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A Group Theoretical Paradigm for describing the Skeletal Molecular Orbitals 
of Cluster Compounds. Part 1. Deltahedral Clusters 

Roy L. Johnston and D. Michael P. Mingos" 
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Group theory and the Pairing Principle, inherent in Stone's Tensor Surface Harmonic Theory, have 
been applied to deltahedral clusters. Four classes of deltahedral cluster have been identified on 
the basis of their topological characteristics. Each of the classes has a characteristic spectrum of 
frontier molecular orbitals which determines the nature of deviations from the (N + 1 ) skeletal 
electron pair rule. 

A central feature of the Polyhedral Skeletal Electron Pair 
Approach is the ( N  + 1) electron pair rule for N-vertex closo 
deltahedra and their nido- and arachno-derivatives.' Stone 
has developed an elegant and general theoretical justification of 
this rule, based on the assumption that the deltahedral clusters 
are pseudo-spherical. Stone's Tensor Surface Harmonic Theory 
constructs a set of approximate molecular orbitals from the 
solution of the Schrodinger equation for a particle on a sphere. 
As in other situations where the free electron model works well, 
e.g. conjugated polyenes, the ordering of energy levels is deter- 
mined by the nodal characteristics of the orbitals rather than 
their detailed forms. Therefore, even within a semi-empirical 
framework such calculations generally predict the correct 
ordering of molecular orbitals and the closed shell require- 
m e n t ~ . ~  

It is apparent, however, that for many deltahedra the 
( N  + 1) rule is not always strictly adhered to and a signifi- 
cant number of departures from the rule occur. Fowler4 has 
suggested that for N = 4 the tetrahedron represents an 
'intrinsic' exception to the ( N  + 1) rule, whereas the halogeno- 
boranes B8Cl8 and B9Cl9 represent 'accidental' departures 
which result from the occurrence of several non-degenerate 
molecular orbitals in the frontier orbital region. Wade and 
ONeill have listed the symmetries of the frontier orbitals of the 
deltahedral borane clusters [B,H,12 - and noted that some 
of the departures from the electron counting rules arise from 
the presence of non-degenerate highest occupied molecular 
orbitals (h.o.m.0.s). It is the purpose of our work to provide a 
fundamental derivation of the frontier orbital properties of 
deltahedral clusters and thus to explain how and why 
deviations from the ( N  + 1) rule occur. In this paper we 
demonstrate, for the first time, that there are four classes 
of convex deltahedral clusters with alternative and distinctive 
patterns of departure from the ( N  + 1) rule. These classes 
have been identified using group theoretical arguments in con- 
junction with the Pairing Principle inherent in Stone's Tensor 
Surface Harmonic analysis. The group theoretical bases of 
these arguments have previously been discussed by F ~ w l e r , ~  
Ceulemans,6 and Quinn and co-workers.' 

deltahedra). If not then the principal rotation axis (C,) must be 
considered. If only one atom lies on the principal axis the cluster 
belongs to class 2 (polar deltahedra). Subdivision of this class 
depends on whether the principal axis is C3 [2(i)], C ,  [2(ii)], or 
C ,  [2(iii)]. The last case obviously corresponds to no rotational 
symmetry at all. When there are two atoms on the principal axis 
the cluster belongs to class 3 (bipolar deltahedra). Class 3 may 
be subdivided into 3(i) [bipyramidal (Dnh)] and 3(ii) [bicapped 
antiprismatic (Dnd)]. By continuing to stack layers further D,,, 
and D,d deltahedra arise but these are significantly non- 
spherical fused polyhedra and, as such, are beyond the scope of 
this work. Finally if there are no atoms on the principal axis 
then the cluster belongs to class 4 (non-polar deltahedra). This 
class can be subdivided according to whether the atoms around 
the middle of the cluster lie on the equatorial plane [4(1), D,,, 
planar equatorial] or form a puckered ring around the equator 
[4(ii), Dnd, puckered equatorial]. 

Class 1 : Centrosymmetric Spherical De1tahedra.-The octa- 
hedron (0,) and icosahedron ( I h )  most closely approximate to 
spherical and consequently Stone's Tensor Surface Harmonic 
Theory gives the coefficients of the radial (L") and tangential 
(L",t") molecular orbitals precisely. The centrosymmetric 
nature of these polyhedra ensures that the odd-parity (En) 
orbitals cannot mix with their even-parity (L") counterparts, 
because they have opposite symmetry with respect to the inver- 
sion operation (i). The L" and t" functions are related by the 
parity inversion operator (t) which transforms as T: (i.e. anti- 
symmetric with respect to all improper rotations, reflections, 
and inversion) and which interconverts their bonding and 
antibonding character as shown below (0 is tensor addition, @ 
is tensor multiplication, n = integer). 

L'IZ 

Results and Discussion 
Four Classes of De1tahedra.-The nomenclature and defi- 

nitions of the four classes of deltahedral clusters is presented 
here along with a heirarchical method for determining to which 
class a particular cluster belongs. Sub-classes are also indicated 
where appropriate. Later sections deal with each of the classes 
and sub-classes in detail. 

