Reactions of Aluminopolyhydride Complexes of Tungsten. X-Ray Crystal Structures of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2},\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}$, $\mathrm{WH}_{2} \mathrm{I}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{SiMe}_{3}\right)$, and $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right) \dagger$

Andrew R. Barron and Geoffrey Wilkinson*
Chemistry Department, Imperial College, London SW7 2AY
Majid Motevalli and Michael B. Hursthouse*
Chemistry Department, Queen Mary College, London E1 4NS

The aluminopolyhydride complex $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$ reacts with $\mathrm{RCN}(\mathrm{R}=\mathrm{Me}$ or Et) to give the μ-amido complexes $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{N}=\mathrm{CHR})\right]_{2}$; the structure of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}$ obtained from chloride-containing solutions has been determined. Reaction of the aluminopolyhydride with lithium alkyls gives $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}$, and this compound reacts with $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{I}$ to give $\mathrm{WH}_{2} \mathrm{I}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{SiMe}_{3}\right)$; the structures of both products have been determined. Interaction of the polyhydride with $\mathrm{NMe}_{3} \mathrm{HCl}$ gives $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-$ $\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right)$ which also has been structurally characterised. Cyclohexanone gives the monomer $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}_{3}$. Proton, ${ }^{31} \mathrm{P}$, and ${ }^{27} \mathrm{Al}$ n.m.r. and i.r. spectra of the compounds have been recorded.

In previous papers we have described the synthesis and structures of various transition-metal aluminopolyhydride complexes, ${ }^{1-3}$ as well as their reactions with tetramethylethylenediamine ${ }^{1,2}$ and protic solvents. ${ }^{1,3}$ Some reactions of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$ with organic nitriles, organolithium reagents, trimethylammonium chloride, and cyclohexanone are now described. The X-ray structures of certain of the products have been determined. The various reactions are shown in Scheme 1.

Results and Discussion

Organic Nitriles.-The reduction of organic nitriles ${ }^{4}$ by LiAlH_{4} and $\left(\mathrm{AlH}_{3}\right)_{n}$ proceeds as in Schemes 2 and 3

The addition of MeCN to an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$ yields the orange, air-sensitive complex $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{N}=\mathrm{CHMe})\right]_{2}$ (A) which contains an imine bridge (1) between two aluminium atoms. There is no evidence for hydride migration to give the amide, as is observed with AlH_{3} (Scheme 3). It appears that the bridging $\mathrm{Al}(\mu-\mathrm{H})_{2} \mathrm{Al}$ hydrides are transferred to form the imines since no reaction is observed between MeCN and the complex with only one aluminohydride bridge, $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu\right.$ H) $]_{2} \mathrm{AlH}_{3},{ }^{1}$ although a band shift in the ${ }^{27} \mathrm{Al}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum ($\delta 70$ to 82 p.p.m. on addition of MeCN) suggests that a weakly bound adduct with six-co-ordinate Al, (2), is formed. In addition to the trimethylphosphine bands the i.r. spectrum of compound (A) contains broad bands between 1800 and 1560 cm^{-1}, assignable to bridging and terminal hydrides, as well as a sharp peak at $1670 \mathrm{~cm}^{-1}$ due to the $\mathrm{N}=\mathrm{C}$ stretch.
The terminal $\mathrm{W}-\mathrm{H}$ and bridging $\mathrm{W}(\mu-\mathrm{H}) \mathrm{Al}$ hydrides readily

[^0]
(1)

(2)
exchange ${ }^{1.2}$ at room temperature resulting in a broad quartet $\left[\delta-5.50\right.$ p.p.m., $J(\mathrm{P}-\mathrm{H})=26.8 \mathrm{~Hz}$] in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum (Table 1). However, on cooling the exchange ceases, as had been observed previously ($T_{\mathrm{c}}=-55^{\circ} \mathrm{C}, \Delta G_{\mathrm{av}}{ }^{\ddagger}=11.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$) \ddagger The terminal Al-H hydride signal ($\delta 4.0$ p.p.m.) is unaffected by changes in temperature. The methylimine protons give rise to a doublet [$\delta 2.30$ p.p.m., $J(\mathrm{H}-\mathrm{H})=7.0 \mathrm{~Hz}$] due to the methyl and a broad quartet [$\delta 8.45$ p.p.m., $J(\mathrm{H}-\mathrm{H}) c a .7 \mathrm{~Hz}$] due to the methine proton. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum is a singlet, with tungsten satellites $[\delta-23.04$ p.p.m., $J(\mathrm{P}-\mathrm{W})=225.0 \mathrm{~Hz}]$; selective decoupling of the $\mathrm{P}-\mathrm{CH}_{3}$ protons results in a binomial sextet $[J(\mathrm{P}-\mathrm{H})=26.9 \mathrm{~Hz}]$. The ${ }^{27} \mathrm{Al}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum confirms that the aluminium is five-co-ordinate.

[^1]
 (vii) cyclohexanone

$\mathrm{H}_{3} \mathrm{AlN} \equiv \mathrm{CR} \xrightarrow{\text { (i) }} \mathrm{H}_{2} \mathrm{Al}-\mathrm{N}=\mathrm{CRH} \xrightarrow{\text { (i). (ii) }} \frac{1}{n}\left[-\mathrm{HAl}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{R}\right)-\right]_{n}$

Scheme 2. (i) LiAlH_{4}, diethyl ether; (ii) water
Scheme 3. (i) Hydride migration; (ii) polymerisation

Table 1. Proton, ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{27} \mathrm{Al}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data (298 K) for new complexes; J values in Hz

