The Heteronuclear Cluster Chemistry of the Group 1B Metals. Part 2.1 Synthesis, X-Ray Crystal Structures, and Dynamic Behaviour of the Bimetallic Hexanuclear Group 1B Metal Cluster Compounds [$\mathbf{M}_{2} \mathrm{Ru}_{4} \mathbf{H}_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}$] ($\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}$, or Au) *

Mark J. Freeman and A. Guy Orpen
Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1 TS
Ian D. Salter
Department of Chemistry, University of Exeter, Exeter EX4 4OD

Abstract

Treatment of dichloromethane solutions of the salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{12}\right]$ with two equivalents of the complex $\left[\mathrm{M}\left(\mathrm{NCMe}_{4}\right] \mathrm{PF}_{6}(\mathrm{M}=\mathrm{Cu}\right.$ or Ag$)$ at $-30^{\circ} \mathrm{C}$, followed by the addition of two equivalents of PPh_{3}, affords the mixed-metal cluster compounds [$\mathrm{M}_{2} \mathrm{Ru}_{4}\left(\mu_{3}\right.$ $\left.\mathrm{H})_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{M}=\mathrm{Cu}(1)$ or $\mathrm{Ag}(2)]$ in $\mathrm{ca} .75 \%$ yield. The analogous gold species $\left[\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (5) (ca. 60\% yield) and reduced yields (ca. 50\%) of (1) and (2) can be obtained by treating acetone solutions of the salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{12}\right]$ with a dichloromethane solution containing two equivalents of the appropriate complex $\left[\mathrm{MX}\left(\mathrm{PPh}_{3}\right)\right](\mathrm{M}=$ Cu or $\mathrm{Au}, \mathrm{X}=\mathrm{CI} ; \mathrm{M}=\mathrm{Ag}, \mathrm{X}=\mathrm{I}$), in the presence of TIPF ${ }_{6}$. Single-crystal X-ray diffraction studies on each member of this series of Group 1 B metal congeners show that all three clusters adopt the same metal core structure. Each metal skeleton consists of a tetrahedron of ruthenium atoms capped by a $M\left(P_{P h}\right)(M=C u, A g$, or $A u)$ moiety, with one of the $M R u_{2}$ faces of the $M R u_{3}$ tetrahedron so formed further capped by a second $M\left(P_{P} h_{3}\right)$ fragment to give a capped trigonal bipyramidal metal core geometry. For (1) and (2), the other two faces of the MRu_{3} tetrahedron are each capped by triply bridging hydrido ligands but, in the case of (5), one of these hydrido ligands bridges a ruthenium-ruthenium edge only. In all three clusters, each ruthenium atom is ligated by three terminal carbonyl groups. Variable-temperature n.m.r. studies show that, at ambient temperature in solution, the coinage metals in all three clusters are exchanging between the two distinct sites in the capped trigonal bipyramidal metal cores, the CO ligands all exhibit dynamic behaviour involving complete intramolecular site exchange and, in addition, the PPh_{3} groups of (2) are undergoing intermolecular exchange between clusters.

Over the last five years, there have been numerous reports ${ }^{1-5}$ of mixed-metal cluster compounds in which one or more $\mathrm{Au}\left(\mathrm{PR}_{3}\right)(\mathrm{R}=$ alkyl or aryl) moieties are incorporated into structures containing other different transition metals ligated by carbonyl groups. However, analogous species containing $\mathbf{M}\left(\mathrm{PR}_{3}\right)(\mathbf{M}=\mathbf{C u}$ or Ag$)$ fragment(s) have received much less attention. ${ }^{1,6,7}$ In the first paper of this series, ${ }^{1}$ we described our interest in conducting more detailed investigations into the chemistry of this type of copper and silver cluster and in experimentally comparing the bonding capabilities of $\mathrm{M}\left(\mathrm{PR}_{3}\right)$ ($\mathbf{M}=\mathbf{C u}, \mathrm{Ag}$, or Au) units by synthesizing series of analogous heteronuclear clusters containing one or more of these moieties. Herein we report the preparation of a series of bimetallic hexanuclear mixed-metal clusters containing two $\mathbf{M}\left(\mathrm{PPh}_{3}\right)$ groups and we discuss the similarities and differences in the structures and dynamic behaviour of the three Group 1B metal congeners.

While our work was in progress, Bruce and Nicholson ${ }^{8}$ also obtained the gold-ruthenium cluster (5) (3% yield). However,

[^0]these workers did not establish the structure of (5) by singlecrystal X-ray diffraction analysis and, as they performed no n.m.r. spectroscopic studies on the cluster, they also failed to observe its dynamic behaviour. Preliminary accounts describing some of our results have already been published. ${ }^{6.7}$

Results and Discussion

Treatment of a dichloromethane solution of the salt [N -$\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{12}\right]^{9}$ with two equivalents of the complex $\left[\mathrm{M}(\mathrm{NCMe})_{4}\right] \mathrm{PF}_{6}(\mathrm{M}=\mathrm{Cu}$ or Ag$)$ at $-30^{\circ} \mathrm{C}$

(1) $\mathrm{Cu} \mathrm{PPh}_{3}$
(5)

Table 1. Analytical ${ }^{a}$ and physical data for the Group 1B metal heteronuclear cluster compounds

			Analysis ${ }^{\text {d }}$		
Compound	M.p. (decomp.) $/{ }^{\circ} \mathrm{C}$	$v_{\text {max. }}(\mathrm{CO})^{b} / \mathrm{cm}^{-1}$	Yield (\%) ${ }^{\text {c }}$	C	H
(1) $\left[\mathrm{Cu}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	123-126	$2071 \mathrm{~s}, 2032 \mathrm{vs}, 2021 \mathrm{vs}, 2005 \mathrm{~s}$, $1988 \mathrm{w}, 1974 \mathrm{~m}, 1938 \mathrm{w}$ br	76	41.5 (41.3)	2.2 (2.3)
(2) $\left[\mathrm{Ag}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	167-170	$2069 \mathrm{~s}, 2030 \mathrm{vs}, 2018 \mathrm{vs}, 2002 \mathrm{~s}$, 1 981w, $1969 \mathrm{~m}, 1936 \mathrm{w}$ br	74	39.3 (38.9)	2.5 (2.2)
(3) $\left[\mathrm{Cu}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}(\mathrm{NCMe})_{2}\right]^{e}$	-	$\begin{aligned} & 2072 \mathrm{~m}, 2034(\mathrm{sh}), 2022 \mathrm{vs} \text {, } \\ & 2008(\mathrm{sh}), 1973 \mathrm{~m} \text { br, } 1945 \mathrm{w} \text { br } \end{aligned}$	-	-	-
(5) $\left[\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	143-147	$2070 \mathrm{~s}, 2043 \mathrm{~m}, 2033 \mathrm{~s}$ $2022 \mathrm{vs}, 2006 \mathrm{~s}, 1988 \mathrm{~m}$	61	35.1 (34.7)	2.1 (1.9)

${ }^{a}$ Calculated values given in parentheses. ${ }^{b}$ Measured in dichloromethane solution. ${ }^{c}$ Based on ruthenium reactant. When two alternative routes to the cluster exist, the best yield is quoted. ${ }^{\text {d }}$ Although large crystals of (1), (2), and (5), grown slowly over a period of days so that they were suitable for X-ray diffraction studies, are dichloromethane solvates, when microcrystals of these clusters were grown quickly for analysis, no evidence of dichloromethane of crystallization was found. ${ }^{e}$ Cluster is too unstable to isolate as a pure compound.

Table 2. Hydrogen-1, phosphorus-31, and carbon-13 n.m.r. data ${ }^{a}$ for the Group 1B metal heteronuclear cluster compounds

Cluster	$\theta_{c} /{ }^{\circ} \mathrm{C}$	${ }^{1} \mathrm{H}$ data ${ }^{\text {b }}$	${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ data ${ }^{\text {c }}$	${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ data ${ }^{\text {d }}$
(1)	Ambient	$\begin{aligned} & -16.93\left[\mathrm{t}, 2 \mathrm{H}, \mu_{3}-\mathrm{H}\right. \\ & J(\mathrm{PH}) 5], 7.23-7.39(\mathrm{~m}, 30 \\ & \mathrm{H}, \mathrm{Ph}) \end{aligned}$	4.3 (s br)	$\begin{aligned} & 198.0(\mathrm{CO}), 134.2\left[\mathrm{~d}^{2} \mathrm{C}^{2}(\mathrm{Ph}), J(\mathrm{PC}) 14\right], 131.2 \\ & {\left[\mathrm{C}^{4}(\mathrm{Ph})\right], 130.6\left[\mathrm{~d}, \mathrm{C}^{1}(\mathrm{Ph}), J(\mathrm{PC}) 39\right], 129.4\left[\mathrm{~d}, \mathrm{C}^{3}(\mathrm{Ph}),\right.} \\ & J(\mathrm{PC}) 9] \end{aligned}$
	-90	-17.20[d, $2 \mathrm{H}, J(\mathrm{PH}) 12]$	6.8 (s), -0.4 (s)	201.0 (2 CO), 199.5 (2 CO), 198.0 and 197.8 (s and sh, 5 CO), 196.4 (2 CO), 192.9 (1 CO)
(2)	Ambient	$\begin{aligned} & -17.14\left[\mathrm{br} \mathrm{t}, 2 \mathrm{H}, \mu_{3}-\mathrm{H}\right. \\ & \left.J(\mathrm{AgH})_{\text {av }} 12\right], 7.27-7.39 \\ & (\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	ca. 23 (s vbr), $c a .10$ (s vbr)	$\begin{aligned} & { }^{e} 198.5(\mathrm{CO}), 134.1\left[\mathrm{~d}, \mathrm{C}^{2}(\mathrm{Ph}), J(\mathrm{PC}) 17\right], 131.3 \\ & {\left[\mathrm{C}^{4}(\mathrm{Ph})\right], 129.6\left[\mathrm{~d}, \mathrm{C}^{3}(\mathrm{Ph}), J(\mathrm{PC}) 9\right]} \end{aligned}$
	-90	$\begin{aligned} & -17.17[\mathrm{~d} \text { of } \mathrm{d}, 2 \mathrm{H}, \\ & \left.J(\mathrm{AgH})_{\mathrm{av}} 27, J(\mathrm{PH}) 9\right] \end{aligned}$	$\begin{aligned} & 18.4\left[2 \times \mathrm{d} \text { of d, }{ }^{1} J\left({ }^{109} \mathrm{AgP}\right)\right. \\ & 565,{ }^{1} J{ }^{\left({ }^{(07} \mathrm{AgPP}\right)}{ }^{490,} \\ & \left.{ }^{2} J(\mathrm{AgP})_{\mathrm{av}} 8\right], 13.4[2 \times \mathrm{d} \\ & \text { of d, }{ }^{1} J\left({ }^{109} \mathrm{AgP}\right) 473, \\ & { }^{1} J\left({ }^{107} \mathrm{AgP}\right) 410,{ }^{2} J(\mathrm{AgP})_{\mathrm{av}} \\ & 12] \end{aligned}$	201.7 (2 CO), 200.3 (2 CO), 199.0 and 198.8 (s and sh, 3 CO), 198.4 (2 CO), 196.2 (2 CO), 191.3 (1 CO)
	-50	$\begin{aligned} & -17.16[t \text { of } \mathrm{t}, 2 \mathrm{H}, \\ & \left.J(\mathrm{AgH})_{\mathrm{av}} 14, J(\mathrm{PH}) 5\right] \end{aligned}$		
(5)	Ambient ${ }^{s}$	$\begin{aligned} & -14.67\left[\mathrm{t}, 2 \mathrm{H}, \mu_{3}-\mathrm{H},\right. \\ & J(\mathrm{PH}) 5], 7.21-7.55(\mathrm{~m}, \\ & 30 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	f 58.7 (s)	${ }^{g} 199.6(\mathrm{CO}), 134.2$ [$\mathrm{AA}^{\prime} \mathrm{X}$ pattern, $\left.\mathrm{C}^{2}(\mathrm{Ph}), N(\mathrm{PC}) 15\right]$, 131.7 [AA'X pattern, $\left.\mathrm{C}^{1}(\mathrm{Ph}), N(\mathrm{PC}) 51\right], 131.4$ [$\left.\mathrm{C}^{4}(\mathrm{Ph})\right], 129.3$ [$\mathrm{AA}^{\prime} \mathrm{X}$ pattern, $\left.\mathrm{C}^{3}(\mathrm{Ph}), N(\mathrm{PC}) 12\right]$
	-90	ca. -14 (s vbr, 2 H)	ca. 51 (s vbr)	ca. 201 (vbr), 199.2 (br)

${ }^{a}$ Chemical shifts (δ) in p.p.m., coupling constants in $\mathrm{Hz} .{ }^{b}$ Measured in $\left[{ }^{2} \mathrm{H}_{2}\right]$ dichloromethane solution, unless otherwise stated. At -90 and $-50^{\circ} \mathrm{C}$ only the data for the hydrido ligand are presented. ${ }^{\text {c }}$ Hydrogen-1 decoupled, measured in [${ }^{2} \mathrm{H}_{2}$]dichloromethane solution unless otherwise stated, chemical shifts positive to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external). ${ }^{d} \mathbf{H y d r o g e n}-1$ decoupled, measured in [${ }^{2} \mathrm{H}_{2}$]dichloromethane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, chemical shifts positive to high frequency of SiMe_{4}, $\mathrm{sh}=$ shoulder. ${ }^{e}$ Only one half of the doublet for $\mathrm{C}^{1}(\mathrm{Ph})$ is visible ($\delta 130.4$ p.p.m.), the other half is obscured. ${ }^{s}$ Measured in $\left[{ }^{2} \mathbf{H}_{1}\right]$ chloroform solution. ${ }^{g} N(\mathrm{PC})=\left|J(\mathrm{PC})+J\left(\mathrm{P}^{\prime} \mathrm{C}\right)\right|$.
incorporates two $\mathbf{M}(\mathbf{N C M e})$ units into the cluster dianion and the subsequent addition of two equivalents of PPh_{3} affords the dark red cluster compounds $\left[\mathrm{M}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $[\mathrm{M}=\mathrm{Cu}$ (1) or Ag (2)] in ca. 75\% yield. The two intermediate species $\left[\mathrm{M}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}(\mathrm{NCMe})_{2}\right][\mathrm{M}=\mathrm{Cu}(3)$ or Ag (4)] are too unstable to be isolated as pure compounds, but the lability of their MeCN groups can be conveniently utilized for in situ ligand-exchange reactions. ${ }^{7}$ The analogous gold cluster $\left[\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (5) is readily obtained as a dark red crystalline compound, in $c a .60 \%$ yield, by treating an acetone solution of the salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[R \mathrm{u}_{4}-\right.$ $\left.(\mu-H)_{2}(\mathrm{CO})_{12}\right]$ with a dichloromethane solution containing two equivalents of the complex $\left[\mathrm{AuCl}^{5}\left(\mathrm{PPh}_{3}\right)\right]$, in the presence of TlPF_{6}. The previously reported ${ }^{5}$ dark green heptanuclear cluster, $\left[\mathrm{Au}_{3} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{3}\right]$, is also formed $(6 \%$ yield) as a by-product of this preparation. Similar reactions in which the complexes $\left[\mathrm{MX}\left(\mathrm{PPh}_{3}\right)\right](\mathbf{M}=\mathrm{Cu}, \mathrm{X}=\mathrm{Cl}$; $\mathbf{M}=\mathrm{Ag}, \mathbf{X}=\mathrm{I})$ are utilized in place of $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ afford reduced yields (ca. 50%) of (1) and (2).

