169 8(10)	$0.2650(9)$	0.216 5(7)	C(3)	0.715 3(15)	-0.143 6(12)	0.139 6(9)
C(32)	0.143 5(10)	0.459 O(10)	0.299 O(7)	B(4)	0.832(2)	-0.1209(15)	0.163 5(12)
C(33)	0.123 4(10)	$0.5517(10)$	0.325 5(7)	B(5)	0.824(2)	$-0.1120(14)$	0.264 8(13)
C(34)	0.216 6(10)	0.568 0(10)	0.354 9(7)	B(6)	0.682(2)	-0.122 4(15)	0.294 3(11)
C(35)	0.329 8(10)	0.4918 (10)	0.357 6(7)	B(7)	0.708(3)	-0.254 0(15)	0.173 5(13)
C(36)	0.349 9(10)	0.3991 (10)	0.331 1(7)	B(8)	0.844(3)	-0.241(2)	0.144 7(13)
C(31)	0.256 7(10)	0.3828 (10)	$0.3018(7)$	B(9)	0.916(3)	-0.223(2)	0.220 5(14)
C(42)	0.679 7(11)	0.317 4(8)	0.022 7(7)	B(10)	0.814(3)	-0.225 0(15)	0.302 3(13)
C(43)	0.772 O(11)	$0.2765(8)$	-0.034 0(7)	B(11)	0.690(3)	-0.240(2)	0.2718 (13)
C(44)	0.776 4(11)	$0.1954(8)$	-0.072 2(7)	B(12)	0.836(3)	-0.304(2)	0.225 9(13)
C(45)	0.688 5(11)	0.1553 (8)	-0.053 6(7)	$\mathrm{Me}(2)$	0.489(2)	-0.121 5(13)	0.210 6(13)
C(46)	0.5961 (11)	0.196 2(8)	0.0031 (7)	$\mathrm{Me}(3)$	0.670(2)	-0.116 7(13)	0.062 5(10)
C(41)	$0.5918(11)$	0.277 3(8)	0.0413 (7)	C(n1)	0.882(2)	-0.061 1(13)	0.319 8(11)
C(52)	0.340 3(10)	$0.3997(8)$	-0.007 6(6)	$\mathrm{C}(\mathrm{n} 2)$	0.996(2)	-0.134(2)	$0.3551(14)$
C(53)	0.235 7(10)	0.4580 O(8)	-0.040 6(6)	C(n3)	1.050(3)	-0.045(2)	0.248 3(14)
C(54)	0.132 6(10)	$0.5159(8)$	0.003 6(6)	C(n4)	0.986(3)	0.033(2)	0.364 4(13)
C(55)	0.1341 (10)	0.515 4(8)	$0.0809(6)$	C(n5)	1.057(3)	-0.075(2)	0.381(2)
C(56)	0.238 8(10)	0.457 1(8)	$0.1139(6)$	C(n6)	0.934(3)	$0.015(2)$	0.293 7(13)
C(51)	$0.3418(10)$	0.399 2(8)	0.069 6(6)	$\mathrm{C}(\mathrm{n} 7)$	1.108(3)	-0.129(3)	0.306(2)
C(62)	0.448 4(10)	0.518 6(10)	0.1509 (7)	$\mathrm{Cl}(1)$	0.922(3)	$0.395(3)$	0.450 2(14)
C(63)	$0.4805(10)$	0.584 2(10)	0.187 7(7)	$\mathrm{Cl}(2)$	0.716(4)	$0.530(3)$	0.430(2)
C(64)	0.574 8(10)	0.548 5(10)	0.233 6(7)	C(1)	0.838(7)	0.517(6)	0.446(4)
C(65)	0.637 O(10)	0.447 1(10)	$0.2427(7)$				