\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound \& \({ }^{1} \mathrm{H}\) \& \multicolumn{2}{|r|}{Assignment} \& \({ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\) \& \({ }^{27} \mathrm{Al}-\left\{{ }^{1} \mathrm{H}\right\}\) \\
\hline \multirow[t]{4}{*}{(A) \(\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{N}=\mathrm{CHMe})\right]_{2}\)} \& \(8.45[\mathrm{q}, J(\mathrm{H}-\mathrm{H}) 7.0]\)
\(4.00(\mathrm{br} \mathrm{s})\) \& 2 H
2 H \& \[
\begin{aligned}
\& \mathrm{N}=\mathrm{C} H-\mathrm{CH}_{3} \\
\& \mathrm{Al}-\mathrm{H}
\end{aligned}
\] \& -23.04 \& +47.5 \\
\hline \& 4.00 (br s)
2.30 [d, \(J(\mathrm{H}-\mathrm{H})\)
\(7.0]\) \& 2H \& \(\stackrel{\mathrm{N}=\mathrm{CH}-\mathrm{C}}{\mathrm{C}} \mathrm{CH}_{3}\) \& \& \\
\hline \& 1.50 [d, J(P-H) 6.0] \& 54 H \& \(\mathrm{P}-\mathrm{CH}_{3}\) \& \& \\
\hline \& - \(5.50[\mathrm{q}, J(\mathrm{P}-\mathrm{H}) 26.8]\) \& 10 H \& W-H, W \((\mu-\mathrm{H}) \mathrm{Al}\) \& \& \\
\hline \multirow[t]{6}{*}{(B) \(\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}\)} \& 8.49 (br t) \& 2 H \& \(\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}\) \& -23.94 \& +49.7 \\
\hline \& 4.00 (br s) \& 2 H \& Al-H \& \& \\
\hline \& 2.85 (m) \& 4 H \& \(\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}\) \& \& \\
\hline \& 1.49 [d, \(J(\mathrm{P}-\mathrm{H}) 6.0]\) \& 54 H \& \(\mathrm{P}-\mathrm{CH}_{3}\) \& \& \\
\hline \& 0.93 (m) \& 6 H \& \(\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}\) \& \& \\
\hline \& -5.40 [q, J(P-H) 24.9] \& 10 H \& W-H, W (\(\mu-\mathrm{H}) \mathrm{Al}\) \& \& \\
\hline \multirow[t]{5}{*}{(C) \(\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}\)} \& 8.50 (br t) \& 2 H \& \(\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}\) \& -23.92 \& +52.3 \\
\hline \& 2.85 (m) \& \(4 H\)
54 \& \[
\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}
\] \& \& \\
\hline \& 1.49 [d, J(P-H) 6.0] \& 54 H \& \(\mathrm{P}-\mathrm{CH}_{3}\) \& \& \\
\hline \& 0.93 (m) \& 6 H \& \(\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}\) \& \& \\
\hline \& - 5.42 [q, \(J\) (P-H) 24.8] \& \& \& \& \\
\hline \multirow[t]{4}{*}{(E) \(\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}\)} \& \begin{tabular}{l}
\(1.62(\mathrm{~m})\) \\
\(-3.83[\mathrm{dt}\) \\
\hline \(\left.\left.\mathbf{P}^{1}-\mathrm{H}\right)=J\left(\mathrm{P}^{2}-\mathrm{H}\right) 25\right]\)
\end{tabular} \& \[
108 \mathrm{H}
\] \& \(\mathrm{PCH}_{3}\) \& -24.78 \& \\
\hline \& \(-3.83\left[\mathrm{dt}, J\left(\mathrm{P}^{1}-\mathrm{H}\right)=J\left(\mathrm{P}^{2}-\mathrm{H}\right) 25\right]\) \& \[
4 \mathrm{H}
\] \& W-H \& \& \\
\hline \& \[
\begin{aligned}
\& -5.02[\mathrm{br} \mathrm{t}, J(\mathrm{P}-\mathrm{H}) 41] \\
\& -6.35(\mathrm{br} \mathrm{~s})
\end{aligned}
\] \& 4 H
12 H \& \begin{tabular}{l}
W-H \\
\(\mathbf{W}(\mu-\mathrm{H}) \mathrm{Li}, \mathbf{W}\left(\mu_{3}-\right.\)
\end{tabular} \& \& \\
\hline \& \[
-6.35 \text { (br s) }
\] \& 12 H \& \begin{tabular}{l}
\(\mathbf{W}(\mu-\mathbf{H}) \mathrm{Li}, \mathbf{W}\left(\mu_{3^{-}}\right.\) \\
H) \(\mathrm{Li}_{2}\)
\end{tabular} \& \& \\
\hline \multirow[t]{4}{*}{(F) \(\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{Li}(\) tmen \()\)} \& 2.10 (s) \& 12 H \& \(\mathrm{N}-\mathrm{CH}_{3}\) \& -24.06 \& \\
\hline \& 1.89 (br s) \& 4 H \& \(\mathrm{N}-\mathrm{CH}_{2}\) \& \& \\
\hline \& 1.50 [d, J(P-H) 6] \& 27 H \& \(\mathrm{P}-\mathrm{CH}_{3}\) \& \& \\
\hline \& -5.50[q, J(P-H) 27.8] \& 5 H \& W-H, W \((\mu-\mathrm{H}) \mathrm{Li}\) \& \& \\
\hline \multirow[t]{3}{*}{(G) \(\mathrm{WH}_{2} \mathrm{I}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{SiMe}_{3}\right)\)} \& 1.43 (s) \& 27 H \& \(\mathrm{P}-\mathrm{CH}_{3}\) \& \[
\begin{gathered}
-21.07 \\
{[\mathrm{~d}, J(\mathrm{P}-\mathrm{P}) 17.72]}
\end{gathered}
\] \& \\
\hline \& 0.04 (s) \& 9 H \& \(\mathrm{Si}-\mathrm{CH}_{3}\) \& \[
\begin{gathered}
-52.63 \\
{[\mathrm{t}, J(\mathrm{P}-\mathrm{P}) 17.72]}
\end{gathered}
\] \& \\
\hline \& -6.01 (m) \& 2 H \& W-H \& \& \\
\hline \multirow[t]{3}{*}{(H) \(\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right)\)} \& \[
2.39
\] \& 9 H

H \& $\mathrm{N}-\mathrm{CH}_{3}$ \& -25.04 \& +84.5 (s)

\hline \& $$
1.53[\mathrm{~d}, J(\mathrm{P}-\mathrm{H}) 8.0]
$$ \& 27 H \& \[

\mathrm{P}-\mathrm{CH}_{3}
\] \& \&

\hline \& -5.56[br q, J(P-H) ca. 20] \& 5 H \& W-H, W $(\mu-\mathbf{H}) \mathrm{Al}$ \& \&

\hline \multirow[t]{3}{*}{(I) $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}_{3}$} \& 1.60 (m) \& 36 H \& $\mathrm{P}-\mathrm{CH}_{3}$ \& $$
\left[\begin{array}{c}
-22.11 \\
{[\mathrm{t}, \mathrm{~J}(\mathrm{P}-\mathrm{P}) 15.5\rceil}
\end{array}\right.
$$ \& $+52.7$

\hline \& \& \& \& $$
-28.64(t)
$$ \&

\hline \& -3.48(m) \& 2 H \& W-H \& \&

\hline
\end{tabular}

Figure 1. The structure of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}$ (C). Metal-bound H atoms were not located with certainty and are not shown, and the $(\mu-\mathrm{H})_{2}$ bridge system is represented by the dashed lines

Interaction with propionitrile leads to a similar product, $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}(\mathrm{~B})$, which is spectroscopically similar to (A) (see Experimental section and Table 1). Both (A) and (B) are moisture sensitive; hydrolysis yields $\mathrm{WH}_{6}\left(\mathrm{PMe}_{3}\right)_{3}{ }^{5}$ and the corresponding aldehyde. No crystals of (A) or (B) suitable for X-ray study were obtained.

The interaction of EtCN with a yellow uncharacterised oil has also been studied. This oil is obtained on reaction of $\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ with less than the 4 equivalents of LiAlH_{4} that lead to $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of the oil contains two singlets, one at $\delta-23.50$ p.p.m. $\left\{\right.$ due to $\left.\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}\right\}$ and the other at $\delta-24.60$ p.p.m. On selective decoupling of the $\mathrm{P}-\mathrm{CH}_{3}$ protons both peaks appear to be split into sextets with similar coupling constants (ca. 25 Hz). However, the hydride region appears to be no different from that observed for pure $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2} .{ }^{1}$ It appears that the oil contains chloride and is a partially substituted material.

Addition of EtCN to a hexane solution of the oil results in a bright orange solution, which on cooling to $-20^{\circ} \mathrm{C}$ gives crystals of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}(\mathrm{C})$, whose structure has been determined by X-ray diffraction (see below). Reduction in volume of the supernatant yields a mixture of (B) and (C).
The structure of compound (C), which is a centrosymmetric dimer, is shown in Figure 1; selected molecular geometry parameters are given in Table 2. Failure to locate the hydrogens bridging aluminium and tungsten does not allow us to define with certainty the geometry at Al, but spectroscopic evidence points to a trigonal-bipyramidal geometry analogous to that found in the compound $\left[\mathrm{Mn}(\mathrm{dmpe})_{2}\left(\mathrm{AlH}_{4}\right)\right]_{2}[\mathrm{dmpe}=$ 1,2-bis(dimethylphosphino)ethane]. ${ }^{6}$ However, the near equivalence of the two Al-N distances suggests that square pyramidal (with Cl axial) cannot be ruled out.
In view of the difficulty in locating the hydrogens bound to tungsten, it is not possible to comment on the co-ordination geometry of this atom. However, it is worth noting that the distribution of W-P bond lengths (one short and two long) and the $\mathrm{P}-\mathrm{W}-\mathrm{P}$ angles are extremely similar to those found for the complex $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}\left(\mu-\mathrm{OBu}^{\mathrm{n}}\right)\right]_{2}$, for which a dodecahedral $W P_{3} \mathrm{H}_{5}$ geometry was tentatively suggested. ${ }^{1}$

The isolation of (\mathbf{C}) suggests that the second species present in the oil is $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{H})\right]_{2}(\mathrm{D})$. Bulychev et al. ${ }^{7}$ obtained, but did not isolate, a similar complex as an intermediate in the formation of $\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{AlH}_{4}\right)$; they

Table 2. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\right.$ $\left.\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}(\mathrm{C}) *$