The clusters (1), (2), and (5) were characterized by
microanalyses and by spectroscopic measurements (Tables 1 and 2). The i.r. spectra of (1) and (2) are almost identical and they are also closely similar to that of (5), implying that all three Group 1B metal congeners share the same metal core geometry. The n.m.r. spectroscopic data and microanalyses are fully consistent with the proposed formulations for (1), (2), and (5), but to investigate the structures of this series of clusters in detail, single-crystal X-ray diffraction studies were performed on all three compounds. Discussion of the variable-temperature n.m.r. spectroscopic data is best deferred until the X-ray diffraction results have been described.

Crystals of (1) and (2), grown from dichloromethane-light petroleum mixtures, are essentially isomorphous dichloromethane solvates, differing only in details of bond lengths and angles, solvent disorder, and phenyl group orientation. The molecular structures of (1) and (2) are illustrated in Figure 1, which shows the crystallographic numbering scheme. The interatomic distances and bond angles are summarized in Tables 3 and 4. The X-ray diffraction study on crystals of (5), grown from dichloromethane-diethyl ether-light petroleum,

Figure 1. Molecular structure of $\left[\mathrm{M}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $[\mathrm{M}=\mathrm{Cu}$ (1) or Ag (2)], showing the crystallographic numbering. Phenyl groups have been omitted for clarity and only the oxygen atom of each carbonyl ligand has been labelled; the carbon atom of each group has the same number as the oxygen atom

Figure 2. Molecular structure of $\left[\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (5), showing the crystallographic numbering. Phenyl groups have been omitted for clarity and only the oxygen atom of each carbonyl ligand has been labelled; the carbon atom of each group has the same number as the oxygen atom
reveals that this cluster also crystallizes as a dichloromethane solvate and that its molecular structure is similar to those of (1) and (2), apart from the bonding mode of one hydrido ligand. The molecular structure of (5) is illustrated in Figure 2, which

Figure 3. A comparison of the metal-metal separations (\AA) within the capped trigonal bipyramidal metal cores of $\left[\mathrm{M}_{2} \mathrm{Ru}_{4} \mathrm{H}_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $[\mathrm{M}=\mathrm{Cu}$ (1) or Ag (2)], showing the crystallographic (1), then for (2), and finally for (5)
shows the crystallographic numbering scheme. The interatomic distances and bond angles are summarized in Table 5. All three of the clusters exhibit a capped trigonal bipyramidal metal core geometry, consisting of a tetrahedron of ruthenium atoms, with one face $[\mathrm{Ru}(1) \mathrm{Ru}(3) \mathrm{Ru}(4)]$ capped by a $\mathrm{M}\left(\mathrm{PPh}_{3}\right)(\mathrm{M}=\mathrm{Cu}$, Ag , or Au) moiety [Group 1B metal site $\mathrm{M}(2)$] and one of the faces $[\mathrm{M}(2) \mathrm{Ru}(3) \mathrm{Ru}(4)]$ of the MRu_{3} tetrahedron so formed further capped by a second $\mathbf{M}\left(\mathrm{PPh}_{3}\right)$ fragment [Group 1B metal site $\mathbf{M}(1)$]. Each ruthenium atom is ligated by three essentially terminal carbonyl ligands, which show little deviation from linearity. For (1) and (2), the potential energy minimization program HYDEX ${ }^{10}$ and refinement of hydrogen positions against the X-ray data suggest that the two hydrido ligands adopt positions capping the $\mathrm{M}(2) \mathrm{Ru}(1) \mathrm{Ru}(3)$ and $\mathrm{M}(2) \mathrm{Ru}(1) \mathrm{Ru}(4)$ faces of the cluster. In the case of (5), the hydrido ligands were refined to much more asymmetrical positions with respect to $\mathrm{Au}(2)[\mathrm{Au}(2)-\mathrm{H}(1)$ 2.04(11), $\mathrm{Au}(2) \cdots \mathrm{H}(2) 2.76(11) \AA$, cf. $\mathrm{Cu}-\mathrm{H}$ 1.62(5) in (1) and $\mathrm{Ag}-\mathrm{H}$ $1.72(5) \AA$ in (2)] suggesting that $H(1)$ is triply bridging the $\mathrm{Au}(2) \mathrm{Ru}(1) \mathrm{Ru}(3)$ face of the cluster, whereas $\mathrm{H}(2)$ edge-bridges the $R u(1)-R u(4)$ bond. On the basis of the non-hydrogen framework, HYDEX ${ }^{10}$ also predicts two different types of site for the hydrido ligands of (5), with the calculated position of $H(1)$ being closer to $\mathrm{Au}(2)$ than that of $\mathbf{H}(2)$. However, the available data are, of necessity, rather imprecise and cannot unambiguously define the bonding mode of the hydrido ligands in (5).

Figure 3 compares the internuclear metal-metal distances within the skeletal frameworks of (1), (2), and (5). It can be seen that the two coinage metals are in close contact in each case. Rather surprisingly, as the separations between the atoms in metallic gold $(2.884 \AA)^{11}$ and silver $(2.889 \AA)^{12}$ are very similar, $\mathrm{Au}(1)-\mathrm{Au}(2) \quad[2.791(1) \AA]$ is significantly shorter than $\mathrm{Ag}(1)-\mathrm{Ag}(2) \quad[2.857(1) \AA]$. However, as expected, both $\mathrm{Au}(1)-\mathrm{Au}(2)$ and $\mathrm{Ag}(1)-\mathrm{Ag}(2)$ are considerably longer than $\mathrm{Cu}(1)-\mathrm{Cu}(2)[2.699(2) \AA]$. The value of $\mathrm{Au}(1)-\mathrm{Au}(2)$ in (5) lies nearer to the lower end of the range previously observed in heteronuclear cluster compounds $[2.590(2)-3.176(1) \AA]^{2.3 .13}$ Few values for $\mathrm{Ag}-\mathrm{Ag}$ or $\mathrm{Cu}-\mathrm{Cu}$ distances in mixed-metal clusters have been reported. However, the $\mathrm{Ag}(1)-\mathrm{Ag}(2)$ separation in (2) lies very near to the lower end of the range of

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses, for $\left[\mathrm{Cu}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}(\mathbf{P P h})_{2}\right](\mathbf{1})$

$\mathrm{H}(1)-\mathrm{Ru}(4)$	$1.810(52)$	$\mathrm{H}(1)-\mathrm{Ru}(1)$	$1.758(43)$
$\mathrm{H}(1)-\mathrm{Cu}(2)$	$1.656(55)$	$\mathrm{H}(2)-\mathrm{Ru}(1)$	$1.823(69)$
$\mathrm{H}(2)-\mathrm{Ru}(3)$	$1.772(45)$	$\mathrm{H}(2)-\mathrm{Cu}(2)$	$1.528(70)$
$\mathrm{Ru}(2)-\mathrm{Ru}(4)$	$2.800(2)$	$\mathrm{Ru}(2)-\mathrm{Ru}(1)$	$2.790(2)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.795(2)$	$\mathrm{Ru}(2)-\mathrm{C}(5)$	$1.892(11)$
$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.894(11)$	$\mathrm{Ru}(2)-\mathrm{C}(6)$	$1.879(9)$
$\mathrm{Ru}(4)-\mathrm{Ru}(1)$	$2.947(2)$	$\mathrm{Ru}(4)-\mathrm{Ru}(3)$	$2.923(2)$
$\mathrm{Ru}(4)-\mathrm{Cu}(1)$	$2.699(2)$	$\mathrm{Ru}(4)-\mathrm{Cu}(2)$	$2.674(2)$
$\mathrm{Ru}(4)-\mathrm{C}(10)$	$1.887(7)$	$\mathrm{Ru}(4)-\mathrm{C}(12)$	$1.888(8)$
$\mathrm{Ru}(4)-\mathrm{C}(11)$	$1.920(8)$	$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.966(2)$
$\mathrm{Ru}(1)-\mathrm{Cu}(2)$	$2.809(2)$	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$1.897(8)$
$\mathrm{Ru}(1)-\mathrm{C}(3)$	$1.881(8)$	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.939(10)$
$\mathrm{Ru}(3)-\mathrm{Cu}(1)$	$2.679(2)$	$\mathrm{Ru}(3)-\mathrm{Cu}(2)$	$2.671(2)$

$\mathrm{Ru}(3)-\mathrm{C}(7)$	$1.893(9)$
$\mathrm{Ru}(3)-\mathrm{C}(9)$	$1.893(10)$
$\mathrm{Cu}(1)-\mathrm{P}(1)$	$2.266(2)$
$\mathrm{P}(1)-\mathrm{C}(111)$	$1.816(8)$
$\mathrm{P}(1)-\mathrm{C}(131)$	$1.828(7)$
$\mathrm{P}(2)-\mathrm{C}(261)$	$1.714(8)$
$\mathrm{P}(2)-\mathrm{C}(231)$	$1.852(8)$
$\mathrm{P}(2)-\mathrm{C}(251)$	$1.735(10)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.130(14)$
$\mathrm{C}(10)-\mathrm{O}(10)$	$1.134(9)$
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.129(10)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.154(10)$
$\mathrm{C}(7)-\mathrm{O}(7)$	$1.122(10)$
$\mathrm{C}(9)-\mathrm{O}(9)$	$1.130(13)$

$\mathrm{Ru}(3)-\mathrm{C}(8)$	$1.898(8)$
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$2.699(2)$
$\mathrm{Cu}(2)-\mathrm{P}(2)$	$2.202(3)$
$\mathrm{P}(1)-\mathrm{C}(121)$	$1.830(9)$
$\mathrm{P}(2)-\mathrm{C}(211)$	$1.906(8)$
$\mathrm{P}(2)-\mathrm{C}(221)$	$1.885(11)$
$\mathrm{P}(2)-\mathrm{C}(241)$	$1.854(9)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.139(13)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1.154(12)$
$\mathrm{C}(12)-\mathrm{O}(12)$	$1.151(9)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.127(10)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.119(12)$
$\mathrm{C}(8)-\mathrm{O}(8)$	$1.149(10)$