If a deltahedral cluster is centrosymmetric and all of its 
atoms are identical and lie on the surface of the same sphere 
then the cluster belongs to class 1 (centrosymmetric spherical 

-7c 
L 

Thus the high symmetry of these molecules ensures that the 
L" and e" orbitals are symmetrically disposed about the 
non-bonding energy line (see Figure 1 for example). The parity 
inversion operator in these cases ensures the absence of self-con- 
jugate non-bonding ( L " / P )  E pairs. Consequently the ( N  + 1) 
rule is rigorously applicable in such situations. Examples of 
such clusters include [B&]* - (octahedral) and [B,,H,2]2- 
(icosahedral). Departures from the ( N  + 1) rule will only occur 
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Figure 1. The L" and tn orbitals of an icosahedral cluster, as an 
example of a centrosymmetric spherical cluster. The interconversion of 
L" and tn by the parity inversion operator (i) is shown along with the 
resulting mirror image relationship of these orbitals about the non- 
bonding level 

in situations where the clusters are significantly distorted 
from the idealised geometries. 

Class 2: Polar Deltahedra-Polar deltahedra are defined 
such that they possess one cluster vertex on each principal 
rotation axis. Three sub-classes may be distinguished, depend- 
ing on the nature of these rotation axes. 

(i) C, Polar deltahedra. In this sub-class of polar deltahedra 
the axis on which the polar atom lies (polar axis) also passes 
perpendicularly through the centroid of a triangular face of the 
cluster (1) making it a C ,  axis. Such clusters belong to the point 
groups C,, C,,,,, T, or Td, and possess one cluster atom on each 
principal (C,) rotation axis.' In a C ,  or C,, deltahedron there 
are P sets (layers) of symmetry related atoms lying in planes 
perpendicular to the C,  axis, consequently the total number 
of atoms in polar deltahedra must be (3P + 1). The higher 
symmetry Tor  Td possibilities arise from the occurence of three 
additional three-fold symmetry axes, but only those polyhedra 
with (3P  + 1) atoms have a single atom on each of these axes 
and may be classified as polar deltahedra. 

For each of the P triangles of symmetry related atoms, the L" 
orbitals gives rise to A and E irreducible representations. The 
L" orbitals of a cluster belonging to an axial point group can be 

obtained by combining the L" orbitals of its constituent orbits 
(ie. sets of symmetry related atoms). Quinn and co-workers' 
have shown that the no components of L" and l* can be 
derived by using the L" orbitals as generator functions with a 
basis set of p ;  orbitals (with the same local symmetry properties 
as p z  orbitals) rather than radial orbitals. In group theoretical 
terms this corresponds to the direct product (1). 

The ncp components are generated by taking the ne com- 
ponents and rotating the p" orbital on each atom by 90" (in the 
same sense) about a radial vector. This process corresponds to 
the action of the parity inversion operator (Q. In axial point 
groups the symmetry of the parity inversion operator is given by 
the direct product (2).  Thus the ncp component is obtained from 
L" orbitals by taking the direct product (3) (R, represents 

rotation about the z axis). This information is summarised 
below. 

In the C,,  point group, for example, Tz = A ,  and r R z  = A*.  
Since E A ,  or E 0 A ,  = E then for every E function in L" 
there will be one in (L" / t" ) ,  and one in (L"/t"),. The total 
number of E representations in the L n / p  orbitals is therefore 
even (2P).  When considering polyhedra with vertices lying on 
the C,  axis the above method for generating L"/E" orbitals does 
not work because at the poles of a sphere an atomic p ,  orbital 
has pure radial rather than tangential orientation (at any other 
position it can be resolved into radial and tangential 
components). To overcome this problem it is merely necessary 
to work out the orbitals for the non-polar structure and add the 
orbitals of the polar atoms. For one polar atom in C, ,  
symmetry the p" atomic orbitals (p, and p, )  transform as E so 
the polar deltahedron possesses in total an odd number 
(2P  + 1) of E representations in the Ln/Ln orbitals. This results 
in an equal number (P) of bonding (L") and antibonding (p) E 
functions and one self-conjugate (L"/t") E set which is roughly 
non-bonding. These orbitals are singly noded with respect to the 
polar axis and as such are denoted ( L " / P ) *  [for example 
(D"/D"),  , in the case of the tetrahedron ( P  = 1) and ( F " / p ) *  
in the case of the ten-vertex cluster ( P  = 3)]. In cases other than 
the tetrahedron (where all the vertices are equivalent by 
symmetry) the frontier pair of orbitals are predominantly 
localised on the polar atom. Occupation of these orbitals would 
lead to a cluster with ( N  + 2) skeletal electron pairs but usually 
they are unoccupied and an N skeletal electron pair count is 
observed. 

Examples of polar deltahedral clusters possessing C ,  axes 
and N or ( N  + 2) skeletal electron pairs are depicted in Figure 
2. This class of cluster includes capped-deltahedra as well as the 
(ten-vertex) C,,  hypercloso clusters discussed by Greenwood 
and co-w~rkers ,~  Baker," and ourselves." It is significant that 
examples of such polyhedra are not observed for either the 
B,H, or B,Cl, types of cluster (with the exception of tetra- 
hedral B,Cl,) presumably because the polar geometries result in 
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P = l  P = 2  P = 3  P = 4  

Figure 2. Examples of C ,  polar deltahedra [with three-fold rotational symmetry and (3P + 1) atoms]. References: a M. Atoji and W. N. Lipscomb, 
Acta Crysrallogr., 1953,6,547. R. Saillant, G. Barcelo, and H. D. Kaesz, J. Am. Chem. Soc., 1970,92,5739. G. Maier, S. Pfriem, U. Schafter, and R. 
Matusch, Angew. Chem., 1978,90,652. R. D. Wilson, S. M. Wu, R. A. Love, and R. Bau, Inorg. Chem., 1978,17,1271. J. R. Pipal and R. N. Grimes, 
Inorg. Chem., 1977,16,3255. C. R. Eady, B. F. G. Johnson, J. Lewis, R. Mason, P. B. Hitchcock, and K. M. Thomas, J. Chern. Soc., Chem. Commun., 
1977, 385. Ref. 9a. '' Ref. 9d. K. P. Callahan, W. J. Evans, F. Y. Lo, C. E. Strouse, and M. F. Hawthorne, J. Am. Chem. SOC., 1975, 9, 296. 