$\mathrm{P}(1)-\mathrm{W}(1)$	2.410 (4)	$\mathrm{P}(2)-\mathrm{W}(1)$	$2.432(3)$
P(3)-W(1)	$2.428(4)$	$\mathrm{C}(11)-\mathrm{P}(1)$	1.816(9)
$\mathrm{C}(12)-\mathrm{P}(1)$	1.825(9)	$\mathrm{C}(13)-\mathrm{P}(1)$	1.827(9)
$\mathrm{C}(21)-\mathrm{P}(2)$	1.798(10)	$\mathrm{C}(22)-\mathrm{P}(2)$	1.826(9)
$\mathrm{C}(23)-\mathrm{P}(2)$	1.808(9)	$\mathrm{C}(31)-\mathrm{P}(3)$	1.828(9)
$\mathrm{C}(32)-\mathrm{P}(3)$	1.810(9)	$\mathrm{C}(33)-\mathrm{P}(3)$	1.812(10)
$\mathrm{Cl}(1)-\mathrm{Al}(1)$	2.208(4)	$\mathrm{N}(1)-\mathrm{Al}(1)$	1.941(6)
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.260(8)$	$\mathrm{C}(2)-\mathrm{C}(1)$	1.501(10)
$\mathrm{C}(3)-\mathrm{C}(2)$	1.496(11)	$\mathrm{Al}(1) \cdots \mathrm{W}(1)$	2.619
$\mathrm{P}(2)-\mathrm{W}(1)-\mathrm{P}(1)$	103.2(2)	$\mathrm{P}(3)-\mathrm{W}(1)-\mathrm{P}(1)$	95.1(2)
$\mathrm{P}(3)-\mathrm{W}(1)-\mathrm{P}(2)$	141.0(1)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{W}(1)$	115.6(3)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{W}(1)$	118.4(3)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(11)$	98.9(5)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{W}(1)$	120.7(4)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(11)$	100.7(5)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(12)$	98.7(4)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{W}(1)$	115.6(4)
$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{W}(1)$	118.4(3)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(21)$	99.6(5)
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{W}(1)$	118.3(3)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(21)$	100.7(5)
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(22)$	100.9(5)	$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{W}(1)$	117.6(3)
$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{W}(1)$	117.7(4)	$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{C}(31)$	100.8(5)
$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{W}(1)$	116.7(4)	$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(31)$	101.7(5)
$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(32)$	99.3(5)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Cl}(1)$	98.9(2)
$\mathrm{Al}(1)-\mathrm{N}(1)-\mathrm{Al}\left(1^{\prime}\right)$	98.6(4)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Al}(1)$	134.4(4)
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{N}\left(1^{\prime}\right)$	81.4(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	126.1(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	114.8(8)		

suggested that a chloride on titanium was exchanged with a hydride from the $\mathrm{AlH}_{4}{ }^{-}$group [equation (1)]. In the present

$$
\begin{align*}
&\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{AllH}_{4}\right)+\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl} \longrightarrow \\
&\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiH}+\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{AlH}_{3} \mathrm{Cl}\right) \tag{1}
\end{align*}
$$

case, the reaction sequence may be as follows. Interaction of WCl_{4} with 3 equivalents of LiAlH_{4} yields the co-ordinatively unsaturated hydride [equation (2)]. Subsequent reaction with

$$
\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3} \xrightarrow[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{WCl}+3 \mathrm{LiCl}+3\left(\mathrm{AlH}_{3}\right)_{n}]{\mathrm{LiAlH}_{4}}
$$

another equivalent of LiAlH_{4} then yields $\mathrm{WH}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ which reacts with AlH_{3} to yield $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2}$ [equation (3)]. However, when the concentration of the latter is relatively

$$
\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{WCl} \xrightarrow{\mathrm{LiAlH}_{4}}\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{4} \xrightarrow{\frac{1}{2}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2}}
$$

low compared to the chloride, hydride transfer may result [equation (4)]. The resulting aluminohydride may then react

$$
\begin{align*}
& \left(\mathrm{Me}_{3} \mathrm{P}\right) \mathrm{H}_{3} \mathrm{WCl}+\frac{1}{2}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2} \longrightarrow \\
& \left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{4}+\frac{1}{2}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{3} \mathrm{Cl}\right)\right]_{2} \tag{4}
\end{align*}
$$

with another equivalent of LiAlH_{4} as in equation (5) while the

$$
\frac{1}{2}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{3} \mathrm{Cl}\right)\right]_{2} \xrightarrow[{\frac{1}{2}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2}}]{\mathrm{LiAlH}_{4}}
$$

hydride reacts further as in (3). This scheme is in accord with the observation that if excess of PMe_{3} is added to the reaction mixture the major product is $\mathrm{WH}_{4}\left(\mathrm{PMe}_{3}\right)_{3} .{ }^{8}$ Thus the phosphine competes with AlH_{3} for the vacant co-ordination site on the unsaturated hydride intermediate $\mathrm{WH}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$.

Although we have been unable to isolate the complex (D) the addition of anhydrous AlCl_{3} to an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$ yields a yellow intractable oil

Figure 2. The structure of $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}_{4}(\mathbf{E})\right.$. The methyl groups have been omitted for clarity and one terminal hydrogen on $W(1)$ (shown bonded via a dashed line) was not identified experimentally
whose ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum resembles that discussed above.

Organolithium Reagents.-Treatment of $\left[\left(\mathrm{Me}_{3} \mathrm{P}_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\right.\right.$ $\left.\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$ with 2 equivalents of $\mathrm{LiR}(\mathrm{R}=\mathrm{Me}$, $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$, or Bu^{n}) in diethyl ether at $-80^{\circ} \mathrm{C}$ results in $>70 \%$ yield of the yellow crystalline complex ${ }^{9}\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}$ (\mathbf{E}) which is soluble in and can be crystallised from hexane. Low yields of this complex have also been obtained from the interaction of $\mathrm{WH}_{6}\left(\mathrm{PMe}_{3}\right)_{3}$ with LiBu .
The structure of the centrosymmetric tetramer is shown in Figure 2; selected bond lengths and angles are given in Table 3. The tungsten atoms are each connected to two neighbouring Li atoms by two normal $\mathrm{W}(\mu-\mathrm{H}) \mathrm{Li}$ bridges and then by one $\mathrm{W}\left(\mu_{3}-\mathrm{H}\right) \mathrm{Li}_{2}$ bridge. The Li atoms are four-co-ordinate, with a strongly distorted tetrahedral geometry, due most probably to the constraints imposed by the bridge systems. On the other hand, the tungsten atoms have a geometry which approaches very closely to dodecahedral. The two mutually orthogonal trapezia which can be identified in this geometry are formed by $P(1), H(15), H(11), P(2)$ and $P(3), H(14), H(13), H(12)$ for $W(1)$ and $\mathrm{P}(4), \mathrm{H}(25), \mathrm{H}(21), \mathrm{P}(5)$ and $\mathrm{P}(6), \mathrm{H}(24), \mathrm{H}(22), \mathrm{H}(23)$ for W(2). In each case, the three \mathbf{P} atoms occupy equatorial B sites in the dodecahedral geometry, although there is one feature which is difficult to correlate with the apparent and assumed symmetry and equivalence of the two independent W atoms. The three $\mathrm{W}-\mathrm{P}$ bonds in each molecule are grouped as two long [2.424(5)-2.434(4) \AA] and one short [2.411(4), 2.406(5) \AA], and the unique, short bond in each case is in a different position in a $\left(\mathrm{PH}_{3}\right)$ trapezium for $\mathrm{W}(2)$ and a $\left(\mathrm{P}_{2} \mathrm{H}_{2}\right)$ group for $\mathrm{W}(1)$. The same results were obtained by Green and co-workers ${ }^{10}$ in their structure determination of this compound. It is now quite likely that our assignments of the $\mathrm{WP}_{3} \mathrm{H}_{5}$ geometry for the complex $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{3} \mathrm{OBu}^{\mathrm{n}}\right)\right]_{2}$ and thus complex (C) are correct.
The i.r. spectrum of the lithium complex contains broad bands between 1800 and $1500 \mathrm{~cm}^{-1}$ due to terminal and bridging hydrides. N.m.r. spectra show that the complex is