$P 3 m$ automated diffractometer at 293 K using the $0-2 \theta$ scan mode ($2.9 \leqslant 2 \theta \leqslant 50^{\circ}$). Of the 4805 unique reflections, 2783 had $I \geqslant 2.5 \sigma(I)$, and only these were used in the solution and refinement of the structure. Intensity data were corrected for Lorentz polarisation and X-ray absorption effects, the latter by a semi-empirical method based on azimuthal scan data. ${ }^{30}$
Crystal data. $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{AuB}_{9} \mathrm{O}_{2} \mathrm{PW} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=1047.7$, monoclinic, $a=20.655(7), b=8.572(4), c=24.256(12) ~ \AA$, $\beta=114.62(3)^{\circ}, U=3904(6) \AA^{3}, Z=4, D_{\mathrm{c}}=1.79 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1999$, space group $P 2_{1} / n$ (no. 14), Mo- $K_{\alpha} X$ radiation (graphite monochromator), $\bar{\lambda}=0.71069 \AA, \mu($ Mo$\left.K_{\alpha}\right) 69.6 \mathrm{~cm}^{-1}$.
The structure was solved by conventional heavy-atom and difference Fourier methods. Anisotropic thermal motion was allowed for the Au, P, and W atoms only, with all other nonhydrogen atoms isotropically refined. Hydrogen atoms were not located but those bonded to carbon were included in calculated positions ($\mathrm{C}-\mathrm{H} 0.960 \AA$) and given fixed isotropic thermal parameters 1.2 times $U_{\text {equiv }}$ of their parent carbon atoms. The lattice contained a disordered molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per molecule of (2a). Only the Cl atoms were located, each disordered over two sites (50% occupancy). Refinement by blocked-cascade least squares, with a weighting scheme of the form $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0007\left|F_{\mathrm{o}}\right|^{2}\right]^{-1}$, converged at $R=0.072\left(R^{\prime}=0.065\right)$. The final electron-density difference syntheses showed no peaks $\geqslant 1.5 \mathrm{e} \AA^{-3}$. Scattering factors with corrections for the effects of anomalous dispersion were from ref. 31. All calculations were
carried out on a Data General 'Eclipse' computer with the SHELXTL system of programs. ${ }^{30}$ Atomic co-ordinates are listed in Table 7.
(b) Crystals of (4a) grow as deep red prisms from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Et}_{2} \mathrm{O}(1: 2)$. That used for data collection had dimensions ca. $0.13 \times 0.40 \times 0.20 \mathrm{~mm}$. Data were collected ($2.9 \leqslant 2 \theta \leqslant 43^{\circ}$) as described above for (2a). Of the 5797 unique reflections, 4638 with $I \geqslant 1.5 \sigma(I)$ were used for solution and refinement of the structure after correction for Lorentz, polarisation and X-ray absorption effects, the latter by a numerical method (faces $\langle 011\rangle,\langle 110\rangle,\langle 1 \mathrm{I} 0\rangle$).

Crystal data. $\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{~B}_{9} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{RhW}, M=1130.8$, triclinic, a $=11.814(3), \quad b=15.375(3), c=14.756(3) \AA, x=84.74(2)$, $\beta=107.41(1), \quad \gamma=101.21(2)^{\circ}, \quad U=2506(1) \quad \AA^{3}, \quad Z=2$, $D_{\mathrm{c}}=1.50 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1124$, space group $P \overline{\mathrm{I}}$ (no. 2), $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=27.7 \mathrm{~cm}^{-1}$