P =  4 P =  5 P = 6  

Figure 3. Examples of C ,  polar deltahedra [with two-fold rotational symmetry and (2P + 1) atoms]. References: " J. Bould, N. N. Greenwood, J. D. 
Kennedy, and W. S. McDonald, J. Chem. SOC., Dalton Trans., 1985,1943. M. M. Olmstead and P. P. Power, J. Am. Chem. Soc., 1984,106,1495. Ref. 
9d. Ref. 9e. R. P. Micciche, J. J. Briguglio, and L. G. Sneddon, Inorg. Chem., 1984, 23, 3992. C. Tsai and W. Streib, J. Am. Chem. SOC., 1966,88, 
4513. C. W. Jung and M. F. Hawthorne, J. Am. Chem. Soc., 1980,102,3024. '' D. F. Dustin, W. J. Evans, C. J. Jones, R. J. Wiersma, H. Gong, S. Chen, 
and M. F. Hawthorne, J.  Am. Chem. Soc., 1974, 96, 3085. M. R. Churchill and B. G. DeBoer, Inorg. Chem., 1974, 13, 141 1. 

substantial charge asymmetries between the boron atoms. In 
isolobal clusters, however, the presence of atoms of either higher 
or lower electronegativities leads to a stabilisation of the polar 
deltahedral geometries if they are located in the appropriate 
sites. In particular the location of metal atoms at the high 
connectivity sites has a strong stabilising effect. 

(ii) C ,  Polar deltahedra. In this sub-class of polar deltahedra 
the polar axis passes at right angles through the mid-point of an 
edge of the deltahedron (2), making it a C,  axis. This leads to 
clusters with C,  or C,,  symmetry. Polar deltahedra with these 

cluster symmetries are characterised by (2P  + 1) atoms, where 
P represents the number of pairs of atoms disposed about the 
principal (C,)  axis. As there are no E representations in C,  or 
C,, symmetry there is no group theoretical restriction opposing 
the occurrence of clusters with ( N  + 1) skeletal electron pairs. 
Instead the electron count depends more critically on the 
frontier orbital spacings which in turn depend on the nature of 
the cluster fragments. In particular, calculations have shown 
that with boron atoms in the polar sites an ( N  + 1) count is 
favoured while with metals in these sites either N or ( N  + 1) 
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skeletal electron pairs is possible. Examples of polar deltahedral 
clusters with C,, symmetry and N or ( N  + 1) skeletal electron 
pairs are shown in Figure 3.  

(iii) C, Polar deltahedra. In this sub-class of polar deltahedra 
the polar axis does not pass through the centroid of a face or 
the middle of an edge of the deltahedron, so that there is no 
rotational symmetry (only a C ,  axis). This leads to clusters with 
either C,, Ci, or C, symmetry. As for the C, polar deltahedra, the 
lack of any E representations in these point groups means that 
clusters with N or ( N  + 1) skeletal electron pairs should be 
possible, depending on the nature of the atoms in the various 
cluster sites. The complex [PtW(CO),(PEt3),{q6-C2B9H8- 
(CH,R)Me,}](R = p-tolyl) l 3  is an example of such a cluster, 
having a 12-atom C,B,W cage, with C, symmetry, (3), and 12 
( N )  skeletal electron pairs. 

A more detailed analysis of the bonding in polar deltahedral 
clusters will be presented in a subsequent publication.'2 

Class 3: Bipolar De1tahedra.-Bipolar deltahedra have two 
atoms lying on the principal (C,) rotation axis, generating D,, 
(e.g. bipyramidal) or D,,d (e.g. bicapped antiprismatic) 
structures. In such deltahedra the atoms form two subsets which 
lie on spherical shells of different radii. Following the analysis 
presented above for polar deltahedra the polar atoms are 
initially ignored and the L" orbitals of the component layers in 
the cluster are considered, combinations of these orbitals being 
taken to generate the L" orbitals of the polyhedron (minus 
polar atoms). If the L" orbitals contain a certain number (X) of 
E representations (reps.) then (L"/t"), will also contain XE 
representations, as will (L"/t") , ,  as shown below. 

In total there are an even number (2X) of E representations 
in the L " / P  set. Considering the two polar atoms, in-phase (II) 
and out-of-phase (n*) combinations of the p" orbitals (p,,p,) on 
each atom result, (4), corresponding to another two E represent- 
ations. The L" and L" orbitals of the bipolar cluster as a 
whole are generated by taking combinations of the orbitals of 
the polar atoms and of the remainder of the polyhedron. In total 
there is an even number (2X + 2) of E representations within 
the L n / P  manifold, which are split into (X + 1) bonding (L") 
and (X + 1) antibonding (t") E pairs. There is, therefore, no 
group theoretical restriction leading to a departure from the 
( N  + 1) rule, so the majority of bipolar clusters obey the rule. 