Figure 3. Variable-temperature ${ }^{1} \mathrm{H}$ n.m.r. $(250-\mathrm{MHz})$ spectra for compound (\mathbf{E}) over the region -3 to -7 p.p.m. vs. SiMe_{4} in [${ }^{2} \mathrm{H}_{8}$]toluene
fluxional in solution at $+90^{\circ} \mathrm{C}$ where the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum shows a singlet with tungsten satellites $[\delta-24.78$ p.p.m., $J(\mathrm{P}-\mathrm{W})=166.0 \mathrm{~Hz}]$; selective decoupling of the phosphine protons gives a binomial sextet $[J(\mathrm{P}-\mathrm{H})=25.1 \mathrm{~Hz}]$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(90^{\circ} \mathrm{C}\right)$ gives a broad singlet ($\delta-5.52$ p.p.m.) due to terminal and bridging hydrides. As the temperature is lowered (Figure 3) the hydride region de-coalesces to give one signal due to the bridging hydrides ($\delta-6.35$ p.p.m.) and two due to the terminal hydrides ($\delta-3.83$ and -5.02 p.p.m.). The n.m.r. data suggest that in solution the bridging hydrides remain fluxional down to $-90^{\circ} \mathrm{C}$.
Addition of tetramethylethylenediamine (tmen) to a toluene solution of the complex yields the monomeric adduct $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{Li}($ tmen $)(\mathrm{F})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows this compound also to be fluxional at room temperature with the hydrides giving a quartet $[\delta-5.50$ p.p.m., $J(\mathrm{P}-\mathrm{H})=$ 27.8 Hz], which de-coalesces on cooling to give a broad quartet [$\delta-4.35$ p.p.m., $J(\mathrm{P}-\mathrm{H})=27.0 \mathrm{~Hz}$] due to the terminal $\mathrm{W}-\mathrm{H}$ hydrides, and a broad singlet ($\delta-6.39$ p.p.m.) due to bridging $\mathrm{W}(\mu-\mathrm{H}) \mathrm{Li}$ hydrides. The activation energy of this process ($T_{\mathrm{c}}=$ $-50{ }^{\circ} \mathrm{C}, \Delta G_{\text {av. }}{ }^{\dagger}=10.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$) is similar to that observed for the aluminohydride $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2} .{ }^{1}$

Although suitable crystals of (\mathbf{F}) could not be obtained, the geometry around the tungsten is undoubtedly similar to that found for other complexes with the $\mathrm{P}_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2}$ core, ${ }^{1}$ while the lithium is most likely tetrahedral.

The compounds (E) and (F) are both air and moisture sensitive, but are stable in ethers for several days; addition of protic solvents yields $\mathrm{WH}_{6}\left(\mathrm{PMe}_{3}\right)_{3}{ }^{5}{ }^{5}$

Addition of 2 equivalents of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{I}$ to a hexane solution

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}(\mathbf{E})$

P(1)-W(1)	2.411(4)	P(2)-W(1)	2.434(4)	H(11)-W(1)	1.768(48)	H(12)-W(1)	1.958(44)
$\mathrm{P}(3)-\mathrm{W}(1)$	2.430 (5)	P(4)-W(2)	2.433(5)	H(13)-W(1)	1.877(43)	H(14)-W(1)	2.219(41)
$\mathrm{P}(5)-\mathrm{W}(2)$	2.424(5)	P(6)-W(2)	2.406(5)	H(21)-W(2)	1.889(45)	H(22)-W(2)	1.759(40)
$\mathrm{C}(11)-\mathrm{P}(1)$	1.832(12)	$\mathrm{C}(12)-\mathrm{P}(1)$	1.816(12)	H(23)-W(2)	1.841(42)	H(24)-W(2)	1.838(44)
$\mathrm{C}(13)-\mathrm{P}(1)$	1.812(13)	$\mathrm{C}(21)-\mathrm{P}(2)$	1.802(14)	H(25)-W(2)	1.841(52)		
$\mathrm{C}(22)-\mathrm{P}(2)$	1.804(16)	$\mathrm{C}(23)-\mathrm{P}(2)$	1.846(16)				
$\mathrm{C}(31)-\mathrm{P}(3)$	1.807(13)	$\mathrm{C}(32)-\mathrm{P}(3)$	1.865(15)	H(11)-Li(1)	1.884(55)	H(12)-Li(1)	1.966(52)
$\mathrm{C}(33)-\mathrm{P}(3)$	1.807(16)	C(41)-P(4)	1.825(14)	H(22)-Li(1)	1.744(51)	H(23)-Li(1)	1.744(48)
$\mathrm{C}(42)-\mathrm{P}(4)$	1.824(13)	C(43)-P(4)	1.809(14)	$\mathrm{H}(12)-\mathrm{Li}(2)$	1.825(55)	H(13)-Li(2)	1.732(56)
C(51)-P(5)	1.827(14)	C(52)-P(5)	1.814(15)	H(21a)-Li(2)	2.025(52)	$\mathbf{H}(23 \mathrm{a})-\mathrm{Li}(2)$	1.998(46)
C(53)-P(5)	1.837(14)	C(61)-P(6)	1.819(18)				
C(62)-P(6)	1.816(15)	C(63)-P(6)	1.820(16)				
$\mathrm{P}(2)-\mathrm{W}(1)-\mathrm{P}(1)$	143.2(1)	$\mathrm{P}(3)-W(1)-\mathrm{P}(1)$	96.5(2)	$\mathbf{H}(11)-W(1)-P(1)$	71.6(24)	$\mathrm{H}(11)-\mathrm{W}(1)-\mathrm{P}(2)$	144.1(22)
$\mathrm{P}(3)-\mathrm{W}(1)-\mathrm{P}(2)$	100.3(2)	$\mathrm{P}(5)-\mathrm{W}(2)-\mathrm{P}(1)$	144.5(1)	H(11)-W(1)-P(3)	$77.2(23)$	$\mathrm{H}(12)-\mathrm{W}(1)-\mathrm{P}(1)$	81.8(17)
$\mathrm{P}(6)-\mathrm{W}(2)-\mathrm{P}(4)$	100.7(2)	P(6)-W(2)-P(5)	97.0(2)	H(12)-W(1)-P(2)	103.1(16)	H(12)-W(1)-P(3)	142.5(14)
$\mathrm{C}(11)-\mathrm{P}(11)-\mathrm{W}(1)$	121.8(5)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{W}(1)$	116.5(5)	H(12)-W(1)-H(11)	66.7(25)	H(13)-W(1)-P(1)	73.8(17)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(11)$	100.1(6)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{W}(1)$	118.1(5)	H(13)-W(1)-P(2)	73.9(18)	H(13)-W(1)-P(3)	145.5(17)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(11)$	97.5(6)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(12)$	98.5(7)	H(13)-W(1)-H(11)	127.3(28)	$\mathrm{H}(13)-\mathrm{W}(1)-\mathrm{H}(12)$	70.2(22)
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{W}(1)$	115.8(5)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{W}(1)$	123.5(7)	$\mathrm{H}(14)-\mathrm{W}(1)-\mathrm{P}(1)$	85.4(20)	H(14)-W(1)-P(2)	63.7(18)
$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(21)$	103.1(10)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{W}(1)$	115.7(6)	H(14)-W(1)-P(3)	85.7(18)	H(14)-W(1)-H(11)	149.2(24)
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(21)$	95.5(8)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(22)$	98.7(10)	H(14)-W(1)-H(12)	131.1(21)	H(14)-W(1)-H(13)	60.9(22)
C(31)-P(3)-W(1)	119.8(5)	$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{W}(1)$	115.1(5)	$\mathrm{H}(21)-\mathrm{W}(2)-\mathrm{P}(4)$	143.3(22)	H(21)-W(2)-P(5)	71.9(24)
$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{C}(31)$	99.7(7)	C(33)-P(3)-W(1)	121.0(6)	$\mathrm{H}(21)-\mathrm{W}(2)-\mathrm{P}(6)$	70.8(19)	$\mathrm{H}(22)-\mathrm{W}(2)-\mathrm{P}(4)$	67.1(17)
$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(31)$	100.0(9)	$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(32)$	96.9(10)	$\mathrm{H}(22)-\mathrm{W}(2)-\mathrm{P}(5)$	81.4(18)	$\mathrm{H}(22)-\mathrm{W}(2)-\mathrm{P}(6)$	146.8(15)
C(41)-P(4)-W(2)	116.0(5)	$\mathrm{C}(42)-\mathrm{P}(4)-W(2)$	122.8(5)	H(22)-W(2)-H(21)	137.3(25)	$\mathrm{H}(23)-W(2)-\mathrm{P}(4)$	92.7(15)
C(42)-P(4)-C(41)	97.6(7)	C(43)-P(4)-W(2)	116.6(6)	H(23)-W(2)-P(5)	88.6(18)	H(23)-W ${ }^{\text {(2) }}$-P(6)	147.2(16)
$\mathrm{C}(43)-\mathrm{P}(4)-\mathrm{C}(41)$	98.5(8)	$\mathrm{C}(43)-\mathrm{P}(4)-\mathrm{C}(42)$	101.1(8)	H(23)-W(2)-H(21)	80.6(22)	H(23)-W(2)-H(22)	65.9(22)
C(51)-P(5)-W(2)	121.6(6)	$\mathrm{C}(52)-\mathrm{P}(5)-\mathrm{W}(2)$	115.4(6)	H(24)-W(2)-P(4)	75.3(15)	H(24)-W(2)-P(5)	$79.0(16)$
$\mathrm{C}(52)-\mathrm{P}(5)-\mathrm{C}(51)$	102.5(8)	$\mathrm{C}(53)-\mathrm{P}(5)-\mathrm{W}(2)$	116.4(5)	H(24)-W(2)-P(6)	77.1(15)	H(24)-W(2)-H(21)	132.8(22)
$\mathrm{C}(53)-\mathrm{P}(5)-\mathrm{C}(51)$	95.9(7)	$\mathrm{C}(53)-\mathrm{P}(5)-\mathrm{C}(52)$	101.5(8)	H(24)-W(2)-H(22)	70.1(22)	H(24)-W(2)-H(23)	135.5(21)
C(61)-P(6)-W(2)	120.6(6)	$\mathrm{C}(62)-\mathrm{P}(6)-\mathrm{W}(2)$	116.0(5)	H(25)-W(2)-P(4)	71.4(13)	H(25)-W(2)-P(5)	144.1(12)
$\mathrm{C}(62)-\mathrm{P}(6)-\mathrm{C}(61)$	100.3(9)	$\mathrm{C}(63)-\mathrm{P}(6)-W(2)$	121.5(6)	H(25)-W(2)-P(6)	66.3(13)	H(25)-W(2)-H(21)	72.6 (26)
$C(63)-P(6)-C(61)$	95.8(9)	$C(63)-P(6)-C(62)$	98.0(8)	H(25)-W(2)-H(22)	130.3(22)	H(25)-W(2)-H(23)	90.6(22)
				H(25)-W(2)-H(24)	123.6(21)		
				$\mathbf{H}(11)-\mathrm{Li}(1)-\mathrm{H}(12)$	64.4(30)	$\mathbf{H}(11)-\mathrm{Li}(1)-\mathbf{H}(22)$	105.4(32)
				$\mathbf{H}(11)-\mathrm{Li}(1)-\mathrm{H}(23)$	147.2(32)	$\mathbf{H}(12)-\mathrm{Li}(1)-\mathrm{H}(22)$	158.7(34)
				H(12)-Li(1)-H(23)	109.3(3)	$\mathbf{H}(22)-\mathrm{Li}(1)-\mathrm{H}(23)$	68.3(29)
				$\mathbf{H}(12)-\mathrm{Li}(2)-\mathrm{H}(13)$	76.6(29)	$\mathrm{H}(12)-\mathrm{Li}(2)-\mathrm{H}(21 \mathrm{a})$	136.6(30)
				H(12)-Li(2)-H(23a)	108.5(31)	H(13)-Li(2)-H(21a)	101.7(36)
				$\mathbf{H}(13)-\mathrm{Li}(2)-\mathrm{H}(23 \mathrm{a})$	174.7(38)	$\mathbf{H}(21 a)-\mathrm{Li}(2)-\mathrm{H}(23 \mathrm{a})$	73.7(30)