$\mathrm{Ru}(4)-\mathrm{H}(1)-\mathrm{Ru}(1)$	111.4(34)	$\mathrm{Ru}(4)-\mathrm{H}(1)-\mathrm{Cu}(2)$	100.9(22)	$\mathrm{Cu}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	77.8(2)	$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	96.3(4)
$\mathrm{Ru}(1)-\mathrm{H}(1)-\mathrm{Cu}(2)$	110.7(24)	$\mathrm{Ru}(1)-\mathrm{H}(2)-\mathrm{Ru}(3)$	111.2(41)	$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{C}(1)$	94.3(4)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	92.2(25)
$\mathrm{Ru}(1)-\mathrm{H}(2)-\mathrm{Cu}(2)$	113.6(30)	$\mathrm{Ru}(3)-\mathrm{H}(2)-\mathrm{Cu}(2)$	107.8(30)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	70.2(20)	$\mathbf{R u}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	58.6(1)
$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	63.6(1)	$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	63.0(1)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	35.0(25)	$\mathbf{R u}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	57.8(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	64.2(1)	$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{C}(5)$	100.6(4)	$\mathbf{R u}(4)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	60.1(1)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{Cu}(1)$	93.4(21)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(5)$	163.1(4)	$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(5)$	104.1(3)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Cu}(1)$	108.7(1)	$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{Cu}(1)$	57.4(1)
$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{C}(4)$	156.2(3)	$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(4)$	100.3(3)	$\mathbf{R u}(1)-\mathrm{Ru}(3)-\mathrm{Cu}(1)$	109.2(1)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{Cu}(2)$	33.0(22)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(4)$	94.6(3)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(4)$	92.5(5)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Cu}(2)$	105.0(1)	$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{Cu}(2)$	56.9(1)
$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{C}(6)$	105.2(3)	$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(6)$	97.8(3)	$\mathbf{R u}(1)-\mathbf{R u}(3)-\mathbf{C u}(2)$	59.5(1)	$\mathrm{Cu}(1)-\mathrm{Ru}(3)-\mathrm{Cu}(2)$	60.6(1)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(6)$	161.2(4)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(6)$	92.3(4)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	162.4(20)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	79.4(3)
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{C}(6)$	93.9(4)	$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(2)$	91.6(17)	$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(7)$	92.3(2)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	136.5(2)
$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(1)$	33.7(17)	$\mathbf{R u}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(1)$	58.0(1)	$\mathrm{Cu}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	75.1(3)	$\mathrm{Cu}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	134.7(3)
$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	73.7(15)	$\mathbf{R u}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	58.4(1)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	87.3(26)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	175.5(2)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	60.7(1)	$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{Cu}(1)$	97.6(16)	$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(8)$	117.1(2)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	122.0(2)
$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{Cu}(1)$	107.9(1)	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Cu}(1)$	109.2(1)	$\mathrm{Cu}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	66.9(2)	$\mathrm{Cu}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	72.2(2)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{Cu}(1)$	56.8(1)	$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{Cu}(2)$	37.4(16)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(8)$	99.9(3)	$\mathrm{H}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	104.3(20)
$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{Cu}(2)$	104.8(1)	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Cu}(2)$	59.7(1)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	91.4(3)	$\mathbf{R u}(4)-\mathbf{R u}(3)-\mathrm{C}(9)$	148.4(3)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{Cu}(2)$	56.8(1)	$\mathrm{Cu}(1)-\mathrm{Ru}(4)-\mathrm{Cu}(2)$	60.3(1)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	96.9(3)	$\mathrm{Cu}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	152.8(3)
$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{C}(10)$	168.2(15)	$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(10)$	85.4(3)	$\mathrm{Cu}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	132.7(4)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(9)$	91.4(4)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(10)$	142.6(3)	$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{C}(10)$	95.1(2)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(9)$	93.1(4)	$\mathrm{Ru}(4)-\mathrm{Cu}(1)-\mathrm{Ru}(3)$	65.9(1)
$\mathrm{Cu}(1)-\mathrm{Ru}(4)-\mathrm{C}(10)$	72.5(2)	$\mathrm{Cu}(2)-\mathrm{Ru}(4)-\mathrm{C}(10)$	132.7(2)	$\mathrm{Ru}(4)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	59.4(1)	$\mathrm{Ru}(3)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	59.6(1)
$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{C}(12)$	101.0(16)	$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	83.4(3)	$\mathrm{Ru}(4)-\mathrm{Cu}(1)-\mathrm{P}(1)$	139.4(1)	$\mathrm{Ru}(3)-\mathrm{Cu}(1)-\mathrm{P}(1)$	147.1(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(12)$	92.9(2)	$\mathbf{R u}(3)-\mathrm{Ru}(4)-\mathrm{C}(12)$	140.8(3)	$\mathrm{Cu}(2)-\mathrm{Cu}(1)-\mathrm{P}(1)$	144.3(1)	$\mathrm{H}(1)-\mathrm{Cu}(2)-\mathrm{H}(2)$	69.4(30)
$\mathrm{Cu}(1)-\mathrm{Ru}(4)-\mathrm{C}(12)$	157.9(2)	$\mathrm{Cu}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	136.4(3)	$\mathrm{H}(1)-\mathrm{Cu}(2)-\mathrm{Ru}(4)$	41.6(17)	$\mathrm{H}(2)-\mathrm{Cu}(2)-\mathrm{Ru}(4)$	80.7(26)
$\mathrm{C}(10)-\mathrm{Ru}(4)-\mathrm{C}(12)$	90.1(3)	$\mathrm{H}(1)-\mathrm{Ru}(4)-\mathrm{C}(11)$	83.9(17)	$\mathrm{H}(1)-\mathrm{Cu}(2)-\mathrm{Ru}(1)$	35.8(14)	$\mathrm{H}(2)-\mathrm{Cu}(2)-\mathrm{Ru}(1)$	36.5(22)
$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(11)$	175.2(2)	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(11)$	117.4(2)	$\mathrm{Ru}(4)-\mathrm{Cu}(2)-\mathrm{Ru}(1)$	65.0(1)	$\mathrm{H}(1)-\mathrm{Cu}(2)-\mathrm{Ru}(3)$	83.3(20)
$\mathbf{R u}(3)-\mathbf{R u}(4)-\mathrm{C}(11)$	121.6(2)	$\mathrm{Cu}(1)-\mathrm{Ru}(4)-\mathrm{C}(11)$	74.5(2)	$\mathrm{H}(2)-\mathrm{Cu}(2)-\mathrm{Ru}(3)$	39.2(16)	$\mathrm{Ru}(4)-\mathrm{Cu}(2)-\mathrm{Ru}(3)$	66.3(1)
$\mathrm{Cu}(2)-\mathrm{Ru}(4)-\mathrm{C}(11)$	72.6(2)	$\mathrm{C}(10)-\mathrm{Ru}(4)-\mathrm{C}(11)$	99.3(4)	$\mathrm{Ru}(1)-\mathrm{Cu}(2)-\mathrm{Ru}(3)$	65.5(1)	$\mathrm{H}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	101.8(18)
$\mathrm{C}(12)-\mathrm{Ru}(4)-\mathrm{C}(11)$	95.7(4)	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{H}(2)$	60.9(25)	$\mathrm{H}(2)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	98.8(16)	$\mathrm{Ru}(4)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	60.3(1)
$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	93.1(20)	$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	91.2(18)	$\mathrm{Ru}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	113.4(1)	$\mathrm{Ru}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	59.8(1)
$\mathbf{H}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	34.9(20)	$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	69.0(19)	$\mathrm{H}(1)-\mathrm{Cu}(2)-\mathrm{P}(2)$	128.6(20)	$\mathrm{H}(2)-\mathrm{Cu}(2)-\mathrm{P}(2)$	127.7(24)
$\mathbf{R u}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	58.3(1)	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	73.0 (16)	$\mathrm{Ru}(4)-\mathrm{Cu}(2)-\mathrm{P}(2)$	148.6(1)	$\mathrm{Ru}(1)-\mathrm{Cu}(2)-\mathrm{P}(2)$	127.9(1)
$\mathbf{H}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	33.9(18)	$\mathbf{R u}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	58.0(1)	$\mathrm{Ru}(3)-\mathrm{Cu}(2)-\mathrm{P}(2)$	143.4(1)	$\mathrm{Cu}(1)-\mathrm{Cu}(2)-\mathrm{P}(2)$	118.6(1)
$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	59.2(1)	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{Cu}(2)$	33.5(17)	$\mathrm{Cu}(1)-\mathrm{P}(1)-\mathrm{C}(111)$	114.3(3)	$\mathrm{Cu}(1)-\mathrm{P}(1)-\mathrm{C}(121)$	120.4(2)
$\mathbf{H}(2)-\mathrm{Ru}(1)-\mathrm{Cu}(2)$	29.9(19)	$\mathbf{R u}(2)-\mathrm{Ru}(1)-\mathrm{Cu}(2)$	101.6(1)	$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	102.4(3)	$\mathrm{Cu}(1)-\mathrm{P}(1)-\mathrm{C}(131)$	109.6(2)
$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{Cu}(2)$	55.3(1)	$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{Cu}(2)$	55.0(1)	$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	104.8(3)	$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	103.8(4)
$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	166.6(16)	$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$	106.1(20)	$\mathrm{Cu}(2)-\mathrm{P}(2)-\mathrm{C}(211)$	$117.5(3)$	$\mathrm{Cu}(2)-\mathrm{P}(2)-\mathrm{C}(261)$	113.8(4)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$	83.8(3)	$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{C}(2)$	141.0(3)	$\mathrm{Cu}(2)-\mathrm{P}(2)-\mathrm{C}(221)$	115.0(3)	$\mathrm{Cu}(2)-\mathrm{P}(2)-\mathrm{C}(231)$	112.9(4)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(2)$	94.4(3)	$\mathrm{Cu}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$	134.6(3)	$\mathrm{Cu}(2)-\mathrm{P}(2)-\mathrm{C}(241)$	112.1(4)	$\mathrm{Cu}(2)-\mathrm{P}(2)-\mathrm{C}(251)$	114.6(4)
$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	99.8(16)	$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	160.5(19)	$\mathrm{Ru}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	177.3(11)	$\mathrm{Ru}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	176.9(9)
$\mathbf{R u}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	86.5(3)	$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{C}(3)$	93.5(2)	$\mathrm{Ru}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	176.9(10)	$\mathrm{Ru}(4)-\mathrm{C}(10)-\mathrm{O}(10)$	175.3(6)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(3)$	142.5(3)	$\mathrm{Cu}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	132.1(3)	$\mathrm{Ru}(4)-\mathrm{C}(12)-\mathrm{O}(12)$	176.5(8)	$\mathrm{Ru}(4)-\mathrm{C}(11)-\mathrm{O}(11)$	172.0(6)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	92.9(4)	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	86.6(20)	$\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	176.1(10)	$\mathrm{Ru}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	175.8(9)
$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	88.0 (19)	$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	179.2(2)	$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	171.4(8)	$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	174.3(6)
$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{C}(1)$	121.4(2)	$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(1)$	121.2(2)	$\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{O}(8)$	170.1(7)	$\mathrm{Ru}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	177.5(10)

$\mathrm{Ag}-\mathrm{Ag}$ distances which are considered to indicate bonding in $\left[\mathrm{Ag}_{6}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{3}\left\{\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}\right\}\right][2.817(1)-3.065(1) \AA]^{14}$ and it is also comparable to the shorter $\mathrm{Ag}-\mathrm{Ag}$ separations in $\left[\mathrm{Ag}_{12} \mathrm{Au}_{13} \mathrm{Cl}_{6}\left(\mathrm{PPh}_{3}\right)_{12}\right]^{m+}[2.87(3)-3.54(3) \AA]{ }^{15}$ Moreover, the $\mathrm{Cu}(1)-\mathrm{Cu}(2)$ separation in (1) is similar to the $\mathrm{Cu}-\mathrm{Cu}$ distance in $\left[\mathrm{Cu}_{2} \mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{16}(\mathrm{NCMe})_{2}\right]$ [variously reported as 2.689, 2.693(1), and $2.691(1) \AA]^{16}$ and it is also comparable to the longer $\mathrm{Cu}-\mathrm{Cu}$ separations in the homonuclear species $\left[\mathrm{Cu}_{6} \mathrm{H}_{6}\left(\mathrm{PR}_{3}\right)_{6}\right]\left(\mathrm{R}=\mathrm{Ph}\right.$ or p-tolyl) $[2.632(6)-2.749(4) \AA] .{ }^{17}$

As expected, ${ }^{1}$ the lengths of the three unbridged $\mathrm{Ru}-\mathrm{Ru}$ vectors $[R u(1)-R u(2), R u(2)-R u(3)$, and $R u(2)-R u(4)]$ in the $R u_{4}$ tetrahedra of (1), (2), and (5) are altered very little by the change in coinage metals and they are considerably shorter than the three $\mathrm{Ru}-\mathrm{Ru}$ edges capped by $\mathbf{M}\left(\mathrm{PPh}_{3}\right)$ moieties or hydrido ligands $[R u(1)-R u(3), R u(1)-R u(4)$, and $R u(3)-R u(4)]$. Of these latter three $\mathrm{Ru}-\mathrm{Ru}$ separations, the length of the vector $[R u(3)-R u(4)]$ which acts as a common edge for the two capping coinage metal fragments is altered much more

Table 4. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses, for $\left[\mathrm{Ag}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathbf{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{2})$

$\mathrm{H}(1)-\mathrm{Ag}(2)$	$1.692(91)$
$\mathrm{H}(1)-\mathrm{Ru}(3)$	$1.802(85)$
$\mathrm{H}(2)-\mathrm{Ru}(1)$	$1.754(87)$
$\mathrm{Ag}(1)-\mathrm{Ag}(2)$	$2.857(1)$
$\mathrm{Ag}(1)-\mathrm{Ru}(4)$	$2.842(1)$
$\mathrm{Ag}(2)-\mathrm{Ru}(1)$	$2.980(1)$
$\mathrm{Ag}(2)-\mathrm{Ru}(4)$	$2.913(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.785(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.979(1)$
$\mathrm{Ru}(1)-\mathrm{C}(2)$	$1.875(11)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.806(1)$
$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.898(11)$