There are, however, a significant number of bipolar clusters 
which do not obey the ( N  + 1) rule. Deviations from the rule 
arise because bipolar clusters do not approximate closely 
enough to spherical. The nature of any deviation from the 
( N  + 1) rule is best analysed in terms of the interaction between 

the orbitals of the various sets of symmetry-equivalent cluster 
vertices, which may be regarded as lying on concentric spheres 
of differing radii. In the case of bipyramidal or bicapped anti- 
prismatic clusters these two sets of atoms are the polar and the 
remaining (non-polar) atoms which either lie on the equator 
(D,,) or are related by an improper rotation axis S,, (D,,d). 

Since the two polar atoms are not within bonding distance 
the spread of L" and 15" orbitals (i.e. P; and Pq ,) for these 
atoms is much narrower than for the non-polar atoms. The P; 
and P, , linear combinations of the polar atoms can only inter- 
act with the L:, and t",, orbitals of the rest of the cluster 
(ring or antiprism). Two slightly different situations apply for 
bicapped rings (bipyramids, D,,,) and bicapped antiprisms ( Dnd) 

and these are illustrated in Figures 4 and 5. 
(i) Bipyramidal clusters (Dnh). Figure 4(a) shows the polar/ 

non-polar interaction diagram for a trigonal bipyramidal 
cluster. The (n*) polar combination is stabilised by the 
more strongly antibonding P ; ,  pair of the ring, yielding 
a weakly bonding eN pair (Ds1) with a dominant (II*) polar- 
atom contribution. In a similar fashion the P;, (ll) polar 
combination is destabilised by the more strongly bonding P; 
orbitals of the ring, thereby generating a weakly antibonding 
(parity related) e' pair (D;  1) also with a dominant (II) polar- 
atom contribution. 

The pentagonal bipyramid shows many of the same features 
as those described above if the polar and equatorial atoms are 
approximately equidistant from the centre of the cluster, but 
some additional electronic effects arise if the polar atoms are 
displaced by large distances towards the centre of the poly- 
hedron. Since the pentagonal ring is larger than the trigonal ring 
the polar atoms must move closer to the centre of the cluster 
to equalise all the skeletal bond lengths. We will discuss the 
situation for small displacements of the polar atoms first. A 
stronger interaction occurs between the P"/P", orbitals of the 
polar atoms and the orbitals of the ring than in the trigonal 
bipyramidal case, because the P ; ,  orbitals are now weakly 
bonding (indeed they correspond to the h.o.m.0.s in [C,H,] -). 
The resulting 0; (el") orbitals of the pentagonal bipyramid are 
therefore no longer necessarily the h.o.m.0.s. Calculations have 
indicated that they lie close in energy to the 0; (e,') orbitals (5)  
which are localised exclusively on the ring atoms. The latter may 
therefore become the h.o.m.0.s in the example [B,H,]'-. The 
ordering of the antibonding D; (e,') and & , (e,") orbitals is 
also going to be sensitive to small changes in internuclear 
distances and electronic effects. 

Such minor differences apart these bipyramidal clusters are 
characterised by parity related D" and D" orbitals of e' and e" 
symmetry in the frontier orbital region as long as the polar 
atoms do not interact strongly. These arguments are also 
applicable to hexagonal bipyramidal clusters, although in this 
instance the frontier orbitals have e, and e, symmetry. Bipy- 
ramidal clusters (with appropriate atom substitutions) are 
therefore capable of supporting ( N  - l), ( N  + l), and ( N  + 3 )  
skeletal electron pairs, although to date the only example of 
a bipyramidal cluster with ( N  - 1) skeletal electron pairs is 
[{V(q5-C,H,)},(p-C,H,)1 which has a hexagonal bipyramidal 
s t r ~ c t u r e . ' ~  Examples of bipyramidal clusters with ( N  + 1) and 
( N  + 3 )  skeletal electron pairs are given in Table 1. 

In those situations where the distance between the polar 
atoms approaches the sum of the covalent radii then the general- 
isation developed above has to be modified to incorporate the 
additional strong interactions which arise. Most importantly 
the P:+, orbital [illustrated in Figure 4(b)] is destabilised 
significantly, because of the strong antibonding interactions 
between the polar atoms and can enter into the frontier orbital 
region. If the antibonding interactions are particularly strong 
then an N electron pair situation may become favourable. 
Fowler has suggested that this situation may apply to B,Br,, 
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( b  1 

Possible skeletal electron pair counts 

Non- bonding 

D "  or  D n  ,e~ .+ P ; + n  
+ I  22 

h.o.m.0.s for ( N + 1 )  skeletal electron pair cluster 

Figure 4. Frontier orbital patterns for bipyramidal clusters. (a) Interaction between the L" and tn orbitals of the ring and polar atoms of a trigonal 
bipyramidal (D3,,) cluster. (b) Possible frontier orbital patterns for pentagonal bipyramidal (D5,,) clusters 
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Figure 5. Interaction of the L” and tn orbitals of the polar and non- 
polar atoms of a bicapped square antiprismatic cluster (DU) 

Table 1. Bipyramidal clusters 

Skeletal 
electron pairs Ref. 