Key to symmetry operations relating designated atoms to reference atoms at (x, y, z) : a $2.0-x, 1.0-y,-z$.

Table 4. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{WH}_{2} \mathrm{I}\left(\mathrm{PMe}_{3}\right)_{3^{-}}$ $\left(\mathrm{SiMe}_{3}\right)(\mathbf{G})$

I-W	$2.913(4)$	$\mathrm{P}(1)-\mathrm{W}$	$2.481(4)$
$\mathrm{P}(2)-\mathrm{W}$	$2.524(6)$	$\mathrm{Si}-\mathrm{W}$	$2.388(6)$
$\mathrm{C}(11)-\mathrm{P}(1)$	$1.865(14)$	$\mathrm{C}(12)-\mathrm{P}(1)$	$1.839(14)$
$\mathrm{C}(13)-\mathrm{P}(1)$	$1.846(15)$	$\mathrm{C}(31)-\mathrm{P}(2)$	$1.832(14)$
$\mathrm{C}(32)-\mathrm{P}(2)$	$1.783(20)$	$\mathrm{C}(21)-\mathrm{Si}$	$1.827(15)$
$\mathrm{C}(22)-\mathrm{Si}$	$1.820(20)$	$\mathrm{H}(1)-\mathrm{W}$	$1.561(55)$
$\mathrm{H}(2)-\mathrm{W}$	$1.898(58)$		
$\mathrm{P}(1)-\mathrm{W}-\mathrm{I}$			
$\mathrm{P}(2)-\mathrm{W}-\mathrm{P}(1)$	$79.9(2)$	$\mathrm{P}(2)-\mathrm{W}-\mathrm{I}$	$89.0(2)$
$\mathrm{Si}-\mathrm{W}-\mathrm{P}(1)$	$93.2(2)$	$\mathrm{Si}(1)-\mathrm{W}-\mathrm{I}$	$135.4(1)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{W}$	$94.8(2)$	$\mathrm{Si}(1)-\mathrm{W}-\mathrm{P}(2)$	$135.6(1)$
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(11)$	$97.1(7)$	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{W}$	$119.1(6)$
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(11)$	$100.7(7)$	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{W}$	$115.7(5)$
$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{W}$	$115.9(5)$	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(12)$	$100.7(7)$
$\mathrm{C}(32)-\mathrm{P}(2)-\mathrm{C}(31)$	$99.5(7)$	$\mathrm{C}(32)-\mathrm{P}(2)-\mathrm{W}$	$123.5(7)$
$\mathrm{C}(22)-\mathrm{Si}-\mathrm{W}$	$117.0(7)$	$\mathrm{C}(21)-\mathrm{Si}-\mathrm{W}$	$119.2(5)$
$\mathrm{C}(21)-\mathrm{Si}-\mathrm{C}(21)$	$95.8(11)$	$\mathrm{C}(22)-\mathrm{Si}-\mathrm{C}(21)$	$100.8(8)$
$\mathrm{H}(1)-\mathrm{W}-\mathrm{I}$	$157.0(21)$	$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{C}(31)$	$98.5(10)$
$\mathrm{H}(1)-\mathrm{W}-\mathrm{P}(2)$	$68.0(22)$	$\mathrm{H}(1)-\mathrm{W}-\mathrm{P}(1)$	$100.6(2)$
$\mathrm{H}(2)-\mathrm{W}-\mathrm{I}$	$74.6(17)$	$\mathrm{H}(1)-\mathrm{W}-\mathrm{Si}$	$67.6(22)$
$\mathrm{H}(2)-\mathrm{W}-\mathrm{P}(2)$	$163.6(16)$	$\mathrm{H}(2)-\mathrm{W}-\mathrm{P}(1)$	$84.0(4)$
$\mathrm{H}(2)-\mathrm{W}-\mathrm{H}(1)$	$128.4(27)$	$\mathrm{H}(2)-\mathrm{W}-\mathrm{Si}$	$60.8(17)$

of the lithium complex (\mathbf{E}) results in the evolution of gas and a moderate yield of $\mathrm{WH}_{2} \mathrm{I}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{SiMe}_{3}\right)(\mathbf{G})$. The i.r. spectrum of (G) contains broad bands between 1800 and 1650 cm^{-1} due to the metal hydrides; similar bands are observed for the complex $\mathrm{WH}_{2}\left(\mathrm{PMe}_{3}\right)_{5} .{ }^{8}$ In addition to peaks due to the phosphine and the $\mathrm{Me}_{3} \mathrm{Si}$ group, the ${ }^{i} \mathrm{H}$ n.m.r. spectrum contains a multiplet ($\delta-5.60$ p.p.m.) due to the two terminal W-H hydrides.
The molecular structure of compound (\mathbf{G}) is shown in Figure 4; selected bond lengths and angles are given in Table 4. Both hydrogens bound to tungsten were located with some confidence, and the W geometry is pentagonal bipyramidal, with the pentagonal girdle containing $\mathrm{W}, \mathrm{I}, \mathrm{P}(2), \mathrm{Si}$, and the two hydrogens coincident with the crystallographic mirror plane. One hydride is located between the $\mathrm{Si}-\mathrm{W}$ and $\mathrm{W}-\mathrm{I}$ bonds [Si-W-I $\left.135.4(1)^{\circ}\right]$ and the other lies between the $\mathrm{Si}-\mathrm{W}$ and $\mathrm{W}-\mathrm{P}(2)$ bonds $\left[\mathrm{Si}-\mathrm{W}-\mathrm{P}(2) 135.6(1)^{\circ}\right]$. This structure is therefore similar to that found for $\mathrm{MoH}_{2}\left(\mathrm{PMe}_{3}\right)_{5},{ }^{11}$ in which the pentagonal girdle contained three phosphines and the two hydrogens.