$\mathrm{Ag}(2)-\mathrm{H}(1)-\mathrm{Ru}(1)$	119.1(40)	$\mathrm{Ag}(2)-\mathrm{H}(1)-\mathrm{Ru}(3)$	111.0(31)
$\mathrm{Ru}(1)-\mathrm{H}(1)-\mathrm{Ru}(3)$	112.5(54)	$\mathrm{Ag}(2)-\mathrm{H}(2)-\mathrm{Ru}(1)$	116.2(33)
$\mathrm{Ag}(2)-\mathrm{H}(2)-\mathrm{Ru}(4)$	108.4(37)	$\mathrm{Ru}(1)-\mathrm{H}(2)-\mathrm{Ru}(4)$	112.2(51)
$\mathrm{Ag}(2)-\mathrm{Ag}(1)-\mathrm{Ru}(3)$	60.6(1)	$\mathrm{Ag}(2)-\mathrm{Ag}(1)-\mathrm{Ru}(4)$	61.5(1)
$\mathrm{Ru}(3)-\mathrm{Ag}(1)-\mathrm{Ru}(4)$	62.6(1)	$\mathrm{Ag}(2)-\mathrm{Ag}(1)-\mathrm{P}(1)$	140.9(1)
$\mathrm{Ru}(3)-\mathrm{Ag}(1)-\mathrm{P}(1)$	140.6(1)	$\mathrm{Ru}(4)-\mathrm{Ag}(1)-\mathrm{P}(1)$	149.1(1)
$\mathrm{H}(1)-\mathrm{Ag}(2)-\mathrm{H}(2)$	57.5(33)	$\mathrm{H}(1)-\mathrm{Ag}(2)-\mathrm{Ag}(1)$	94.4(27)
$\mathbf{H}(2)-\mathrm{Ag}(2)-\mathrm{Ag}(1)$	95.2(16)	$\mathrm{H}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(1)$	31.2(16)
$\mathbf{H}(2)-\mathbf{A g}(2)-\mathbf{R u}(1)$	31.9(22)	$\mathrm{Ag}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(1)$	109.0(1)
$\mathrm{H}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(3)$	35.7(23)	$\mathrm{H}(2)-\mathrm{Ag}(2)-\mathrm{Ru}(3)$	72.7(27)
$\mathrm{Ag}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(3)$	59.7(1)	$\mathrm{Ru}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(3)$	60.8(1)
$\mathrm{H}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(4)$	70.6(29)	$\mathrm{H}(2)-\mathrm{Ag}(2)-\mathrm{Ru}(4)$	36.7(15)
$\mathrm{Ag}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(4)$	59.0(1)	$\mathrm{Ru}(1)-\mathrm{Ag}(2)-\mathrm{Ru}(4)$	60.7(1)
$\mathrm{Ru}(3)-\mathrm{Ag}(2)-\mathrm{Ru}(4)$	61.5(1)	$\mathrm{H}(1)-\mathrm{Ag}(2)-\mathrm{P}(2)$	142.2(30)
$\mathbf{H}(2)-\mathbf{A g}(2)-\mathbf{P}(2)$	132.0(25)	$\mathrm{Ag}(1)-\mathrm{Ag}(2)-\mathrm{P}(2)$	117.4(1)
$\mathrm{Ru}(1)-\mathrm{Ag}(2)-\mathrm{P}(2)$	133.1(1)	$\mathrm{Ru}(3)-\mathrm{Ag}(2)-\mathrm{P}(2)$	153.7(1)
$\mathrm{Ru}(4)-\mathrm{Ag}(2)-\mathrm{P}(2)$	142.5(1)	$\mathbf{H}(1)-\mathrm{Ru}(1)-\mathrm{H}(2)$	56.3(36)
$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{Ag}(2)$	29.7(29)	$\mathbf{H}(2)-\mathrm{Ru}(1)-\mathrm{Ag}(2)$	31.9(26)
$\mathbf{H}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	91.4(33)	$\mathbf{H}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	92.2(22)
$\mathrm{Ag}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	105.1(1)	$\mathbf{H}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	34.1(33)
$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	70.3(25)	$\mathrm{Ag}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	57.9(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	58.3(1)	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	68.1(26)
$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	34.7(22)	$\mathrm{Ag}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	58.5(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	58.0 (1)	$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	59.7(1)
$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	88.2(33)	$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	86.5(23)
$\mathrm{Ag}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	73.9(3)	$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	178.6(3)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(1)$	121.5(3)	$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{C}(1)$	120.7(3)
$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	105.3(26)	$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$	161.6(26)
$\mathrm{Ag}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$	130.9(3)	$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$	87.9(4)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(2)$	94.3(3)	$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{C}(2)$	144.1(3)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	93.4(5)	$\mathrm{H}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	160.2(25)
$\mathrm{H}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	104.5(26)	$\mathrm{Ag}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	133.8(3)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	84.2(4)	$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(3)$	141.2(4)
$\mathrm{Ru}(4)-\mathrm{Ru}(1)-\mathrm{C}(3)$	93.4(3)	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	95.7(5)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	93.9(5)	$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	64.1(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(4)$	64.5(1)	$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{Ru}(4)$	63.8(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(4)$	97.8(4)	$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(4)$	104.8(4)
$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{C}(4)$	161.6(4)	$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(5)$	162.5(4)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(5)$	100.0(4)	$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{C}(5)$	102.8(4)
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{C}(5)$	93.2(5)	$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(6)$	101.9(4)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(6)$	159.1(4)	$\mathrm{Ru}(4)-\mathrm{Ru}(2)-\mathrm{C}(6)$	96.6(4)
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{C}(6)$	92.1(5)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(6)$	91.1(6)
$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{Ag}(1)$	92.1(25)	$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{Ag}(2)$	33.3(25)
$\mathrm{Ag}(1)-\mathrm{Ru}(3)-\mathrm{Ag}(2)$	59.7(1)	$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	33.3(23)
$\mathrm{Ag}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	109.4(1)	$\mathrm{Ag}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	61.3(1)

extensively by the changes in Group 1B metal than that of the other two edges. The $\mathrm{Cu}-\mathrm{Ru}$ separations in (1) [2.671(2)$2.809(2) \AA]$ are all significantly shorter than the corresponding $\mathrm{Ag}-\mathrm{Ru}[2.842(1)-2.980(1) \AA]$ and $\mathrm{Au}-\mathrm{Ru}$ [2.840(1)-3.091(1) \AA] distances in (2) and (5), respectively, but there is generally relatively little difference in length between equivalent $\mathrm{M}-\mathrm{Ru}$ edges in (2) and (5). For all three clusters, the $\mathbf{M}(2)-\mathrm{Ru}(1)$ separation is the longest $\mathrm{M}-\mathrm{Ru}$ distance and this value is considerably increased (ca. $0.11 \AA$) by the change from $\mathbf{M}=\mathbf{A g}$ to Au .

$\mathrm{Ru}(2)-\mathrm{C}(6)$	$1.873(14)$	$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.961(1)$
$\mathrm{Ru}(3)-\mathrm{C}(7)$	$1.879(9)$	$\mathrm{Ru}(3)-\mathrm{C}(8)$	$1.924(11)$
$\mathrm{Ru}(3)-\mathrm{C}(9)$	$1.883(10)$	$\mathrm{Ru}(4)-\mathrm{C}(10)$	$1.883(10)$
$\mathrm{Ru}(4)-\mathrm{C}(11)$	$1.898(11)$	$\mathrm{Ru}(4)-\mathrm{C}(12)$	$1.876(12)$
$\mathrm{P}(1)-\mathrm{C}(111)$	$1.823(11)$	$\mathrm{P}(1)-\mathrm{C}(121)$	$1.809(11)$
$\mathrm{P}(1)-\mathrm{C}(131)$	$1.835(10)$	$\mathrm{P}(2)-\mathrm{C}(211)$	$1.817(11)$
$\mathrm{P}(2)-\mathrm{C}(221)$	$1.829(10)$	$\mathrm{P}(2)-\mathrm{C}(231)$	$1.811(10)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.138(15)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.139(13)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.124(12)$	$\mathrm{C}(4)-\mathrm{O}(4)$	$1.145(15)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.138(15)$	$\mathrm{C}(6)-\mathrm{O}(6)$	$1.134(17)$
$\mathrm{C}(7)-\mathrm{O}(7)$	$1.135(11)$	$\mathrm{C}(8)-\mathrm{O}(8)$	$1.141(13)$
$\mathrm{C}(9)-\mathrm{O}(9)$	$1.130(12)$	$\mathrm{C}(10)-\mathrm{O}(10)$	$1.140(12)$
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.144(13)$	$\mathrm{C}(12)-\mathrm{O}(12)$	$1.138(15)$

$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	89.9(24)	$\mathrm{Ag}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	109.9(1)
$\mathrm{Ag}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	107.3(1)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	57.6(1)
$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	68.3(24)	$\mathrm{Ag}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	58.5(1)
$\mathrm{Ag}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	59.8(1)	$\mathbf{R u}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	60.3(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	58.0(1)	$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	160.7(25)
$\mathrm{Ag}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	71.5(3)	$\mathrm{Ag}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	131.2(3)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	142.8(3)	$\mathbf{R u}(2)-\mathbf{R u}(3)-\mathbf{C}(7)$	86.5(4)
$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(7)$	93.9(2)	$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	86.8(24)
$\mathrm{Ag}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	74.0(3)	$\mathrm{Ag}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	71.8(3)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	118.5(3)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	174.9(3)
$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(8)$	123.9(3)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(8)$	97.9(4)
$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	107.5(25)	$\mathrm{Ag}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	157.8(3)
$\mathrm{Ag}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	137.0(3)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	92.8(3)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	81.1(4)	$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(9)$	138.4(3)
$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(9)$	90.6(4)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(9)$	96.3(5)
$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{Ag}(1)$	93.9(28)	$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{Ag}(2)$	34.9(29)
$\mathrm{Ag}(1)-\mathrm{Ru}(4)-\mathrm{Ag}(2)$	59.5(1)	$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(1)$	33.0(31)
$\mathrm{Ag}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(1)$	109.4(1)	$\mathrm{Ag}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(1)$	60.8(1)
$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(2)$	90.0(31)	$\mathrm{Ag}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(2)$	110.5(1)
$\mathrm{Ag}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(2)$	106.6(1)	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(2)$	57.5(1)
$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	69.7(24)	$\mathrm{Ag}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	58.9(1)
$\mathrm{Ag}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	58.7(1)	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	59.9(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	58.2(1)	H(2)-Ru(4)-C(10)	159.9(24)
$\mathrm{Ag}(1)-\mathrm{Ru}(4)-\mathrm{C}(10)$	72.1(4)	$\mathrm{Ag}(2)-\mathrm{Ru}(4)-\mathrm{C}(10)$	131.0(3)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(10)$	137.8(3)	$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(10)$	81.9(3)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{C}(10)$	90.5(3)	H(2)-Ru(4)-C(11)	88.0(31)
$\mathrm{Ag}(1)-\mathrm{Ru}(4)-\mathrm{C}(11)$	69.0(3)	$\mathrm{Ag}(2)-\mathrm{Ru}(4)-\mathrm{C}(11)$	71.4(3)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(11)$	120.5(3)	$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(11)$	177.9(3)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{C}(11)$	120.4(3)	$\mathrm{C}(10)-\mathrm{Ru}(4)-\mathrm{C}(11)$	99.9(4)
$\mathbf{H}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	107.4(26)	$\mathrm{Ag}(1)-\mathrm{Ru}(4)-\mathrm{C}(12)$	151.9(3)
$\mathrm{Ag}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	136.8(4)	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(12)$	98.3(3)
$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	88.0(4)	$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{C}(12)$	145.7(4)
$\mathrm{C}(10)-\mathrm{Ru}(4)-\mathrm{C}(12)$	90.7(5)	$\mathrm{C}(11)-\mathrm{Ru}(4)-\mathrm{C}(12)$	93.2(5)
$\mathrm{Ag}(1)-\mathrm{P}(1)-\mathrm{C}(111)$	112.6(4)	$\mathrm{Ag}(1)-\mathrm{P}(1)-\mathrm{C}(121)$	119.1(3)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	104.2(4)	$\mathrm{Ag}(1)-\mathrm{P}(1)-\mathrm{C}(131)$	109.5(3)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	105.3(5)	$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	105.0(5)
$\mathrm{Ag}(2)-\mathrm{P}(2)-\mathrm{C}(211)$	111.9(4)	$\mathrm{Ag}(2)-\mathrm{P}(2)-\mathrm{C}(221)$	112.7(5)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	105.4(5)	$\mathrm{Ag}(2)-\mathrm{P}(2)-\mathrm{C}(231)$	116.3(4)
$\mathbf{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$	102.5(5)	$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(231)$	107.0(5)
$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	172.0(10)	$\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	175.2(11)
$\mathrm{Ru}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	176.2(10)	$\mathrm{Ru}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	177.0(12)
$\mathrm{Ru}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	175.8(12)	$\mathrm{Ru}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	178.4(14)
$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	175.6(7)	$\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{O}(8)$	171.6(10)
$\mathrm{Ru}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	176.0(8)	$\mathrm{Ru}(4)-\mathrm{C}(10)-\mathrm{O}(10)$	175.9(7)
$\mathrm{Ru}(4)-\mathrm{C}(11)-\mathrm{O}(11)$	171.0(10)	$\mathrm{Ru}(4)-\mathrm{C}(12)-\mathrm{O}(12)$	176.9(13)

Interestingly, the previously reported ${ }^{18}$ osmium analogue of (5) exists as two different isomeric forms, but, unfortunately, only one of these isomers (A) has been structurally characterized by an X-ray diffraction study and no evidence to suggest the structure of the second isomer (\mathbf{B}) is available. The i.r. spectrum of isomer $(\mathbf{A})^{18}$ is very similar to that of (5) (Table 1) and the X ray diffraction analysis confirms that the metal core geometry of the gold-osmium cluster is very closely related to the structure of (5), although it is thought ${ }^{18}$ that the equivalent Au -Os separation $[3.159(4) \AA]$ to $A u(2)-R u(1)$ in (5) may be too long
to be considered as a formal bond. Rather surprisingly, the $\mathrm{Au}-\mathrm{Au}$ distance in the osmium species $[2.793(4) \mathrm{A}$] is identical to that in (5) [2.791(1) $\AA]$, within the error limits. In contrast to those in (5), the two hydrido ligands in $\left[\mathrm{Au}_{2} \mathrm{Os}_{4}(\mu-\mathrm{H})_{2}-\right.$ $\left.(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are thought ${ }^{18}$ to edge-bridge the two $\mathrm{Os}-\mathrm{Os}$ vectors equivalent to $R u(1)-R u(3)$ and $R u(1)-R u(4)$. Unlike the gold-osmium species, no evidence for more than one isomeric form was found in the solid state or in solution for (1), (2), or (5).