The solution and refinement of the structure was similar to that for (2a), except that all hydrogen atoms attached to the carbaborane ligand were located and refined freely. The phenyl and methyl hydrogens were refined as members of rigid groups. Refinement with the weighting scheme $w=\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.0.000275\left|F_{\mathrm{o}}\right|^{2}\right]^{-1}$ converged at $R=0.031$ ($R^{\prime}=0.030$). The final electron-density difference synthesis showed no peaks $\geqslant 1.3 \mathrm{e} \AA^{-3}$. Atomic positional parameters are given in Table 8.
(c) Black crystals of (5a) were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:2) at $-20^{\circ} \mathrm{C}$, and that chosen for study had dimensions ca. $0.35 \times 0.15 \times 0.35 \mathrm{~mm}$. Data were collected
($2.9 \leqslant 2 \theta \leqslant 40^{\circ}$) as for (2a). Of 5416 unique reflections, 3889 met the criterion $I \geqslant 2 \sigma(I)$ and only these were used for structure solution and refinement, after corrections for Lorentz polarisation and X-ray absorption effects. The latter was numerical (faces $\left\langle\begin{array}{lll}1 & 1 & 1\end{array}\right\rangle,\langle 001\rangle,\left\langle\begin{array}{ll}1 & 0\end{array}\right\rangle,\left\langle\begin{array}{ll}1 & 1\end{array}\right\rangle$).
Crystal data. $\quad \mathrm{C}_{57} \mathrm{H}_{60} \mathrm{~B}_{9} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{RhW} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=$ 1 262.5, triclinic, $a=12.006(4), b=14.692(9), c=18.033(7) \AA$, $\alpha=86.28(4), \quad \beta=83.44(3), \gamma=67.46(3)^{\circ}, U=2918(3) \AA^{3}$, $Z=2, D_{\mathrm{c}}=1.44 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1266$, space group $P \bar{I}$ (no. 2), $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=24.3 \mathrm{~cm}^{-1}$.
Solution and refinement were as for (2a), except that the phenyl groups were refined as rigid groups (C-C $1.395 \AA$), the constituent atoms being given isotropic thermal parameters. Most hydrogen atoms were incorporated at calculated positions but some in the carbaborane cage were located and refined isotropically. The lattice contained 0.5 of a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per molecule of (5a). A weighting scheme $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0005\left|F_{\mathrm{o}}\right|^{2}\right]^{-1}$ gave a satisfactory weight analysis, and refinement converged at $R=0.059$ ($R^{\prime}=0.056$). The final electron density difference synthesis showed no peaks $\geqslant 0.98 \mathrm{e}$ \AA^{-3}. Scattering factors, corrections for anomalous dispersion, and calculations were as for (2a). The atom co-ordinates are given in Table 9.

Acknowledgements

We thank the S.E.R.C. for research studentships (to A. P. J. and C. M. N.) and Shell Research Ltd., for a CASE award.

References

1 Part 50, L. J. Farrugia, J. C. Jeffery, C. Marsden, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., preceding paper.

2 F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, 23, 89; 'Inorganic Chemistry: Toward the 21st Century,' ed. M. H. Chisholm, ACS Symp. Ser., 1983, 211, 383.
3 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711.
4 M. R. Awang, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 165; J. A. K. Howard, J. C. V. Laurie, O. Johnson, and F. G. A. Stone, ibid., 1985, 2017; E. Delgado, A. T. Emo, J. C. Jeffery, N. D. Simmons, and F. G. A. Stone, ibid., p. 1323; J. C. Jeffery, C. Marsden, and F. G. A. Stone, ibid., p. 1315; G. P. Elliott, J. A. K. Howard, T. Mise, I. Moore, C. M. Nunn, and F. G. A. Stone, ibid., 1986, 2091.
5 J. A. Abad, E. Delgado, M. E. Garcia, M. J. Grosse-Ophoff, I. J. Hart, J. C. Jeffery, M. S. Simmons, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 41.
6 F. G. A. Stone, Pure Appl. Chem., 1986, 58, 529.
7 M. Green, J. A. K. Howard, A. P. James, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 187; M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, ibid., p. 1697.
8 T. P. Hanusa, Polyhedron, 1982, 1, 663.

9 M. F. Hawthorne, D. C. Young, and P. A. Wegner, J. Am. Chem. Soc., 1965, 87, 1818; M. F. Hawthorne, Acc. Chem. Res., 1968, 1, 281 ; K. P. Callahan and M. F. Hawthorne, Adv. Organomet. Chem., 1976, 14, 145.
10 M. Green, J. A. K. Howard, A. P. James, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1984, 1113.
11 (a) E. O. Fischer, T. L. Lindner, G. Huttner, P. Friedrich, F. R. Kreissl, and J. O. Besenhard, Chem. Ber., 1977, 110, 3397; (b) W. Uedelhoven, K. Eberl, and F. R. Kreissl, ibid., 1979, 112, 3376.
12 G. A. Carriedo, J. A. K. Howard, F. G. A. Stone, and M. J. Went, J. Chem. Soc., Dalton Trans., 1984, 2545.