The distribution of $\mathrm{W}-\mathrm{P}$ and $\mathrm{W}-\mathrm{Si}$ bond lengths in the present compound is interesting. The positioning of the SiMe_{3} group in the molecule was based initially on differences in thermal parameters at the isotropic refinement stage, and the
final anisotropic coefficients are consistent with this. However, the W-P and W-Si bond lengths found are not consistent with expected values. Thus, on simple covalent-radius comparisons, $\gamma_{\text {cov. }}$. P) would be expected to be less than $\gamma_{\text {cor. }}(\mathrm{Si})$ since $\gamma_{\text {cov. }}$ normally decreases on going from left to right along a row of the Periodic Table; in terms of π-back bonding, we would expect P to be stronger than Si. In spite of these differences, the bond to the atom assigned as Si is the shortest of the group for the four Si / P possibilities. Furthermore, the bond distances to methyl carbons are not helpful since the spread of values is so great. Nevertheless, we are prepared to accept the assignment made for the following reasons. The complex contains a tungsten(iv) centre with a d^{2} configuration; π-back bonding is therefore unlikely to be strong. With the structures as presented we can identify two types of phosphorus atoms, axial [$\mathrm{P}(1)$ and $\left.\mathrm{P}\left(1^{\prime}\right)\right]$ and equatorial. The latter are longer than the former and this result parallels that found for the molybdenum complex, ${ }^{11}$ which was explained in terms of a 'nearly-trans' influence, i.e. the equatorial W-P bond is more nearly trans to a W-H bond than the W-Si bond, and may thus be weakened. Finally, however, one must also presume that the σ bonding in the $\mathrm{W}-\mathrm{Si}$ interaction is much stronger than in the $\mathrm{W}-\mathrm{P}$ interaction, leading to a much shorter $\mathrm{W}-\mathrm{Si}$ bond.

Sakurai et al. ${ }^{12}$ have proposed a mechanism for the thermal decomposition of allyltrimethylsilane, involving the abstraction of a methylene group [equation (6)]. It is likely that a similar process is involved in the formation of the tungsten complex as follows. The interaction of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}$ with 1 equivalent of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{I}$ yields a tungsten(vi) alkylhydride complex [equation (7)]. Reductive elimination of $\mathrm{Me}_{4} \mathrm{Si}$ then yields the co-ordinatively unsaturated hydride $\mathrm{WH}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ which may react with a further equivalent of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{I}$ [equation (8)]. Methylene abstracted from the $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$ group could be 'trapped' by one of the hydrides [equation (9)]. Final reductive elimination of CH_{4} would then result in the complex [equation (10)].

Trimethylammonium Chloride.-The addition of 2 equivalents of trimethylammonium chloride to an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$ yields the monomeric amine complex $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right)(\mathrm{H})$. The molecular structure of the compound is shown in Figure 5; selected bond lengths and angles are given in Table 5. In this structure all hydride hydrogens were located and refined with some confidence and show quite clearly a $(\mu-\mathrm{H})_{3}$ bridge, leading to sixfold co-ordination for aluminium. As far as we are aware, this

Figure 4. The structure of $\mathrm{WH}_{2} \mathrm{I}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{SiMe}_{3}\right)$ (G). Only the hydrogens bound to tungsten are shown
is the first example of such co-ordination in aluminohydride complexes. The geometry is that of a distorted octahedron with the $\mathrm{H}_{3} \mathrm{Al}$ face closed down [H-Al-H 64.6(3)-69.3(2) ${ }^{\circ}$] and the $\mathrm{Cl}_{2} \mathrm{NAl}$ face slightly opened up [angles of $95.1-101.8(1)^{\circ}$]. The $\mathrm{Al}-\mathrm{Cl}$ bonds in this complex are very similar to that in the chloroimine complex described earlier, but the Al-N bond here is longer than those in the imine, even though these latter bonds are involved in bridging. This presumably is a reflection of the higher co-ordination here and/or a weaker interaction. The tungsten geometry is once more dodecahedral with one trapezium formed by $\mathrm{P}(1), \mathrm{H}(3), \mathrm{H}(5), \mathrm{P}(2)$ and the other by $\mathbf{P}(3), \mathbf{H}(1), \mathbf{H}(2), \mathbf{H}(4)$. In this case the $\mathbf{W}-\mathbf{P}$ bond lengths are equally spread over the range $2.420(4)-2.439(4) \AA$.

The i.r. spectrum of the complex contains bands between 1800 and $1650 \mathrm{~cm}^{-1}$ due to bridging and terminal hydrides

$$
\begin{equation*}
\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{3} \mathrm{IMe}\left(\mathrm{SiMe}_{3}\right) \xrightarrow{-\mathrm{CH}_{4}}\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{2} \mathrm{I}\left(\mathrm{SiMe}_{3}\right) \tag{10}
\end{equation*}
$$

Table 5. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right)(\mathrm{H})$

P(1)-W	2.439(4)	$\mathrm{P}(2)-\mathrm{W}$	2.429(4)	H(1)-W	1.611(59)	H(2)-W	1.641(59)
P(3)-W	2.420(4)	$\mathrm{Cl}(1)-\mathrm{Al}$	2.204(5)	H(3)-W	1.679(54)	H(4)-W	1.691(57)
$\mathrm{Cl}(2)-\mathrm{Al}$	$2.190(5)$	N -Al	2.067(8)	H(5)-W	1.671(68)	H(3)-AI	1.908(52)
$\mathrm{C}(11)-\mathrm{P}(1)$	1.811(12)	$\mathrm{C}(12)-\mathrm{P}(1)$	1.820(12)	H(4)-Al	1.684(57)	H(5)-Al	1.892(69)
C(13)-P(1)	1.836(12)	$\mathrm{C}(21)-\mathrm{P}(2)$	1.809(12)				
C(22)-P(2)	1.811(12)	$\mathrm{C}(23)-\mathrm{P}(2)$	1.826(13)				
$\mathrm{C}(31)-\mathrm{P}(3)$	1.858(13)	$\mathrm{C}(32)-\mathrm{P}(3)$	1.808(11)				
C(33)-P(3)	1.826(15)	$\mathrm{C}(1)-\mathrm{N}$	1.478(12)				
$\mathrm{C}(2)-\mathrm{N}$	1.484(12)	C(3)-N	1.492(10)				
P(2)-W-P	142.8(1)	$\mathrm{P}(3)-\mathrm{W}-\mathrm{P}(1)$	98.9(2)	H(1)-W-P(2)	77.2(20)	H(1)-W-P(1)	77.9(20)
$\mathrm{P}(3)-\mathrm{W}-\mathrm{P}(2)$	96.2(2)	$\mathrm{Cl}(2)-\mathrm{Al}-\mathrm{Cl}(1)$	102.8(2)	H(2)-W-P(1)	75.2(21)	H(1)-W-P(3)	66.9(21)
$\mathrm{N}-\mathrm{Al}-\mathrm{Cl}(1)$	95.1(3)	$\mathrm{N}-\mathrm{Al}-\mathrm{Cl}(2)$	95.8(3)	H(2)-W-P(3)	130.1(20)	H(2)-W-P(2)	69.1(21)
C(11)-P(1)-W	116.4(4)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{W}$	117.0(5)	H(3)-W-P(1)	70.6(18)	H(2)-W-H(1)	63.5(27)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(11)$	99.7(6)	C(13-P(1)-W	119.0(5)	H(3)-W-P(3)	89.1(18)	H(3)-W-P(2)	143.6(17)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(11)$	97.3(6)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(12)$	103.9(6)	$\mathbf{H}(3)-W-H(2)$	131.3(27)	H(3)-W-H(1)	136.3(27)
$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{W}$	118.2(4)	$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{W}$	117.6(5)	H(4)-W-P(2)	87.7(20)	H(4)-W-P(1)	91.3(19)
$\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{C}(21)$	101.9(6)	C(23)-P(2)-W	115.3(4)	H(4)-W-H(1)	135.7(27)	H(4)-W-P(3)	157.1(19)
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(21)$	100.8(6)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(22)$	100.2(6)	H(4)-W-H(3)	$74.9(26)$	H(4)-W-H(2)	72.2(27)
C(31)-P(3)-W	118.0(5)	C(32)-P(3)-W	119.2(4)	H(5)-W-P(2)	67.5(24)	H(5)-W-P(1)	145.3(23)
C(32)-P(3)-C(31)	99.4(7)	C(33)-P(3)-W	118.8(6)	H(5)-W-H(1)	135.9(30)	H(5)-W-P(3)	91.0(23)
$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(31)$	98.3(8)	$\mathrm{C}(33)-\mathrm{P}(3)-\mathrm{C}(32)$	99.1(7)	H(5)-W-H(3)	76.4(29)	H(5)-W-H(2)	122.1(31)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{Al}$	111.0(6)	$\mathrm{C}(2)-\mathrm{N}-\mathrm{Al}$	110.8(6)	H(3)-Al-Cl(1)	95.7(17)	H(5)-W-H(4)	69.6(28)
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(1)$	107.1(8)	$\mathrm{C}(3)-\mathrm{N}-\mathrm{Al}$	111.9(6)	H(3)-Al-N	92.8(16)	H(3)-Al-Cl(2)	158.8(16)
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(1)$	107.7(8)	$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(2)$	108.3(8)	$\mathrm{H}(4)-\mathrm{Al}-\mathrm{Cl}(2)$	97.6(19)	H(4)-Al-Cl(1)	97.9(20)
$\mathrm{Al}-\mathrm{H}(3)-\mathrm{W}$	93.7(25)	Al-H(4)-W	102.0(30)	H(4)-Al-H(3)	69.3(24)	$\mathrm{H}(4)-\mathrm{Al}-\mathrm{N}$	158.7(19)
Al-H(5)-W	94.6(33)			H(5)-Al-Cl(2)	93.4(21)	H(5)-Al-Cl(1)	157.8(20)
				H(5)-Al-H(3)	66.1(26)	H(5)-Al-N	98.2(21)
						$\mathrm{H}(5)-\mathrm{Al}-\mathrm{H}(4)$	64.6(27)