As well as (1), (2), (5), and $\left[\mathrm{Au}_{2} \mathrm{Os}_{4}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{18}$ a number of other heteronuclear clusters are known ${ }^{3,16,19-23}$ to exhibit structures in which a Group 1B metal caps a triangular face of a polyhedron containing other different transition metals, and a second coinage metal, in close contact with the first, caps one face of the tetrahedron so formed. The copper-ruthenium species $\left[\mathrm{Cu}_{2} \mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{16}(\mathrm{NCMe})_{2}\right]^{16}$ contains this coinage metal arrangement, as do the gold mixedmetal clusters $\left[\mathrm{Au}_{2} \mathrm{M}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{8} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{2}\right.$] $(\mathrm{M}=\mathrm{Fe}, \mathrm{L}=$ $\mathrm{CO} ;{ }^{19} \mathrm{M}=\mathrm{Ru}, \mathrm{L}=\mathrm{CO}^{3.20}$ or $\left.\mathrm{PPh}_{3}{ }^{3}\right),\left[\mathrm{Au}_{2} \mathrm{Ru}_{3}\left(\mu_{3} \mathrm{C}=\mathrm{CH}-\right.\right.$ $\left.\left.\mathrm{Bu}^{1}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{21}\left[\mathrm{Au}_{2} \mathrm{Co}_{2} \mathrm{Ru}_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, ${ }^{19}\left[\mathrm{Au}_{2}-\right.$ $\left.\mathrm{CoRu}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{22}$ and $\left[\mathrm{Au}_{2} \mathrm{Ru}_{5} \mathrm{WC}(\mathrm{CO})_{17^{-}}\right.$ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]^{23}$

Having established the molecular structures of (1), (2), and (5), it is possible to interpret the variable-temperature n.m.r. spectra of these species (Table 2). A singlet, broadened by quadrupolar effects from the copper atoms, ${ }^{1,24}$ is observed in the ambient temperature ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (1). As there are two distinct phosphorus environments in the groundstate structure of the cluster (Figure 1), it is clear that, at ambient temperature in solution, (1) is undergoing some fluxional process which exchanges the PPh_{3} groups between the two different sites. At $-90^{\circ} \mathrm{C}$, however, two singlets are visible in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, consistent with the solid-state structure. The high-field hydrido ligand signal in the ambient temperature ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $(\mathbf{1})$ is a triplet $[J(\mathrm{PH}) 5 \mathrm{~Hz}]$, showing coupling to two equivalent phosphorus atoms. However, at $-90^{\circ} \mathrm{C}$, the ${ }^{1} \mathrm{H}$ n.m.r. hydrido ligand peak is a doublet $[J(\mathrm{PH}) 12 \mathrm{~Hz}]$ and this observation is consistent with the ground-state geometry, in which $\mathrm{P}(2)$ would be expected to show coupling to the hydrido ligands, but $\mathrm{P}(1)$ would not. The ${ }^{1} \mathrm{H}$ n.m.r. hydrido ligand signal for (1) retains the ${ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}$ coupling throughout the temperature range from $-90^{\circ} \mathrm{C}$ to room temperature, thus demonstrating that the fluxional process which averages the phosphorus environments must be intramolecular. However, no examples of intramolecular exchange of phosphine ligands between metal atoms in cluster compounds at ambient temperature have been previously reported. Therefore, we postulate that the actual metal framework of (1) is in motion and that it is the two copper atoms which are exchanging between the two distinct sites, taking the attached PPh_{3} groups with them. Similar intramolecular metal core arrangements have been previously proposed ${ }^{3-5,23}$ for a number of heteronuclear clusters containing two or three gold atoms and such a fluxional process has very recently been directly observed ${ }^{25}$ in the silver-ruthenium species $\left[\mathrm{Ag}_{2} \mathrm{Ru}_{4}\right.$ -$\left.\left(\mu_{3}-\mathrm{H}\right)_{2}\left\{\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{12}\right] \quad(n=1,2$, or 4$)$ by INEPT ${ }^{109} \mathrm{Ag}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. experiments.

The gold-ruthenium cluster (5) exhibits the same dynamic behaviour as (1). At ambient temperature, a singlet is visible in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum and the ${ }^{1} \mathrm{H}$ n.m.r. hydrido ligand signal is a triplet [$J(\mathrm{PH}) 5 \mathrm{~Hz}$]. However, spectra consistent with the ground-state structure cannot be obtained for (5), even at $-90^{\circ} \mathrm{C}$, although both the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. signal and the ${ }^{1} \mathrm{H}$ n.m.r. hydrido ligand peak are very broad at this temperature.

In the case of the silver-ruthenium cluster (2), the interpretation of the n.m.r. spectra is complicated by a second fluxional process. At ambient temperature, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. signal consists of two very broad peaks and the high field hydrido ligand peak in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum is a rather broad
triplet $\left[J(\mathrm{AgH})_{\mathrm{av}} 12 \mathrm{~Hz}\right]$, which shows no ${ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}$ coupling. However, at $-50^{\circ} \mathrm{C},{ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ coupling is observed and the hydrido ligand peak appears as a triplet of triplets $\left[J(\mathrm{AgH})_{\mathrm{av}} 14\right.$, $J(\mathrm{PH}) 5 \mathrm{~Hz}]$. These observations suggest that, at ambient temperature in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution, (2) is undergoing a fluxional process involving intermolecular exchange of PPh_{3} groups between clusters in addition to the intramolecular metal core rearrangement proposed for (1) and (5) and that only the latter process still operates at $-50^{\circ} \mathrm{C}$. The free energies of activation for the two dynamic processes are such that it is impossible to obtain a sharp ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum for the situation where only the intramolecular metal core rearrangement is in progress. Supporting the idea of phosphine ligand exchange, when one equivalent of free PPh_{3} is added to a sample of (2) in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of the mixture shows only one broad peak, with a chemical shift intermediate between that of the $\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)$ moieties in (2) and that of the free ligand. The detection of only one signal for an averaged PPh_{3} environment demonstrates that PPh_{3} groups bonded to the silver atoms in (2) can exchange with the free ligand in solution. Similar lability of phosphine groups bonded to silver atoms has been previously reported for other heteronuclear cluster compounds. ${ }^{1}$

At $-90^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra consistent with the ground-state structure of (2) can be obtained. The high-field hydrido ligand signal is a doublet of doublets, due to $\mathrm{Ag}(2)$ and $\mathrm{P}(2)$ coupling to the hydrido ligands $\left[J(\mathrm{AgH})_{\mathrm{av}} 27, J(\mathrm{PH}) 9\right.$ $\mathrm{Hz}]$. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum shows two phosphorus environments. The resonance for each environment is split into two doublets by the large ${ }^{109} \mathrm{Ag}-{ }^{31} \mathrm{P}$ and ${ }^{107} \mathrm{Ag}^{31} \mathrm{P}$ couplings through one bond, and these doublets are all further split by an extra, small ${ }^{107.109} \mathrm{Ag}-{ }^{31} \mathrm{P}$ coupling through two bonds. The magnitudes of the latter couplings are not sufficient to allow the two separate contributions from ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$ to be resolved.
It is interesting to compare the free energies of activation $\left(\Delta G^{\ddagger}\right)$ for the intramolecular metal core rearrangements of (1), (2), and (5). For (1) and (2), coalescence temperatures of -45 ± 5 and $-65 \pm 5^{\circ} \mathrm{C}$ give values of ΔG^{\ddagger} at the coalescence temperature of 43 ± 1 and $40 \pm 1 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. In the case of (1), band-shape analysis of the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra affords a more accurate value for $\Delta G^{\ddagger}, 40.9 \pm 0.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $298 \mathrm{~K} .{ }^{26}$ However, it is not possible to apply the technique to (2) because of the additional broadening of the spectra caused by the intermolecular PPh_{3} exchange. Ground-state spectra cannot be obtained for (5), but a value for $\Delta G^{\text {t }}$ at the coalescence temperature ($\mathrm{ca} .-90^{\circ} \mathrm{C}$) can be estimated by assuming that the difference in frequency between the two ground-state phosphorus environments for (5) is similar to that in (1) and (2). The value of ΔG^{\ddagger} is very insensitive to this frequency parameter and the approximation gives an estimate for ΔG^{\ddagger} of $c a .35 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Thus, ΔG^{\ddagger} for the intramolecular metal core rearrangements of (1), (2), and (5) falls in descending order of Group 1B metal congeners.

Johnson ${ }^{27}$ has very recently proposed that polyhedral rearrangements in cluster compounds occur via mechanisms which involve the cleavage of only one M-M contact at a time. Two mechanisms (labelled A and B in Figure 4) which minimize the breaking of $\mathrm{M}-\mathrm{M}$ contacts are possible for the coinage metal site exchange in (1), (2), and (5). Mechanism B is very closely related to the restricted Berry pseudo-rotation that we have previously proposed ${ }^{3}$ to explain similar skeletal rearrangements in the pentanuclear species $\left[\mathrm{Au}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)\right.$ $\left.(\mathrm{CO})_{8} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PPh}_{3}\right)$. In addition, we have very recently reported ${ }^{26}$ some indirect evidence to support mechanism B for the metal core rearrangements of (1), (2), and (5).

The ambient temperature ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of (1), (2), and (5) all show a singlet CO peak, indicating that a further fluxional process involving complete CO group site exchange

Table 5. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses, for $\left[\mathrm{Au}_{2} R u_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12}(\mathrm{PPh})_{2}\right](5)$

$\mathrm{Au}(1)-\mathrm{Au}(2)$	$2.791(1)$	$\mathrm{Au}(1)-\mathrm{Ru}(3)$	$2.844(1)$
$\mathrm{Au}(1)-\mathrm{Ru}(4)$	$2.840(1)$	$\mathrm{Au}(1)-\mathrm{P}(1)$	$2.294(4)$
$\mathrm{Au}(2)-\mathrm{Ru}(1)$	$3.091(1)$	$\mathrm{Au}(2)-\mathrm{Ru}(3)$	$2.859(1)$
$\mathrm{Au}(2)-\mathrm{Ru}(4)$	$2.949(1)$	$\mathrm{Au}(2)-\mathrm{P}(2)$	$2.275(4)$
$\mathrm{Au}(2)-\mathrm{H}(1)$	$2.038(105)$	$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.788(2)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.966(2)$	$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.948(2)$
$\mathrm{Ru}(1)-\mathrm{H}(1)$	$1.762(75)$	$\mathrm{Ru}(1)-\mathrm{H}(2)$	$1.869(86)$
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.923(23)$	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$1.863(29)$
$\mathrm{Ru}(1)-\mathrm{C}(3)$	$1.850(17)$	$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.821(2)$
$\mathrm{Ru}(2)-\mathrm{Ru}(4)$	$2.817(2)$	$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.925(17)$
$\mathrm{Ru}(2)-\mathrm{C}(5)$	$1.898(23)$	$\operatorname{Ru}(2)-\mathrm{C}(6)$	$1.878(15)$
$\operatorname{Ru}(3)-\mathrm{Ru}(4)$	$3.011(2)$	$\mathrm{Ru}(3)-\mathrm{H}(1)$	$1.846(96)$