6 (N + 1) a 
6 b 
6 C 

8 (N + 3) d 
8 e 

(b) Pentagonal bipyramidal 

CB,H,I2- 8 ( N +  1) f 
[(C0)3FeC2B4H61 8 g 
[(q 5-C5H5 )Co(MeC2B3H4)- 8 h 

[(rl 5-c5 H,)Ni(P-C,H 5 ) -  10 (N + 3) i 
CO(q 5-C5H5)I 

Ni(q 5-C5H5)I 
a R. E. Williams, Adv. Inorg. Chem. Radiochem., 1976, 18, 67. C. R. 
Eady, B. F. G. Johnson, J. Lewis, B. E. Reichert, and G. M. Sheldrick, 
J. Chem. SOC., Chem. Commun., 1976, 271. P. A. Edwards and J. D. 
Corbett, Inorg. Chem., 1977, 16, 903. dG. Longoni, P. Chini, L. D. 
Lower, and L. F. Dahl, J. Am. Chem. Soc., 1975, 97, 5034. “S. 
Martinengo, G. Ciani, and A. Sironi, J. Chem. SOC., Chem. Commun., 
1979, 1059. W. N. Lipscomb, ‘Boron Hydrides,’ Benjamin, New York, 
1963. D. C. Beer, 
V. R. Miller, L. G. Sneddon, R. N. Grimes, M. Mathew, and G. J. 
Palenik, J. Am. Chem. SOC., 1973, 95, 3046. A. Salzer and H. Werner, 
Angew. Chem., Int. Ed. Engl., 1978, 17, 869. 

R. N. Grimes, J. Am. Chem. Soc., 1971, 93, 261. 

which is diamagnetic. Figure 4(b) summarises the alternative 
patterns of frontier orbitals for pentagonal bipyramids, which 
are influenced primarily by the relative displacements of the 
polar and equatorial atoms. 

(ii) Bicapped antiprismatic clusters (D,,,,). The frontier orbitals 
of the square antiprism, shown on the left hand side of Figure 5, 
are D;,/D;,  rather than P ; , / P + ,  due to the extra layer of 
atoms present (though, with respect to each of the open faces 
these functions are singly noded, like P; , /P“, , in the ring case). 
Because of the extra node (perpendicular to the principal 
rotation axis) the D;, pair have II* rather than ll character 
with respect to the polar atoms. Figure 6 shows schematically 
how the nodal properties (with respect to the polar atoms) of 
L; , vary with L. In general L; orbitals possess TI symmetry 
with respect to the polar atoms for L = 2n + 1 ( i e .  L odd) and 
TI* for L = 2n (i.e. L even). The parity inversion operation 
reverses bonding characteristics so, for example, if L: have ll 
character with respect to the polar atoms then t; will have II* 
character. 

Interaction of the P; (TI) and P; (TI*) orbitals of the polar 
atoms with the , orbitals of the antiprism (as depicted 
in Figure 5) generates a bonding pair F Z ,  (n) and an anti- 
bonding pair Pkl (n*) which are predominantly localised on 
the polar atoms, (6). Thus the h.o.m.0.s and lowest unoccupied 
molecular orbitals (I.u.m.o.s), as for the bipyramids discussed 

Figure 6. Variation of L (number of angular modes in the cluster 
wavefunction) of the nodal characteristics (with respect to the polar 
atoms of a bipolar cluster) of L; 

above, are both doubly degenerate ( E )  molecular orbitals. As 
for the bipyramidal clusters this gives rise, in principle, to the 
possibility of clusters with ( N  - l), ( N  + l), or ( N  + 3) skeletal 
electron pairs. However, on comparing the orbital interaction 
diagrams for the trigonal bipyramid and bicapped antiprisms 
[Figures 4(a) and 51 more closely it may be seen that the 
h.o.m.0.-1.u.m.o. separation is greater in the latter case. This 
arises because the II* orbitals of the polar atoms interact with 
strongly bonding orbitals (D; ,) rather than antibonding ones 
(P:  ,). The result of this is to make the occurrence of bicapped 
antiprismatic clusters with ( N  + 3) skeletal electron pairs less 
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favourable on energy grounds and, to date, no such clusters 
have been isolated [ ( N  - 1) electron pair clusters would have 
F; unpopulated which is also unfavourable because these 
orbitals have considerable bonding character]. 

Class 4: Non-polar Deltahedra-Non-polar deltahedra are 
also non-spherical, with the cluster atoms generally lying on the 
surfaces of two spheres with different radii. As the name suggests 
these polyhedra do not possess any atoms on the principal 
rotation axis, but instead have a ring (planar or puckered) of 
atoms around the equator of the cluster. It has been shown 
above that, for a group of atoms where no atoms lie on the 
principal rotation axis, the L n / t n  orbitals contain an even 
number of E representations. Non-polar clusters cannot, there- 
fore, have their h.o.m.0. and 1.u.m.o. as a degenerate pair, so 
there is no symmetry induced breaking of the ( N  + 1) rule. As 
for bipolar clusters, deviations from the ( N  + 1) rule must be 
rationalised in terms of interactions between the L" and 
orbitals of the two subsets of atoms (equatorial or non- 
equatorial). 

(i) D3,, PZanar equatorial. The tricapped trigonal prism 
possesses three atoms which lie on the equatorial plane and are 
related by a C3 axis. The cluster has a mirror plane of symmetry 
passing through the equator and therefore has overall D,), 
symmetry. Larger clusters may be envisaged which also have 
this symmetry, but it is not possible to have non-polar delta- 
hedral clusters with Dnh symmetry and n > 3 since this would 
lead to (open) non-triangular faces. 