Figure 5. The structure of $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right)(\mathbf{H})$. Only the hydrogens bound to tungsten are shown
along with a sharp band at $520 \mathrm{~cm}^{-1}$ due to terminal $\mathrm{Al}-\mathrm{Cl}$ stretch. As with other aluminopolyhydrides, the complex is fluxional in solution at room temperature. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum contains a very broad quartet [$\delta-5.56$ p.p.m., $J(\mathrm{P}-\mathrm{H}) c a .20 \mathrm{~Hz}]$ due to the terminal $\mathrm{W}-\mathrm{H}$ and bridging $\mathrm{W}(\mu-\mathrm{H}) \mathrm{Al}$ hydrides. On cooling to $-50^{\circ} \mathrm{C}$ this signal becomes better resolved $[J(\mathrm{P}-\mathrm{H})=26.8 \mathrm{~Hz}$], whilst on further cooling $\left(-80^{\circ} \mathrm{C}\right)$ it de-coalesces to give two very broad signals at $\delta-3.46$ and 7.28 p.p.m. due to terminal $\mathrm{W}-\mathrm{H}$ and bridging
$\mathrm{W}(\mu-\mathrm{H}) \mathrm{Al}$ hydrides respectively. The activation energy for this process ($T_{\mathrm{c}}=-78^{\circ} \mathrm{C}, \Delta G_{\mathrm{av} .}{ }^{\ddagger}=9.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$) is slightly, although not significantly, lower than that observed for similar complexes. ${ }^{1}$ The ${ }^{27} \mathrm{Al}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum contains a sharp singlet ($\delta 84.5$ p.p.m., $W_{\frac{1}{2}}=325 \mathrm{~Hz}$) that is in agreement with the X-ray data, confirming that the aluminium is six-coordinate unlike the majority of aluminohydrides where a five-co-ordinate geometry is found.

The complex is moisture and air sensitive yielding $\mathrm{WH}_{6}\left(\mathrm{PMe}_{3}\right)_{3}{ }^{5}$ on hydrolysis.

Cyclohexanone.-Addition of excess of cyclohexanone to an $\mathrm{Et}_{2} \mathrm{O}$ solution of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{H})\right]_{2}$ containing excess of PMe_{3} produces an orange solution. Evaporation followed by extraction and crystallisation from hexane yields yellow crystals of $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}_{3} \quad(\mathrm{I})$, which is monomeric in solution according to molecular weight determination. We have not ascertained the fate of the cyclohexanone. The i.r. spectrum of (I) contains broad bands between 1940 and $1600 \mathrm{~cm}^{-1}$ due to bridging $\mathrm{W}(\mu-\mathrm{H}) \mathrm{Al}$ and terminal Al-H hydrides. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum consists of two triplets $\left[\delta-22.11(\mathrm{~A}),-28.64\right.$ (B) p.p.m., $J\left(\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}\right)=$ 15.5 Hz] each of which is further split into triplets on selective decoupling of the $\mathrm{P}-\mathrm{CH}_{3}$ protons $\left[J\left(\mathrm{P}_{\mathrm{A}}-\mathrm{H}\right)=55.4, J\left(\mathrm{P}_{\mathrm{B}}-\mathrm{H}\right)=\right.$ 15.5 Hz . This is consistent with a cis-octahedral geometry around the tungsten, (3). A complex multiplet ($\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{Y}_{2}$) in the high-field ${ }^{1} \mathrm{H}$ n.m.r. spectrum ($\delta-3.48$ p.p.m.) is in

(3)

Table 6. Analytical data (\%) for new complexes ${ }^{a}$

	C	H	P	N	Cl
(A) $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{N}=\mathrm{CHMe})\right]_{2}$	$\begin{gathered} 26.5 \\ (27.0) \end{gathered}$	$\begin{gathered} 6.9 \\ (7.7) \end{gathered}$	$\begin{gathered} 18.8 \\ (19.0) \end{gathered}$	$\begin{gathered} 2.8 \\ (2.8) \end{gathered}$	
(B) $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}$	28.5	7.8	17.9 (18.5)	2.8	
(C) $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}$	(28.7) 26.1	(7.9) 6.9	(18.5) 16.8	(2.8) 2.6	6.5
	(26.8)	(7.3)	(17.3)	(2.6)	(6.6)
(E) $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}$	26.0	7.6	$20.3)$		
(F) $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{Li}($ tmen $)$	34.6	8.9	17.0	5.3	
	(33.3)	(8.9)	(17.2)	(5.2)	
(H) $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right)$	25.0	7.8	16.0	2.4	12.3
	(25.1)	(7.1)	(16.2)	(2.4)	(12.4)
(I) $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlH}_{3}{ }^{\text {b }}$	27.2	7.8	24.0		

${ }^{a}$ Required values in parentheses. ${ }^{b} M$ (cryoscopic in benzene) 590 (calc. 520).

Table 7. Crystal data, intensity data, collection parameters, and details of refinement

Crystal data	(C)	(E)	(G)	(H)
M	1073.36	1696.388	614.224	574.148
a / \AA	10.447(5)	14.011(2)	14.066(2)	19.563(2)
b / \AA	9.118(4)	14.577(1)	13.404(2)	17.319(2)
c / \AA	14.077(5)	10.818(2)	12.284(1)	14.446(5)
$\alpha 1^{\circ}$	71.52(3)	75.64(2)	90	90
$\beta /{ }^{\circ}$	113.73(4)	109.94(2)	90	90
$\gamma /{ }^{\circ}$	103.43(4)	114.65(1)	90	90
U / \AA^{3}	1155.66	1873.20	2316.03	4894.47
System	Triclinic	Triclinic	Orthorhombic	Orthorhombic
Space group	PI	PI	$\mathrm{CmC2}_{1}$	Pbca
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.54	1.50	1.76	1.56
Z	1	1	4	8
$F(000)$	534	832	1184	2288
μ / mm^{-1}	54.56	65.27	66.59	52.64
Data collection				
θ (min., max.)/ ${ }^{\circ}$	1.5, 25	1.5, 25	1.5, 25	1.5, 25
Total data measured	4250	5396	1220	5124
Unique	4068	5199	1124	4294
Observed	3427	4018	1065	2730
Significance test	$F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$	$F_{\mathrm{o}}>3 \sigma\left(F_{\mathrm{o}}\right)$	$F_{\mathrm{o}}>3 \sigma\left(F_{\mathrm{o}}\right)$	$F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$
Refinement				
No. of parameters	304	505	170	345
Absorption correction	psi-scan	psi-scan/DIFABS	psi-scan/DIFABS	psi-scan/DIFABS
Weighting scheme parameter, g^{*}	0.00001	0.00001	Unit weights	0.00001
$R \dagger$	0.0248	0.0311	0.0207	0.0315
$R^{\prime} \ddagger$	0.0268	0.0271	0.0237	0.0251

agreement with this. The ${ }^{27} \mathrm{Al}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum ($\delta 52.7$ p.p.m., $W_{\ddagger}=5280 \mathrm{~Hz}$) indicates five-co-ordinate aluminium.