$\mathrm{Ru}(3)-\mathrm{C}(7) \quad 1.87$	1.874(18)	$\mathrm{Ru}(3)-\mathrm{C}(8) \quad 1.897$	$1.897(16)$
$\mathrm{Ru}(3)-\mathrm{C}(9) \quad 1.8$	1.892(17)	$\mathrm{Ru}(4)-\mathrm{H}(2) \quad 1.847$	1.847(103)
$\mathrm{Ru}(4)-\mathrm{C}(10) \quad 1$.	1.903(22)	$\mathrm{Ru}(4)-\mathrm{C}(11) \quad 1.928$	1.928(16)
$\mathrm{Ru}(4)-\mathrm{C}(12) \quad 1$.	1.867(16)	$\mathrm{P}(1)-\mathrm{C}(111) \quad 1.856$	1.856(18)
$\mathrm{P}(1)-\mathrm{C}(121) \quad 1.78$	1.782(15)	$\mathrm{P}(1)-\mathrm{C}(131) \quad 1.804$	1.804 (14)
$\mathrm{P}(2)-\mathrm{C}(211) \quad 1$.	1.824(17)	$\mathrm{P}(2)-\mathrm{C}(221) \quad 1.827$	1.827(14)
$\mathrm{P}(2)-\mathrm{C}(231) \quad 1$.	1.805(14)	$\mathrm{C}(1)-\mathrm{O}(1) \quad 1.138$	$1.138(31)$
$\mathrm{C}(2)-\mathrm{O}(2) \quad 1$	$1.177(39)$	$\mathrm{C}(3)-\mathrm{O}(3) \quad 1.170$	1.170(22)
$\mathrm{C}(4)-\mathrm{O}(4) \quad 1$.	1.117(22)	$\mathrm{C}(5)-\mathrm{O}(5) \quad 1.134$	1.134(28)
$\mathrm{C}(6)-\mathrm{O}(6) \quad 1$	1.150(19)	$\mathrm{C}(7)-\mathrm{O}(7) \quad 1.145$	1.145(24)
$\mathrm{C}(8)-\mathrm{O}(8) \quad 1$	1.150(21)	$\mathrm{C}(9)-\mathrm{O}(9) \quad 1.136$	$1.136(21)$
$\mathrm{C}(10)-\mathrm{O}(10) \quad 1$	1.127(27)	$\mathrm{C}(11)-\mathrm{O}(11) \quad 1.141$	$1.141(20)$
$\mathrm{C}(12)-\mathrm{O}(12) \quad 1$.	1.138(20)		
$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{H}(1)$	77.6(31)	$\mathrm{Au}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	70.7(5)
$\mathrm{Au}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	129.2(5)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	144.9(5)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	88.5(5)	$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(7)$	96.9(5)
$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	173.7(31)	$\mathrm{Au}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	78.7(5)
$\mathrm{Au}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	72.0(5)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	118.9 (6)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	173.1(6)	$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(8)$	126.9(5)
$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	85.2(30)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(8)$	95.8(8)
$\mathrm{Au}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	159.5(6)	$\mathrm{Au}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	136.3(6)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	91.5(6)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	81.8(5)
$\mathrm{Ru}(4)-\mathrm{Ru}(3)-\mathrm{C}(9)$	138.0 (5)	$\mathrm{H}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	94.2(34)
$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(9)$	92.0 (8)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(9)$	92.6(7)
$\mathrm{Au}(1)-\mathrm{Ru}(4)-\mathrm{Au}(2)$	57.6(1)	$\mathrm{Au}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(1)$	109.6(1)
$\mathrm{Au}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(1)$	63.2(1)	$A u(1)-R u(4)-R u(2)$	108.2(1)
$\mathrm{Au}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(2)$	107.0(1)	$\mathbf{R u}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(2)$	57.8(1)
$\mathrm{Au}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	58.1(1)	$\mathrm{Au}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	57.3(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	59.7(1)	$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	57.8(1)
$\mathrm{Au}(1)-\mathrm{Ru}(4)-\mathrm{H}(2)$	123.1(28)	$\mathrm{Au}(2)-\mathrm{Ru}(4)-\mathrm{H}(2)$	65.5(28)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{H}(2)$	37.8(27)	$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{H}(2)$	89.1 (32)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{H}(2)$	93.4(24)	$\mathrm{Au}(1)-\mathrm{Ru}(4)-\mathrm{C}(10)$	68.6(5)
$\mathrm{Au}(2)-\mathrm{Ru}(4)-\mathrm{C}(10)$	126.2(5)	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(10)$	145.2(5)
$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(10)$	88.9(5)	$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{C}(10)$	95.5(5)
$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{C}(10)$	168.1(29)	$\mathrm{Au}(1)-\mathrm{Ru}(4)-\mathrm{C}(11)$	76.9(5)
$\mathrm{Au}(2)-\mathrm{Ru}(4)-\mathrm{C}(11)$	$72.1(5)$	$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(11)$	117.2(6)
$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(11)$	173.6(5)	$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{C}(11)$	124.4(4)
$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{C}(11)$	84.8(32)	$\mathrm{C}(10)-\mathrm{Ru}(4)-\mathrm{C}(11)$	96.6(7)
$\mathrm{Au}(1)-\mathrm{Ru}(4)-\mathrm{C}(12)$	157.7(6)	$\mathrm{Au}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	140.2(6)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{C}(12)$	92.5(6)	$\mathrm{Ru}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	81.3(5)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{C}(12)$	138.1(5)	$\mathrm{H}(2)-\mathrm{Ru}(4)-\mathrm{C}(12)$	76.1(27)
$\mathrm{C}(10)-\mathrm{Ru}(4)-\mathrm{C}(12)$	92.0(8)	$\mathrm{C}(11)-\mathrm{Ru}(4)-\mathrm{C}(12)$	95.3(7)
$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}(111)$	115.9(5)	$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}(121)$	112.5(6)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$) 104.7(8)	$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}(131)$	112.5(5)
$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(131)$	103.9(7)	$\mathrm{C}(121)-\mathrm{P}(1)-\mathrm{C}(131)$	106.4(7)
$\mathrm{Au}(2)-\mathrm{P}(2)-\mathrm{C}(211)$	111.4(4)	$\mathrm{Au}(2)-\mathrm{P}(2)-\mathrm{C}(221)$	114.9(5)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$) $103.8(7)$	$\mathrm{Au}(2)-\mathrm{P}(2)-\mathrm{C}(231)$	114.8(5)
$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(231)$) 104.7(7)	$\mathrm{C}(221)-\mathrm{P}(2)-\mathrm{C}(231)$	106.3(6)
$\mathrm{Au}(2)-\mathrm{H}(1)-\mathrm{Ru}(1)$	108.7(38)	$\mathrm{Au}(2)-\mathrm{H}(1)-\mathrm{Ru}(3)$	94.7(49)
$\mathrm{Ru}(1)-\mathrm{H}(1)-\mathrm{Ru}(3)$	110.6(59)	$\mathrm{Ru}(1)-\mathrm{H}(2)-\mathrm{Ru}(4)$	105.0(49)
$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	170.2(17)	$\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	177.9(25)
$\mathrm{Ru}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	176.8(19)	$\mathrm{Ru}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	177.1(21)
$\mathrm{Ru}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	174.4(14)	$\mathrm{Ru}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	173.9(14)
$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	172.6(14)	$\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{O}(8)$	174.0(15)
$\mathrm{Ru}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	173.3(15)	$\mathrm{Ru}(4)-\mathrm{C}(10)-\mathrm{O}(10)$	170.9(15)
$\mathrm{Ru}(4)-\mathrm{C}(11)-\mathrm{O}(11)$) 171.6(13)	$\mathrm{Ru}(4)-\mathrm{C}(12)-\mathrm{O}(12)$	176.1(14)

occurs for these species. At $-90^{\circ} \mathrm{C}$, it is possible to obtain a pattern of CO signals consistent with the ground-state structures for (1) and (2), but only two, very considerably broadened, peaks are visible for (5). Thus, $\Delta G^{\text {t }}$ for the CO group site exchange seems to be higher for the clusters containing the two lighter coinage metals.

Experimental

All reactions and manipulations were performed under an atmosphere of dry oxygen-free nitrogen, using Schlenk-tube techniques. ${ }^{28}$ Solvents were freshly distilled under nitrogen
from the usual drying agents immediately before use. Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. Established methods were used to prepare the salt $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Ru}_{4}(\mu\right.$ $\left.\mathrm{H})_{2}(\mathrm{CO})_{12}\right], 9$ and the complexes $\left[\mathrm{Cu}\left(\mathrm{NCMe}_{4}\right] \mathrm{PF}_{6}{ }^{29}\right.$ and $\left[\mathrm{AgI}\left(\mathrm{PPh}_{3}\right)\right] .{ }^{30}$ The compounds $\left[\mathrm{Ag}(\mathrm{NCMe})_{4}\right] \mathrm{PF}_{6}{ }^{29}[\mathrm{CuCl}-$ $\left.\left(\mathrm{PPh}_{3}\right)\right],^{31}$ and $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]^{32}$ were synthesized by adaptation of published routes. Analytical and other physical data for the new compounds are presented in Table 1, together with their i.r. spectra. Table 2 summarizes the results of n.m.r. spectroscopy measurements.

Infrared spectra were recorded on a Nicolet FT MX-1 spectrophotometer. Hydrogen-1 and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra

Table 6. Crystal structure analyses of (1), (2), and (5)

Cluster
(a) Data collection ${ }^{a}$

Crystal colour and habit
Crystal size/mm
2θ range ${ }^{\circ}$
Scan method
Scan speed range/ ${ }^{\circ} \mathrm{min}^{-1}$
No. of azimuthal scan data
Transmission coefficient range
No. of data collected
No. of unique data
No. of 'observed' data (n.o.)
'Observed' criterion, $n[I>n \sigma(I)]$
(1). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Red prism
$0.5 \times 0.25 \times 0.1$
$4-50$
$\theta-2 \theta$
$2-29.3$
210
$0.372-0.491$
8543
7762
6300
2.5
(2). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Red prism	Red rod
$0.38 \times 0.3 \times 0.2$	$0.5 \times 0.22 \times 0.15$
$4-50$	$4-45$
$\theta-2 \theta$	Wyckof ω
$2-29.3$	$2.9-29.3$
212	-
$0.487-0.621$	$0.093-0.360$
7528	7928
6694	7105
5813	4468
2.5	3.0

(5). $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Red rod
$0.5 \times 0.22 \times 0.15$
4-45
2.9-29.3
$0.093-0.360$
7928 4468 3.0 Disordered phenyl C, C of $\mathrm{CH}_{543} \mathrm{Cl}_{2}, \mathrm{H}$ 543
0.042
0.044
0.0007
1.32
1.00
$\mathrm{Ag}, \mathrm{Ru}, \mathrm{C}, \mathrm{O}, \mathrm{P}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}$
633
0.047
0.048
0.0007
1.52
1.3
(b) Structure solution and refinement ${ }^{b}$

Anisotropic atoms
Isotropic atoms
No. of variables (n.v.)
R
R^{\prime}
g
S
Largest final difference electron
\quad density features $/ \mathrm{e} \AA^{-3}$
${ }^{a}$ Data were collected at room temperature on Nicolet $P 3 m$ diffractometers for unique portions of reciprocal space, using graphite-monochromated X-radiation. ${ }^{b}$ Structures were solved by conventional Patterson and Fourier techniques and refined by blocked-cascade full-matrix least squares. $R=\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\left\|/ \Sigma\left|F_{\mathrm{o}}\right|, R^{\prime}=\Sigma \boldsymbol{w}^{\frac{1}{2}}| | F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\| / \boldsymbol{\Sigma}^{w^{\frac{1}{2}}\left|F_{\mathrm{o}}\right|, S=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma(\text { n.o. }- \text { n.v. })\right]^{\frac{1}{2}} .}\right.\right.\right.$

Mechanism B

Figure 4. Two possible mechanisms for the coinage metal site exchange in (1), (2), and (5). Both mechanisms minimize the breaking of metal-metal contacts, as proposed by Johnson. ${ }^{27}$ All of the ligands have been omitted for clarity, but both mechanisms must also involve a concomitant siteexchange process for the two hydrido ligands
were measured on a JEOL FX 200 spectrometer and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra on a JEOL FX 90Q instrument. Product separation by column chromatography was performed on Aldrich Florisil ($100-200$ mesh) or B. D. H. alumina (Brockman activity II).

Synthesis of the Compounds $\left[\mathrm{M}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ($\mathrm{M}=\mathrm{Cu}$ or Ag).-A dichloromethane ($70 \mathrm{~cm}^{3}$) solution of
$\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{12}\right](1.20 \mathrm{~g}, 0.66 \mathrm{mmol})$ at $-30^{\circ} \mathrm{C}$ was treated with a solution of $\left[\mathrm{Cu}(\mathrm{NCMe})_{4}\right] \mathrm{PF}_{6}(0.49 \mathrm{~g}, 1.32$ mmol) in dichloromethane ($50 \mathrm{~cm}^{3}$) and then, after stirring the reaction mixture at $-30^{\circ} \mathrm{C}$ for 1 min , a dichloromethane (30 cm^{3}) solution of $\mathrm{PPh}_{3}(0.35 \mathrm{~g}, 1.34 \mathrm{mmol})$ was added. The mixture was allowed to warm to ambient temperature with stirring and the solvent was then removed under reduced pressure. The crude residue was extracted with dichloro-

Table 7. Atomic positional parameters (fractional co-ordinates) $\left(\times 10^{4}\right)$ for (1) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Ru}(2)$	1846 (1)	$2345(1)$	975(1)	C(132)	$7183(6)$	2396 (5)	$1420(5)$
$\mathrm{Ru}(4)$	3590 (1)	$3062(1)$	886(1)	C(133)	7942	2742	678
$\mathrm{Ru}(1)$	$1457(1)$	4 056(1)	1 648(1)	C(134)	8613	2118	106
Ru(3)	2 435(1)	2 125(1)	2 670(1)	C(135)	8525	1146	275
$\mathrm{Cu}(1)$	4 497(1)	1 977(1)	2 322(1)	C(136)	7765	800	1017
$\mathrm{Cu}(2)$	3 173(1)	$3714(1)$	2 478(1)	C(131)	7094	1424	1590
$P(1)$	6 065(2)	1 039(1)	2 565(1)	C(212)	3 440(7)	6 318(6)	$1728(6)$
\mathbf{P} (2)	3 490(1)	4 643(1)	3 268(1)	C(213)	3526	7277	1286
C(5)	2 499(9)	$1141(8)$	596(6)	C(214)	3850	7840	1730
C(4)	579(8)	1 929(7)	$1549(6)$	C(215)	4086	7444	2616
C(6)	$1451(7)$	2 921(7)	-183(6)	C(216)	3999	6486	3058
C(10)	4376 (7)	$1878(5)$	533(5)	C(211)	3676	5923	2614
C(12)	3 462(6)	3 612(6)	-370(5)	C(262)	3 511(8)	6 078(6)	$1750(6)$
C(11)	4 707(5)	3 658(5)	837(5)	C(263)	3452	7049	1266
C(2)	83(6)	$3837(7)$	2 090(6)	C(264)	3207	7798	1761
C(3)	1 207(6)	$4736(6)$	455(6)	C(265)	3022	7577	2741
C(1)	1 194(6)	5 235(6)	2 131(6)	C(266)	3081	6607	3225
C(7)	3 028(7)	859(6)	2 409(5)	C(261)	3326	5857	2729
$\mathrm{C}(8)$	$2939(6)$	1 993(5)	3 765(5)	C(222)	5 553(7)	4 879(6)	2 952(6)
C(9)	1 184(7)	$1737(8)$	3 368(6)	C(223)	6563	4661	3105
$\mathrm{O}(5)$	$2855(8)$	406(5)	378(5)	C(224)	6871	3865	3801
O(4)	-154(6)	1640 (7)	1890 (5)	C(225)	6168	3287	4345
$\mathrm{O}(6)$	$1189(7)$	3 239(6)	-889(5)	C(226)	5158	3505	4192
$\mathrm{O}(10)$	4875 (5)	1 204(4)	263(4)	C(221)	4850	4301	3496
$\mathrm{O}(12)$	3 438(5)	3 947(5)	-1148(4)	C(232)	$3058(6)$	4 709(7)	5 212(6)
O(11)	$5366(4)$	4 044(4)	699(4)	C(233)	2415	4672	6105
$\mathrm{O}(2)$	-748(4)	3 752(7)	$2372(5)$	C(234)	1441	4445	6278
$\mathrm{O}(3)$	$1093(5)$	5 188(5)	-277(4)	C(235)	1109	4255	5558
$\mathrm{O}(1)$	948(5)	5960 (5)	$2347(5)$	C(236)	1751	4293	4665
O(7)	3 362(7)	80(4)	$2331(4)$	C(231)	2725	4520	4491
$\mathrm{O}(8)$	3140 (5)	$1833(4)$	4 491(4)	C(242)	$1849(8)$	5 937(6)	4 292(7)
O(9)	450(6)	1501 (8)	3 814(5)	C(243)	1011	6107	5040
C(111)	6 213(6)	-253(5)	2 603(5)	C(244)	691	5320	5713
C(112)	$5883(10)$	- 523(6)	$1949(6)$	C(245)	1209	4362	5638
C(113)	5 981(13)	-1500(7)	$1959(7)$	C(246)	2046	4192	4890
C(114)	6 443(11)	-2 201(7)	2 615(7)	C(241)	2366	4979	4217
C(115)	6756 (9)	-1954(6)	3 274(7)	C(252)	4 587(7)	3 900(8)	4 677(6)
C(116)	6 659(7)	-980(5)	3 258(5)	C(253)	5504	3455	5002
C(121)	$6521(5)$	$1013(5)$	3 610(5)	C(254)	6449	3275	4364
C(122)	$5823(6)$	943(5)	4 467(5)	C(255)	6476	3540	3401
C(123)	6 156(7)	820(6)	5 292(6)	C(256)	5559	3985	3076
C(124)	7 184(7)	758(6)	5 264(6)	C(251)	4614	4165	3714
C(125)	$7881(7)$	827(7)	4 412(7)	C	-385(18)	8 209(17)	$3787(18)$
C(126)	7 564(6)	952(6)	3 578(6)	$\mathrm{Cl}(1)$	- 229(9)	$8715(11)$	2 405(10)
				$\mathrm{Cl}(2)$	809(12)	$8857(11)$	3 295(14)