On the right-hand side of Figure 7 the L" and En orbitals of a 
three-membered ring are illustrated. The P" and pn molecular 
orbitals of this subset of atoms interact with the molecular 
orbitals of the trigonal prism. As Figure 7 shows, the e' and e" 
components (P; JP* 1) interact with the non-bonding D; (e') 

Table 2. Tricapped trigonal prismatic clusters 

Skeletal 
Cluster electron pairs Ref. 

B9Cl9 9 ( N )  a 

CGe91z - 10 C 

[(q 5-C,H5)CoC2B6H81 10 e 
[(PMe3)2PtC2B6H81 10 f 
[Big] + 

CB9H912 - 10 ( N  + 1) b 

[T1SnJ3 - 10 d 

8 1 1  (N + 2) 

" M .  B. Hursthouse, J. Kane, and A. G. Massey, Nature (London), 
1970, 228, 659. L. J. Guggenberger, Inorg. Chem., 1968, 7, 2260. 
C. H. E. Belin, J. D. Corbett, and A. Cisar, J. Am. Chem. SOC., 1977,89, 

7163. R. C. Burns and J. D. Corbett, J. Am. Chem. SOC., 1982, 104, 
2804. D. F. Dustin, W. J. Evans, C. J. Jones, R. J. Wiersma, H. Gong, 
S. Chan, and M. F. Hawthorne, J.  Am. Chem. SOC., 1973,95,4565. A. 
J. Welch, J. Chem. SOC., Dalton Trans., 1976, 225. R. M. Friedman 
and J. D. Corbett, Inorg. Chem., 1973, 12, 1134. 

Figure 7. Interaction of the L" and t" orbitals of the two subsets of atoms forming a tricapped prismatic cluster (D3,,) 
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Figure 8. Interaction of the L" and L* orbitals of the two subsets of atoms forming a triangular dodecahedra1 cluster (Dzd)  

Y Dodecahedron viewed down 
the 

X 

z axis 

0 above 

o below 
XY 

XY 

plane 

plane 

and D: (e") orbitals of the trigonal prism to generate strongly 
bonding and antibonding combinations. In contrast the a," and 
a,' components ( P ; / e )  interact with more strongly bonding 
or antibonding orbitals of the trigonal prism (see Figure 7) to 
generate one weakly antibonding orbital (F;, a,") and one 
weakly bonding orbital (R, a,'). Consequently the frontier 
orbitals of the non-polar deltahedron consist of a parity related 
pair of (non-degenerate) orbitals derived from P; and 8, which 
are predominantly localised on the equatorial atoms. Interest- 
ingly, Stone's conclusions for deltahedral boranes (L" bonding 
and antibonding) break down in this case because the 
h.o.m.0. has odd parity (R)  and the 1.u.m.o. has even parity 
(F;).' This cluster geometry is therefore capable of accommo- 
dating N,  ( N  + l), or ( N  + 2) skeletal electron pairs.I6 
Examples of boranes, main-group clusters, and metallacarbor- 
anes with nine vertex atoms and these alternative electron 
counts are summarised in Table 2. 

(ii) D,, Puckered equatorial. The deltahedral dodecahedron 

( N  = 8) has a puckered arrangement of four atoms around the 
equator. The polyhedron has D 2 d  symmetry and the equatorial 
atoms are related by an S,  axis (in general an S,,  axis would 
relate the 2n equatorial atoms of a D,,d cluster). Larger clusters 
of D 2 d  or D,d symmetry would fall into this class, but it is not 
possible [for the reasons mentioned in class 4(i)] to have non- 
polar deltahedral clusters with D,d symmetry and n > 3. 

As for the tricapped trigonal prism, the frontier orbitals of 
the dodecahedron arise from the interaction of the P; and 
orbitals (see Figure 8) of the two subsets of atoms. The two 
subsets, in this case, may both be considered as distorted tetra- 
hedra." The four equatorial atoms may be regarded as 
constituting a flattened tetrahedron. In contrast to the tricapped 
trigonal prism these equatorial atoms are within bonding dis- 
tance of each other, which has the effect of making their P; 
combination quite strongly bonding and their e combination 
quite strongly antibonding. In this case the connectivities of the 
non-equatorial atoms (elongated tetrahedron) are lower than 
the equatorial ones so the spread of L" and en orbitals is 
narrower for these non-equatorial atoms. As Figure 8 shows, 
this results in the (weakly bonding) h.o.m.0. and (weakly 
antibonding) 1.u.m.o. being predominantly localised on the non- 
equatorial vertices, in contrast to the tricapped trigonal prism. 
Figure 8 also shows that the h.o.m.0. is of b,  symmetry and may 
be identified as F; and the (parity related) 1.u.m.o. is of a,  
symmetry and may be described as f i .  The h.o.m.0. and 1.u.m.o. 
may be alternatively described as D$,(xy) and D;,(xy) respec- 
tively [the axis system is depicted in (7)] since these functions 
are identical to F ; / E  for the D,, dodecahedron. The advantage 
of the F ; / f i  notation is that it emphasises the similarity to 
the tricapped trigonal prism and also explains why the frontier 
orbitals are weakly bonding or antibonding whereas the 
remainder of the D" and D" functions are strongly bonding and 
antibonding respectively.' 7,1 Due to the weakly bonding and 
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Table 3. (Triangulated) dodecahedra1 clusters 

Cluster 
Skele t a1 

electron pairs Ref. 