13 J. A. Abad, L. W. Bateman, J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 2073.

14 P. D. Gavens, J. J. Guy, M. J. Mays, and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1977, 33, 137.
15 Z. Dawoodi, M. L. H. Green, V. S. B. Mtetwa, and K. Prout, J. Chem. Soc., Chem. Commun., 1982, 1410; M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250, 395.

16 G. A. Carriedo, J. A. K. Howard, K. Marsden, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1589.
17 J. C. Jeffery, C. Sambale, M. F. Schmidt, and F. G. A. Stone, Organometallics, 1982, 1, 1597.
18 S. V. Hoskins, A. P. James, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 1709.
19 L. Carlton, W. E. Lindsell, K. T. McCullough, and P. N. Preston, J. Chem. Soc., Dalton Trans., 1984, 1693.

20 M. R. Awang, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1983, 2091.
21 R. T. Baker, R. E. King, C. B. K nobler, C. A. O’Con, and M. F. Hawthorne, J. Am. Chem. Soc., 1978, 100, 8266; P. E. Behnken, T. B. Marder, R. T. Baker, C. B. Knobler, M. R. Thompson, and M. F. Hawthorne, ibid., 1985, 107, 932.
22 M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1985, 1778.
23 R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1971, 93, 2397.
24 M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe, and P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 862.
25 E. O. Fischer, T. Selmayr, F. R. Kreissl, and U. Schubert, Chem. Ber., 1977, 110, 2574.
26 D. Neugebauer, E. O. Fischer, N. Q. Das, and U. Schubert, J. Organomet. Chem., 1978, 154, C41.
27 F. G. Mann, A. F. Wells, and D. Purdie, J. Chem. Soc., 1937, 1828.
28 R. Uson, A. Laguna, and J. Vicente, J. Organomet. Chem., 1977, 131, 471.

29 J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. $A, 1966,1711$.
30 G. M. Sheldrick, SHELXTL programs for use with the Nicolet P3m X-ray system, University of Cambridge, 1976; updated Göttingen, 1981.

31 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: * 2,2-Dicarbonyl-2-[7'-11'- η-nonahydro- $7^{\prime}, 8^{\prime}$-dimethyl- $7^{\prime}, 8^{\prime}$-di-carba-nido-undecaborato($2-$)]- μ - p-tolylmethylidyne-1-(triphenylphosphine) goldtungsten ($A u-W$), μ-carbonyl-2-carbonyl-2-[7'-11'- η -nonahydro- $7^{\prime}, 8^{\prime}$-dimethyl- $7^{\prime}, 8^{\prime}$-dicarba-nido-undecaborato($\left.\left.2-\right)\right]-\mu-p$ -tolylmethylidyne-1,1-bis(triphenylphosphine)rhodiumtungsten ($R h=W$), and μ-carbonyl-2-carbonyl- $2\left\{7^{\prime}-11^{\prime}-\eta\right.$-nonahydro- $7^{\prime}, 8^{\prime}$-di-methyl-10'-tricyclo[2.2.1.0 $0^{2^{\prime \prime}} .6^{\prime \prime}$]hept- $3^{\prime \prime}$-yl- $7^{\prime}, 8^{\prime}$-dicarba-nidoundecaborato $(2-)\}$ - μ - p-tolylmethylidyne-1,1-bis(triphenylphosphine) rhodiumtungsten ($R h=W$) respectively.
 Supplementary data available: see Instructions for Authors, J. Chem. Soc.. Dalton Trans., 1987, Issue 1, pp. xvii-xx.

[^1]: \dagger In this paper, and in others to follow in this series, a tungsten atom forms with a $\left[\text { nido- } 7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}^{\prime}\right]^{2-}$ anion a closo-1,2-dicarba-3tungstadodecaborane structure. However, in the formulae the carbaborane group is designated as $\eta^{5}-C_{2} B_{9} H_{9} R^{\prime}{ }_{2}$ in order to emphasise its pentahapto ligand properties in which it formally acts as a four-electron donor.