methane-diethyl ether ($1: 4 ; 50 \mathrm{~cm}^{3}$ portions) until the extracts were no longer coloured red and the combined extracts were then filtered through a Celite pad ($c a .1 \times 3 \mathrm{~cm}$). After removal of the solvent under reduced pressure, the residue was dissolved in dichloromethane-light petroleum (1:1) and chromatographed at $-20^{\circ} \mathrm{C}$ on a Florisil column ($20 \times 3 \mathrm{~cm}$). Elution with dichloromethane-light petroleum ($1: 1$) afforded one dark red fraction, which, after removal of the solvent under reduced pressure and crystallization of the residue from dichloro-methane-light petroleum, yielded dark red microcrystals of $\left[\mathrm{Cu}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (1) (0.70 g).

Dark red microcrystals of $\left[\mathrm{Ag}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (2) $(0.72 \mathrm{~g})$ were synthesized by the same procedure, using $\left[\mathrm{Ag}(\mathrm{NCMe})_{4}\right] \mathrm{PF}_{6}(0.55 \mathrm{~g}, 1.32 \mathrm{mmol})$ in place of [Cu$\left.(\mathrm{NCMe})_{4}\right] \mathrm{PF}_{6}$. The chromatography was performed on an alumina column ($20 \times 3 \mathrm{~cm}$) at $-20^{\circ} \mathrm{C}$.

Alternatively, compounds (1) ($0.29 \mathrm{~g}, 50 \%$) and (2) $(0.32 \mathrm{~g}$, 52%) can also be synthesized, in reduced yield, by the route described below for the gold-ruthenium cluster (5). The complexes $\left[\mathrm{CuCl}\left(\mathrm{PPh}_{3}\right)\right](0.31 \mathrm{~g}, 0.86 \mathrm{mmol})$ and $\left[\mathrm{AgI}\left(\mathrm{PPh}_{3}\right)\right]$
($0.42 \mathrm{~g}, 0.85 \mathrm{mmol}$) were utilized for (1) and (2), respectively, instead of $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ and the conditions for chromatography and crystallization were the same as those described above.

Synthesis of the Compound $\left[\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$.-An acetone $\left(50 \mathrm{~cm}^{3}\right)$ solution of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2^{-}}$ $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{12}\right](0.76 \mathrm{~g}, 0.42 \mathrm{mmol})$ was treated with a dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ solution of $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.42 \mathrm{~g}$, $0.85 \mathrm{mmol})$ and solid $\mathrm{TIPF}_{6}(0.50 \mathrm{~g}, 1.43 \mathrm{mmol})$ and the mixture was stirred at room temperature for 0.25 h . After filtration of the dark red mixture through a Celite pad (ca. $1 \times 3 \mathrm{~cm}$), the solvent was removed under reduced pressure and the crude residue was dissolved in dichloromethane-light petroleum (1:2). Chromatography on an alumina column ($20 \times 3 \mathrm{~cm}$), eluting with dichloromethane-light petroleum (1:2), afforded a dark red fraction containing the product, followed by a small dark green fraction containing [$\mathrm{Au}_{3} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{3}$] $(0.05 \mathrm{~g}, 6 \%)$. After removal of the solvent from the first fraction under reduced pressure, crystallization of the residue from

Table 8. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) for (2) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Ag}(1)$	4 544(1)	$1928(1)$	2 270(1)	C(116)	$6767(8)$	$-1026(7)$	3 252(7)
$\mathrm{Ag}(2)$	3 232(1)	$3765(1)$	2410 (1)	C(121)	6 595(7)	946(6)	3 569(6)
$\mathrm{Ru}(1)$	1456(1)	4 050(1)	$1569(1)$	C(122)	7 605(7)	872(7)	3 563(7)
Ru(2)	$1791(1)$	$2392(1)$	941(1)	C(123)	$7876(9)$	733(8)	4 418(9)
Ru(3)	3 554(1)	$3044(1)$	756(1)	C(124)	7 169(10)	680(7)	5 272(8)
$\mathrm{Ru}(4)$	$2385(1)$	2 116(1)	2 636(1)	C(125)	6 166(10)	765(8)	5 277(8)
$\mathrm{P}(1)$	6 200(2)	961(2)	2 527(2)	C(126)	$5889(8)$	876(7)	4 428(7)
$\mathrm{P}(2)$	$3618(2)$	$4641(2)$	3 293(2)	C(131)	7 218(8)	$1362(8)$	1 507(7)
C(1)	$1231(8)$	$5180(7)$	$2033(8)$	C(132)	7 949(10)	747(10)	$1007(9)$
C(2)	1 196(7)	4 769(7)	376(8)	C(133)	8 673(11)	$1133(11)$	243(9)
C(3)	108(7)	3 858(8)	$2085(7)$	C(134)	$8703(12)$	2037(16)	-2(11)
C(4)	$1402(9)$	2 992(8)	-240(7)	C(135)	7 988(10)	2 657(11)	520(10)
C(5)	2 406(9)	$1206(8)$	606(7)	C(136)	7 253(10)	$2322(9)$	1 206(10)
C(6)	538(10)	2 007(9)	$1515(8)$	C(211)	4 905(8)	4 161(7)	3 502(7)
C(7)	4311 (7)	$1868(6)$	461(6)	C(212)	5 732(9)	4 318(11)	2748 (10)
C(8)	4 696(7)	3 605(7)	594(7)	C(213)	6720 (12)	3 908(12)	2 801(14)
C(9)	3 391(8)	3 556(7)	-507(7)	C(214)	6 923(12)	3 377(12)	3 643(12)
C(10)	3 030(8)	891(7)	2 398(6)	C(215)	6 169(10)	3 174(8)	4 374(11)
C(11)	$2791(7)$	$1978(7)$	3 772(6)	C(216)	5 167(10)	3 511(8)	4 303(9)
C(12)	1 168(9)	1 688(9)	3 305(8)	C(221)	2756 (9)	4 593(7)	4 479(7)
$\mathrm{O}(1)$	988(7)	$5874(6)$	2 285(7)	C(222)	3 034(11)	4 754(8)	5 214(8)
O(2)	1 103(6)	5 223(6)	-363(6)	C(223)	2 356(14)	4 667(10)	$6137(9)$
$\mathrm{O}(3)$	-718(6)	3 796(7)	2383 (6)	C(224)	$1393(12)$	4 453(12)	6 226(13)
$\mathrm{O}(4)$	$1161(8)$	3 315(7)	-953(6)	C(225)	1 188(11)	4 270(11)	5 534(11)
$\mathrm{O}(5)$	$2719(8)$	484(6)	404(6)	C(226)	$1877(8)$	4316 (8)	4 688(9)
O(6)	-227(7)	$1788(8)$	$1876(7)$	C(231)	$3631(8)$	5 898(7)	$2727(7)$
O(7)	4 785(6)	1190 (5)	224(5)	C(232)	3900 (13)	$6469(9)$	3 159(10)
$\mathrm{O}(8)$	5389 (5)	3 948(5)	380(6)	C(233)	3 908(16)	7430 (11)	2 695(11)
O(9)	$3351(6)$	3 838(6)	- 1283 (5)	C(234)	3 624(11)	$7804(8)$	$1863(9)$
O(10)	3 384(6)	127(5)	$2306(5)$	C(235)	3 421(9)	7 279(8)	$1415(9)$
O(11)	2 938(7)	$1826(6)$	4 515(5)	C(236)	3 419(8)	6 318(8)	$1852(8)$
$\mathrm{O}(12)$	440(7)	1 427(7)	3749 (6)	$\mathrm{Cl}(1)$	884(31)	7 291(31)	$4425(31)$
C(111)	6 336(7)	-307(7)	2 589(6)	C	27(29)	8 108(29)	3 728(27)
C(112)	$5980(9)$	-553(8)	$1945(7)$	$\mathrm{Cl}(3)$	-200(25)	$8392(24)$	2 633(24)
C(113)	$6068(11)$	$-1484(8)$	$1972(8)$	$\mathrm{Cl}(4)$	544(28)	$9000(26)$	2 626(26)
C(114)	6 517(10)	-2 204(8)	2 634(8)	$\mathrm{Cl}(5)$	845(25)	8 894(24)	3 540(27)
C(115)	$6822(11)$	-1979(8)	3 296(8)				

dichloromethane-light petroleum yielded dark red microcrystals of $\left[\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right](5)(0.42 \mathrm{~g})$.

Crystal Structure Determinations for (1) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2},(\mathbf{2}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and (5). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.-Suitable crystals of (1). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and (2). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were grown from dichloromethane-light petroleum by slow layer diffusion at $-20^{\circ} \mathrm{C}$. Crystals of (5) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained from dichloromethane-diethyl ether-light petroleum, using the same technique.

Crystal data: for (1) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{C}_{48} \mathrm{H}_{32} \mathrm{Cu}_{2} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $M=1479.0$, triclinic, space group $P \overline{1}$ (no. 2), $a=13.634(4)$, $b=14.485(5), c=15.084(7) \AA, \alpha=74.78(2), \beta=74.59(2)$, $\gamma=74.37(2)^{\circ}, U=2706(1) \AA^{3}, Z=2, D_{\mathrm{c}}=1.81 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1444, \lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=20.6 \mathrm{~cm}^{-1}$.

For (2). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\quad \mathrm{C}_{48} \mathrm{H}_{32} \mathrm{Ag}_{2} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $M=1567.6$, triclinic, space group $P \overline{1}$ (no. 2), $a=13.954(4)$, $b=14.928(3), c=15.103(3) \AA, \alpha=72.21(2), \beta=72.64(2)$, $\gamma=73.36(2)^{\circ}, U=2792(1) \AA^{3}, Z=2, D_{\mathrm{c}}=1.86 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1516, \lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=19.2 \mathrm{~cm}^{-1}$.

For (5). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\quad \mathrm{C}_{48} \mathrm{H}_{32} \mathrm{Au}_{2} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Ru}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $M=1745.8$, monoclinic, space group $I 2 / a$ (non-standard setting of no. 15), $a=23.494(5), b=13.334(3)$, $c=36.220(7)$ $\AA, \beta=103.50(2)^{\circ}, U=11032(4) \AA^{3}, Z=8, D_{c}=2.10 \mathrm{~g}$ $\mathrm{cm}^{-3}, \quad F(000)=6239, \quad \bar{\lambda}=0.71069 \AA, \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=64.5$ cm^{-1}; crystal faces [distance from origin (mm)] (100) [0.08], (T00) [0.08], (001) [0.11], (00T) [0.11], (1 T0) [0.25], (11T) [0.15].
Table 6 lists important details of the structure determinations
of (1). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and (5) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. In each case, crystals were sealed, under N_{2}, in thin-walled glass capillaries for X-ray measurements. Absorption corrections were applied, based on azimuthal scan data for (1). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and (2) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and by Gaussian quadrature, based on measured crystal shape, for (5) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Refinement was by blocked-cascade full-matrix least squares, with data assigned weights, $w=\left[\sigma_{c}{ }^{2}\left(F_{0}\right)+\right.$ $\left.g F_{\mathrm{o}}^{2}\right]^{-1}$ where $\sigma_{\mathrm{c}}^{2}\left(F_{\mathrm{o}}\right)$ is based on counting statistics alone and g was chosen to give minimum variation of $\Sigma w\left(\left|F_{\mathrm{o}}\right|-F_{\mathrm{c}} \mid\right)^{2}$ as a function of $\left|F_{\mathrm{o}}\right|$. Complex neutral-atom scattering factors were taken from ref. 33 and all calculations were carried out with the programs of the SHELXTL package ${ }^{34}$ on a Nicolet $R 3 m / E$ system. Final positional parameters for refined atoms are given in Tables 7, 8, and 9 for (1) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and (5) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, respectively. For (1) and (2), the $\mu_{3}-\mathrm{H}$ atoms were constrained to have $\mathrm{Ru}-\mathrm{H}$ distances close to $1.80 \AA$ and the two coinage metal $\mathbf{M}-\mathrm{H}$ distances constrained to be near a common value which refined to $\mathrm{Cu}-\mathrm{H} 1.62(5) \AA$ in (1) and $\mathrm{Ag}-\mathrm{H} 1.72(5)$ \AA in (2). For all three structures, initial hydrido ligand positions were calculated indirectly. ${ }^{10}$ These calculations indicate rather different sites for the $\mu_{3}-\mathrm{H}$ ligands in (5) as compared with (1), with much longer $\mathrm{Au} \cdots \mathrm{H}$ distances. Therefore no constraints were placed on the $\mathrm{Au} \cdots \mathrm{H}$ distance, while the $\mathrm{Ru} \cdots \mathrm{H}$ distances were forced to be close to a common value [which refined to $1.83(6) \AA$].