B8Cl8 8 ( N )  a 

CB8H812 - 9 ( N +  1 )  c 
C{ (rl s - c  SH S)C4 4B4H41 8 b 

[(q 5-C,H ,)CoSnC,B4Me2H41 9 d 
C{(r15-C,Hs)Ni)4B4H41 l O ( N +  2) e 

R. A. Jacobson and W. N. Lipscomb, J. Chem. Phys., 1959, 31, 605. 
* J. R. Pipal and R. N. Grimes, Inorg. Chem., 1979, 18, 257. L. J. 
Guggenberger, Inorg. Chem., 1969,8, 2771; F. Klanberg, D. R. Eaton, 
L. J. Guggenberger, and E. L. Muetterties, ibid., 1967, 6, 1271. d K .  S. 
Wong and R. N. Grimes, Znorg. Chem., 1977, 16, 2053. J. R. Bowser, 
A. Bonny, J. R. Pipal, and R. N. Grimes, J.  Am. Chem. Soc., 1979,101, 
6229. 

antibonding nature of the non-degenerate h.o.m.0. and 1.u.m.o. 
the triangular dodecahedron (like the tricapped trigonal prism) 
can accommodate N, (N + l), or (N + 2) skeletal electron 
pairs." Examples of such clusters are given in Table 3. For 
both the dodecahedron and the tricapped trigonal prism the 
stabilisation of N skeletal electron pair clusters by terminal 
halide ligands (e.g. B,Cl, and B,Cl,) has been attributed to the 
h.o.m.0. being raised in energy due to x interaction with the 
ligands.' 

Conclusions 
The detailed analysis presented above for the four classes of 
deltahedral cluster can be summarised effectively in terms of 
the following generalisations derived from group theory and 
the parity transformation inherent in Stone's Tensor Surface 
Harmonic Analysis. 

(a) Centrosyrnmetric Spherical Clusters.-The presence of a 
centre of symmetry in such clusters prevents the occurrence of 
any self-conjugate representations. In addition the highly 
spherical nature of these clusters ensures that the tangential 
orbitals are split into strongly bonding (L") and strongly 
antibonding (cn) components, so that the (N + 1) rule is 
rigorously obeyed. 

(b) Polar Deltahedral Clusters.-Polar deltahedral clusters 
with C,,  symmetry possess an odd number of E representations, 
leading to the occurrence of a non-bonding (self-conjugate) E 
pair [(L"/L") * of orbitals which are predominantly localised 
on the polar atom. The (N + 1) rule is broken because the 
degenerate frontier orbitals give rise to closed shell configur- 
ations for N and (N + 2) skeletal electron pairs. 

(c) Bipolar and Non-polar Clusters.-These clusters consist of 
two subsets of atoms which lie on the surfaces of concentric 
spheres of different radii (bispherical del tahedra). This deviation 
from spherical topology leads to a spectrum of molecular 
orbitals intermediate between those anticipated from Stone's 
particle on a sphere solution and those of the individual subsets, 
each of which are solutions t o  the particle on a sphere problem. 
If the problem is analysed in terms of the interactions between 
the two subsets (which may be termed the inner and outer 
spheres) then the parity transformation is helpful in deciding 
the symmetries of the frontier orbitals. 

and D,, there are no self- 
conjugate representations d2iAr in  the former case even- and 
odd-parity functions are distinguished by their differing 

In the point groups D 

inner sphere wter sphere inner sphere 

(a)  (6) 

Figure 9. The alternative ways in which frontier orbitals of two subsets 
of atoms may interact to give the orbitals of a bispherical cluster 

behaviour (g or u) under inversion while in the latter case they 
are distinguished by their differing symmetries (' or ") with 
respect to the mirror plane (oh) [equations (4) and (5 ) ] .  

L" (gp) @S En (ug)  (4) 

Figure 9 illustrates the interaction between a pair of parity 
related sets of orbitals (A and B, with symmetries rA  and r,) on 
the inner sphere and a similar pair of outer sphere orbitals. The 
spread of orbitals is narrower for the outer sphere than the inner 
sphere because the atoms are generally further apart on the 
outer sphere. The parity transformation requires that the mole- 
cular orbitals of the bispherical cluster are also symmetrically 
disposed about the non-bonding line. The interaction between 
orbitals Ai (inner) and A, (outer) generates a bonding com- 
bination (Ab) and an antibonding combination (A *). Similarly 
the B orbitals interact to form B b  and B*. The parity trans- 
formation interchanges A and B and also reverses the bonding 
character of the orbitals as shown by (6) and (7). Orbitals A ,  

A ,  A B* (6 )  

Bb t% A* (7) 

and B, are no longer related by the parity transformation. 
Although the components from the inner and outer spheres in 
these molecular orbitals undergo parity inversion the inter- 
actions between the two spheres is bonding for both A ,  and Bb. 
Physically this corresponds to a rotation of 90" (about a radial 
axis) of each pn component on the inner sphere and an equal 
rotation in the opposite sense of the orbitals on the outer sphere. 
This operation, though having the same symmetry as the parity 
transformation operation is clearly distinct as it does not reverse 
the inner sphere-uter sphere bonding nature of the orbital. The 
same argument applies to the antibonding orbitals A* and B*. 