In each structure, the dichloromethane showed signs of disorder, but only for (2) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was it possible to assign pairs

Table 9. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) for (5) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, with estimated standard deviations in parentheses

Atom	x	y	z
$\mathrm{Au}(1)$	$494(1)$	$1876(1)$	$1584(1)$
$\mathrm{Au}(2)$	$1305(1)$	$1888(1)$	$1131(1)$
$\mathrm{Ru}(1)$	$1352(1)$	$-267(1)$	$825(1)$
$\mathrm{Ru}(2)$	$604(1)$	$-1351(1)$	$1171(1)$
$\mathrm{Ru}(3)$	$1250(1)$	$200(1)$	$1608(1)$
$\mathrm{Ru}(4)$	$252(1)$	$613(1)$	$935(1)$
$\mathrm{P}(1)$	$131(2)$	$3070(3)$	$1924(1)$
$\mathrm{P}(2)$	$1832(2)$	$3264(3)$	$1044(1)$
$\mathrm{C}(1)$	$1738(10)$	$569(17)$	$527(5)$
$\mathrm{O}(1)$	$1919(10)$	$994(14)$	$307(5)$
$\mathrm{C}(2)$	$1942(13)$	$-1205(22)$	$998(7)$
$\mathrm{O}(2)$	$2323(11)$	$-1788(20)$	$1098(5)$
$\mathrm{C}(3)$	$1033(8)$	$-1084(12)$	$416(5)$
$\mathrm{O}(3)$	$858(8)$	$-1605(9)$	$155(4)$
$\mathrm{C}(4)$	$1088(9)$	$-2490(12)$	$1359(5)$
$\mathrm{O}(4)$	$1350(8)$	$-3170(9)$	$1471(4)$
$\mathrm{C}(5)$	$710)$	$-1575(12)$	$1485(4)$
$\mathrm{O}(5)$	$-264(7)$	$-1773(10)$	$1653(4)$
$\mathrm{C}(6)$	$161(8)$	$-2081(11)$	$760(5)$
$\mathrm{O}(6)$	$-84(7)$	$-2602(10)$	$523(3)$
$\mathrm{C}(7)$	$796(7)$	$18(11)$	$1965(4)$
$\mathrm{O}(7)$	$574(7)$	$-98(9)$	$2212(4)$
$\mathrm{C}(8)$	$1767(8)$	$1155(12)$	$1897(5)$
$\mathrm{O}(8)$	$2098(6)$	$1667(10)$	$2094(4)$
$\mathrm{C}(9)$	$1746(8)$	$-885(12)$	$1809(5)$
$\mathrm{O}(9)$	$2060(6)$	$-1482(9)$	$1960(3)$
$\mathrm{C}(10)$	$-345(9)$	$521(12)$	$1209(5)$
$\mathrm{O}(10)$	$-747(7)$	$435(10)$	$1327(4)$
$\mathrm{C}(11)$	$44(7)$	$1926(12)$	$724(4)$
$\mathrm{O}(11)$	$-132(6)$	$2644(9)$	$567(4)$
$\mathrm{C}(12)$	$-198(9)$	$-88(12)$	$523(5)$
$\mathrm{O}(12)$	$-490(7)$	$-466(9)$	$265(4)$
$\mathrm{C}(111)$	$-515(7)$	$2691(10)$	$2104(4)$
$\mathrm{C}(112)$	$-1051(8)$	$2588(12)$	$1833(5)$
$\mathrm{C}(113)$	$-1530(10)$	$2324(14)$	$1970(6)$
$\mathrm{C}(114)$	$-1491(10)$	$2161(14)$	$2329(6)$
$\mathrm{C}(115)$	$-983(11)$	$2203(16)$	$2593(7)$

Atom	x	y	z
$\mathrm{C}(116)$	$-475(9)$	$2504(12)$	$2469(5)$
$\mathrm{C}(121)$	$-94(7)$	$4179(11)$	$1656(4)$
$\mathrm{C}(122)$	$-487(8)$	$4863(12)$	$1762(5)$
$\mathrm{C}(123)$	$-663(9)$	$5749(14)$	$1540(5)$
$\mathrm{C}(124)$	$-460(10)$	$5909(15)$	$1231(6)$
$\mathrm{C}(125)$	$-79(9)$	$5224(13)$	$1113(6)$
$\mathrm{C}(126)$	$111(7)$	$4359(11)$	$1338(4)$
$\mathrm{C}(131)$	$661(7)$	$3456(10)$	$2346(4)$
$\mathrm{C}(132)$	$655(8)$	$4413(12)$	$2506(5)$
$\mathrm{C}(133)$	$1090(9)$	$4645(14)$	$2844(5)$
$\mathrm{C}(134)$	$1482(9)$	$3950(13)$	$3006(5)$
$\mathrm{C}(135)$	$1484(9)$	$3023(13)$	$2863(5)$
$\mathrm{C}(136)$	$1077(8)$	$2770(12)$	$2531(5)$
$\mathrm{C}(211)$	$2470(7)$	$2920(10)$	$867(4)$
$\mathrm{C}(212)$	$2821(9)$	$2123(13)$	$1045(6)$
$\mathrm{C}(213)$	$3306(10)$	$1804(16)$	$905(6)$
$\mathrm{C}(214)$	$3432(11)$	$2265(15)$	$629(6)$
$\mathrm{C}(215)$	$3106(12)$	$3007(17)$	$448(7)$
$\mathrm{C}(216)$	$2636(11)$	$3389(16)$	$571(6)$
$\mathrm{C}(221)$	$2140(7)$	$3977(10)$	$1476(4)$
$\mathrm{C}(222)$	$2650(8)$	$4479(11)$	$1526(5)$
$\mathrm{C}(223)$	$2861(10)$	$5056(14)$	$1856(5)$
$\mathrm{C}(224)$	$2540(10)$	$5124(15)$	$2113(6)$
$\mathrm{C}(225)$	$2011(10)$	$4651(14)$	$2068(6)$
$\mathrm{C}(226)$	$1816(8)$	$4047(12)$	$1745(5)$
$\mathrm{C}(231)$	$1440(7)$	$4155(10)$	$703(4)$
$\mathrm{C}(232)$	$1078(8)$	$3810(12)$	$377(5)$
$\mathrm{C}(233)$	$777(10)$	$4506(14)$	$105(6)$
$\mathrm{C}(234)$	$852(9)$	$5519(14)$	$167(6)$
$\mathrm{C}(235)$	$1197(9)$	$5838(14)$	$497(5)$
$\mathrm{C}(236)$	$1499(8)$	$5178(13)$	$763(6)$
C	$2922(47)$	$7132(63)$	$376(25)$
$\mathrm{Cl}(1)$	$3279(14)$	$8267(32)$	$535(10)$
$\mathrm{Cl}(2)$	$3268(13)$	$6131(22)$	$703(10)$

of separate sites for the chlorine atoms. In the other cases, the disorder was modelled by use of anisotropic displacement parameters. For (1), one of the PPh_{3} ligands [that attached to $\mathrm{Cu}(2)]$ showed disorder of its phenyl rings, such that each ring adopted two orientations with occupancies $0.511(3)$ and $0.489(3)$, respectively [the major occupancy being for rings $\mathrm{C}(21 n), \mathrm{C}(22 n)$, and $\mathrm{C}(23 n)]$. The disordered rings were constrained to $D_{6 h}$ symmetry with $\mathrm{C}-\mathrm{C}=1.395 \AA$. In all of the structures the molecules are separated by normal van der Waals contact distances.

Acknowiedgements

One of us (I. D. S.) gratefully acknowledges the support and guidance given to him by Professor F. G. A. Stone, F.R.S., during some of the experiments described herein. In addition, we thank Mr. S. S. D. Brown for providing a crystal of $\left[\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{H})(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ suitable for single-crystal X-ray diffraction studies, the Nuffield Foundation for partial support of the work, Johnson Matthey Ltd. for a generous loan of gold, silver, and ruthenium salts, and Mrs. L. J. Salter for drawing the diagrams.

References

1 Part 1, R. A. Brice, S. C. Pearse, I. D. Salter, and K. Henrick, J. Chem. Soc., Dalton Trans., 1986, 2181.
2 For example, K. P. Hall and D. M. P. Mingos, Prog. Inorg. Chem., 1984, 32, 237; P. Braunstein and J. Rose, Gold Bull., 1985, 18, 17; P. G. Jones, ibid., 1983, 16, 114 and refs. therein.

3 L. J. Farrugia, M. J. Freeman, M. Green, A. G. Orpen, F. G. A. Stone, and I. D. Salter, J. Organomet. Chem., 1983, 249, 273.
4 L. W. Bateman, M. Green, K. A. Mead, R. M. Mills, I. D. Salter, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 2599.

5 J. A. K. Howard, I. D. Salter, and F. G. A. Stone, Polyhedron, 1984, 3, 567.

6 M. J. Freeman, M. Green, A. G. Orpen, I. D. Salter, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1983, 1332.
7 S. S. D. Brown, I. D. Salter, and B. M. Smith, J. Chem. Soc., Chem. Commun., 1985, 1439.
8 M. I. Bruce and B. K. Nicholson, J. Organomet. Chem., 1983, 252, 243.
9 K. E. Inkrott and S. G. Shore, Inorg. Chem., 1979, 18, 2817.
10 A. G. Orpen, J. Chem. Soc., Dalton Trans., 1980, 2509.
11 W. B. Pearson, 'Lattice Spacings and Structures of Metals and Alloys,' Pergamon Press, London, 1951.
12 R. W. G. Wyckoff, 'Crystal Structures,' 2nd edn., Wiley Interscience, New York, 1963, vol. 1.
13 C. E. Briant, D. I. Gilmour, and D. M. P. Mingos, J. Organomet. Chem., 1984, 267, C52.
14 C. E. Briant, R. G. Smith, and D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1984, 586.
15 B. K. Teo and K. Keating, J. Am. Chem. Soc., 1984, 106, 2224.
16 J. S. Bradley, R. L. Pruett, E. Hill, G. B. Ansell, M. E. Leonowicz, and M. A. Modrick, Organometallics, 1982, 1, 748.

17 M. R. Churchill, S. A. Bezman, J. A. Osborn, and J. Wormald, Inorg. Chem., 1972, 11, 1818; D. M. Ho and R. Bau, Inorg. Chim. Acta, 1984, 84, 213.
18 B. F. G. Johnson, D. A. Kaner, J. Lewis, P. R. Raithby, and M. J. Taylor, Polyhedron, 1982, 1, 105.
19 E. Roland, K. Fischer, and H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 1983, 22, 326.

20 M. I. Bruce, O. bin Shawkataly, and B. K. Nicholson, J. Organomet. Chem., 1985, 286, 427.
21 M. I. Bruce, E. Horn, O. bin Shawkataly, and M. R. Snow, J. Organomet. Chem., 1985, 280, 289.
22 M. I. Bruce and B. K. Nicholson, Organometallics, 1984, 3, 101.
23 S. R. Bunkhall, H. D. Holden, B. F. G. Johnson, J. Lewis, G. N. Pain, P. R. Raithby, and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1984, 25.
24 G. V. Goeden and K. G. Caulton, J. Am. Chem. Soc., 1981, 103, 7354.
25 S. S. D. Brown, I. J. Colquhoun, W. McFarlane, M. Murray, I. D. Salter, and V. Sik, J. Chem. Soc., Chem. Commun., 1986, 53.
26 P. A. Bates, S. S. D. Brown, A. J. Dent, M. B. Hursthouse, G. F. M. Kitchen, A. G. Orpen, I. D. Salter, and V. Sik, J. Chem. Soc., Chem. Commun., 1986, 600.
27 B. F. G. Johnson, J. Chem. Soc., Chem. Commun., 1986, 27.

28 D. F. Shriver, 'The Manipulation of Air-Sensitive Compounds,' McGraw-Hill, New York, 1969.
29 G. J. Kubas, Inorg. Synth., 1979, 19, 90.
30 B-K. Teo and J. C. Calabrese, Inorg. Chem., 1976, 15, 2474.
31 G. B. Kauffman and L. A. Teter, Inorg. Synth., 1963, 7, 9.
32 F. G. Mann, A. F. Wells, and D. Purdie, J. Chem. Soc., 1937, 1828.
33 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4.
34 G. M. Sheldrick, SHELXTL programs for use with the Nicolet X-ray system, Cambridge 1976, updated Göttingen, 1981.

[^0]: * 2,2,2,3,3,3,4,4,4,5,5,5-Dodecacarbonyl-1,2,3;1,2,4-di- μ_{3}-hydrido-1-triphenylphosphine-1,3,4- μ_{3}-(triphenylphosphinecuprio)-cyclocoppertetraruthenium, $2,2,2,3,3,3,4,4,4,5,5,5$-dodecacarbonyl- $1,2,3 ; 1,2,4-$ di- μ_{3}-hydrido-1-triphenylphosphine-1,3,4- μ_{3}-(triphenylphosphine-argentio)-cyclo-silvertetraruthenium, and $2,2,2,3,3,3,4,4,4,5,5,5$-do-decacarbonyl- $2,4-\mu$-hydrido- $1,2,3-\mu_{3}$-hydrido-1-triphenylphosphine-$1,3,4-\mu_{3}$-(triphenylphosphineaurio)-cyclo-goldtetraruthenium, respectively.
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii-xx.