Two alternative situations can be analysed from Figure 9 
since the ordering of orbitals A and B on the inner sphere may 
either be the same as for the outer sphere or may be inverted. In 
Figure 9(a) the A orbital of the outer sphere and the B orbital of 
the inner sphere are bonding and a large h.o.m.0.-1.u.m.o. 
separation results for the bispherical cluster. In Figure 9(b), 
however, the A orbitals of both the outer and the inner spheres 
are bonding and a small h.o.m.0.-1.u.m.o. separation results. 
The magnitude of the h.o.m.0.-1.u.m.o. gap is found to be 
inversely related to the magnitude of the A-B spacings (Ai and 
A,) for the inner and outer spheres. The Figure also shows that 
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Table 4. Outer sphere components of the frontier orbitals of bipolar 
and non-polar deltahedral clusters 

Bipolar Non-polar 
Cluster class (PA-, ,-*-, 

Symmetry D n h  Dn, Dnh Dnd 

1.u.m.o. p ;  1 p* 1 p ;  fi 
h.o.m.0. p; 1 p ;  1 fi p:  

Table 5. Symmetries of cluster P" and p orbitals in some D,, and D,, 
point groups 

Dnh Dnd 
A 

I \- 

n = 3  4 5 6 2 3 4 5 

P; a," a2,, aZH a2,, b2 a2,, b2 a2,, 
p ;  1 e' ell el' e l ,  e ell el e l ,  
8 a,' a29 a2I a29 a2 a29 a2 a29 
P ; ,  e" e, el'' e l ,  e eg e3 e l g  

the h.o.m.0. and 1.u.m.o. are predominantly localised on the 
outer sphere for both situations. 

In the class of bipolar deltahedral clusters the orbitals A and 
B are doubly degenerate E functions with the symmetries of the 
P; and P"* orbitals of the polar atoms. Bicapped antiprisms 
and trigonal bipyramids have been shown to belong to the 
cases illustrated in Figure 9(a) and (b) respectively. This 
explains the larger h.o.m.0.-1.u.m.o. separation in bicapped 
square antiprismatic clusters and the fact that the ( N  + 1) rule 
is adhered to for these clusters. On the other hand the h.o.m.0.- 
1.u.m.o. spacing in trigonal bipyramidal clusters is quite small 
and clusters with ( N  + 3) skeletal electron pairs have been char- 
acterised. The pentagonal bipyramid differs from the trigonal 
bipyramid in that its polar atoms lie on the inner rather than the 
outer sphere. The exact nature of the frontier orbitals in these 
clusters is very dependent on the relative ratios of the two 
sphere radii and the exact nature of the cluster and ligand 
atoms. The 1.u.m.o.s are always doubly degenerate or 

2 )  whereas the h.o.m.0.s may be either non-degenerate 
(Pz'") or doubly degenerate ( D l l  or DT2).  Since the h.o.m.0.- 
1.u.m.o. gap is generally small, skeletal electron pair counts 
ranging from ( N  - 1) to ( N  + 3) [excepting ( N  + 2)] are 
possible. Similar arguments apply to bipyramidal clusters with 
six or more atoms in the equatorial plane. 

The non-polar clusters (tricapped trigonal prism or dodeca- 
hedron) belong to the situation illustrated in Figure 9(b). In this 
case the orbitals A and B are singly degenerate, corresponding 
to the P; and 8 orbitals of the outer sphere. In the dodeca- 
hedron the spacing between the A and B orbitals for both 
spheres is sufficiently large for there to be no cross-over between 
the bonding component of the B-B interaction (BJ and the anti- 
bonding component of the A-A interaction (A*) .  Non-planar 
clusters (planar-equatorial or puckered-equatorial) may there- 
fore accommodate N ,  ( N  + l), or ( N  + 2)  skeletal electron pairs. 

Table 4 summarises the frontier orbital nature of bipyramidal 
and non-polar deltahedral clusters in terms of the orbitals of the 
outer sphere. In both of these classes of cluster the frontier 
orbitals are derived from components of the P" and P" orbitals 
of the outer sphere. For bipolar clusters these components aze 
P;  and P"+ while for non-polar clusters they are P; and P;, 
so a complementary pattern exists between the frontier orbital 
pattern of bipolar and non-polar deltahedral clusters. This 
Table also illustrates that for D,, clusters (bipyramidal and non- 
polar planar equatorial) the ordering is B below A ,  that is the 
h.o.m.0. has pn character (outer sphere) and the 1.u.m.o. has P" 

character. In contrast D,d clusters (bicapped antiprismatic and 
non-polar dodecahedral) have this ordering reversed. The 
symmetries of P" and P" orbitals, for several D,, and D,d point 
groups, are listed in Table 5. 

The arguments developed above are equally applicable to the 
large ( N  > 12) deltahedral clusters discussed by Lipscomb and 
co-workers2' provided that they do not deviate too greatly 
from spherical topology. Thus the degeneracies and number of 
nodes in a plane perpendicular to the principal rotation axis 
(i.e. M ,  quantum numbers) of the frontier orbitals should be the 
same for these large clusters as for the smaller clusters dealt with 
here. The presence of extra layers of atoms, however, leads to a 
greater number of nodes parallel to the principal axis (i.e. the L 
quantum number is higher). For some of the larger clusters it is 
also necessary to consider the interaction of three or more 
subsets of atoms (trispherical, tetraspherical etc.). Such clusters 
will be dealt with more thoroughly in a subsequent paper." 
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