Similar complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}(\mu-\mathrm{H})_{2} \mathrm{AlH}_{3}, \mathrm{M}=\mathrm{Mo}$ or W, have been reported as being thermally unstable and unisolable. ${ }^{13}$ However, Caulton and co-workers ${ }^{14}$ have reported the synthesis and crystal structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}(\mu-$ $\mathrm{H})_{2} \mathrm{AlMe}_{3}$. By analogy with this complex we suggest that the present compound is an alane adduct of $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{WH}_{2}$. The same product is also obtained by the reaction of $\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ with excess of $\mathrm{Li}\left[\mathrm{AlH}(\mathrm{OMe})_{3}\right]$ in the presence of PMe_{3}.

Experimental

Microanalyses were by Pascher Laboratories. Melting points were determined in sealed capillaries and are uncorrected. I.r. spectra $\left(\mathrm{cm}^{-1}\right)$ were recorded on a Perkin-Elmer 683 grating
spectrometer in Nujol mulls. N.m.r. spectra (Table 1) were recorded on JEOL X90Q (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ unless otherwise stated) or Bruker WM-250 (${ }^{27} \mathrm{Al}$) spectrometers, δ in p.p.m. being relative to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right)$, external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$, or external $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\left({ }^{27} \mathrm{Al}\right)$. All manipulations were carried out under argon. Solvents were dried, distilled, and degassed before use.

Analytical data are given in Table 6. The compounds MeCN and EtCN were distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under argon, and $\mathrm{NMe}_{3} \mathrm{HCl}$ (Aldrich) was dried under vacuum prior to use.

2,3;2,3-Bis- μ-ethylideneamido-1,2;1,2;3,4;3,4-tetra- μ-hydrido-1,1,1,2,3,4,4,4-octahydrido-1,1,1,4,4,4-hexakis(trimethylphos-phine)-2,3-dialuminium-1,4-ditungsten(Iv), (A).-To a diethyl ether solution $\left(50 \mathrm{~cm}^{3}\right)$ of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2}{ }^{1}(0.97 \mathrm{~g}, 1.09$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{MeCN}\left(2 \mathrm{~cm}^{3}\right)$. The colour changes instantly from yellow to bright orange. After stirring for 2 h the

Table 8. Fractional atomic co-ordinates ($\times 10^{4}$)

Atom	x	y	z	Atom	x	y	z
(a) $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}(\mu-\mathrm{H})_{2} \mathrm{AlCl}(\mu-\mathrm{N}=\mathrm{CHEt})\right]_{2}$							
W(1)	7 555(0.5)	8 178(0.5)	7730 (0.5)	C(11)	6 174(8)	$5176(8)$	$6308(6)$
$\mathrm{P}(1)$	$7111(2)$	5 502(2)	7 639(1)	C(12)	5 992(9)	4 132(8)	$8327(6)$
$\mathbf{P}(2)$	$6845(2)$	8060 (2)	9 202(1)	C(13)	8 565(8)	4 344(9)	8 126(7)
P(3)	9 623(2)	8 809(2)	7 226(1)	C(21)	$6957(11)$	9 900(9)	9 465(7)
$\mathrm{Al}(1)$	5 540(2)	$9695(2)$	$6175(1)$	C(22)	5 029(8)	7 301(9)	9 103(6)
$\mathrm{Cl}(1)$	4 146(2)	10768 (2)	6 529(1)	C(23)	7 801(9)	$6957(11)$	10 528(5)
N(1)	4 130(4)	$8782(5)$	5 049(3)	C(31)	9481 (8)	8 252(10)	6 046(6)
C(1)	3 154(6)	7 666(7)	$5022(5)$	C(32)	11 215(7)	8005 (11)	8 199(6)
C(2)	2773 (7)	$6641(8)$	$5963(5)$	C(33)	10 321(8)	$10848(9)$	6 936(7)
C(3)	$2068(10)$	$5047(11)$	$5845(7)$				
(b) $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}$							
W(1)	$10863(0.5)$	2 553(0.5)	1347 (0.5)	C(31)	12 099(10)	805(9)	$3737(13)$
W(2)	$12911(0.5)$	6 732(0.5)	$2117(0.5)$	C(32)	13 196(12)	2 838(10)	4 248(15)
P(1)	$9688(2)$	$1825(2)$	2806 (2)	C(33)	13 495(14)	2 196(19)	2272(16)
$\mathrm{P}(2)$	$11018(3)$	2 439(2)	-779(3)	C(41)	11 169(11)	4 935(8)	4 153(12)
$\mathrm{P}(3)$	12 369(2)	2070 (2)	$2839(3)$	C(42)	12 219(15)	6 765(9)	5 157(13)
$\mathrm{P}(4)$	12 441(3)	6 031(2)	4 212(3)	C(43)	13 348(13)	$5481(12)$	5493(12)
$\mathrm{P}(5)$	$13846(3)$	6 633(2)	666(3)	C(51)	14 472(13)	7746 (10)	-416(15)
P (6)	13 981(3)	8 477(2)	2 486(3)	C(52)	$14929(13)$	6 136(14)	1470 (15)
C(11)	10 233(10)	$1796(9)$	4 608(9)	C(53)	$13008(12)$	$5811(9)$	-651(12)
C(12)	8 782(10)	505(8)	2 697(11)	C(61)	14 065(18)	8 942(11)	3 947(16)
C(13)	$8682(10)$	2 366(9)	2 603(11)	C(62)	13 602(13)	9 428(9)	1 198(14)
C(21)	$10006(14)$	$1354(10)$	-1 588(13)	C(63)	15440 (11)	9 014(10)	2 650(17)
C(22)	$12262(14)$	2 525(20)	-1 031(17)	Li(1)	$11706(12)$	$4612(10)$	$1558(14)$
C(23)	10 695(15)	3 399(11)	-2 152(11)	Li(2)	8 994(12)	3 098(11)	-379(14)
(c) $\mathrm{WH}_{2} \mathrm{I}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{SiMe}_{3}\right)$							
W	0*	2 211(0.5)	$6070 *$	C(13)	$2150(9)$	1 188(10)	$4779(12)$
I	0^{*}	$2762(1)$	3 776(1)	C(21)	-964(11)	-213(9)	6 846(13)
P(1)	$1733(2)$	2 187(2)	5 696(2)	C(22)	0*	766(15)	$8540(14)$
$\mathrm{P}(2)$	0^{*}	4040 (3)	6 557(4)	C(31)	986(9)	4 461(9)	$7415(13)$
Si	0^{*}	678(3)	7 062(3)	C(32)	0^{*}	$5015(14)$	5 571(15)
C(11)	$2313(8)$	3 296(10)	5 065(10)	H(1)	0*	2 378(43)	7327 (44)
C(12)	2 567(10)	2040 (10)	$6839(10)$	H(2)	0^{*}	986(43)	5 295(44)
(d) $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{~W}(\mu-\mathrm{H})_{3} \mathrm{AlCl}_{2}\left(\mathrm{NMe}_{3}\right)$							
W	$1715(0.5)$	973(0.5)	1 682(0.5)	C(3)	148(5)	3 258(6)	347(7)
Al	961(1)	2 221(1)	1 554(2)	C(11)	480(5)	300(6)	3 373(8)
$\mathrm{P}(1)$	889(1)	48(1)	2 289(1)	C(12)	$1207(6)$	-908(6)	2 584(8)
$\mathrm{P}(2)$	$2834(1)$	1530 (1)	$1971(2)$	C(13)	106(5)	-146(6)	1 628(8)
$\mathrm{P}(3)$	$2027(1)$	304(1)	273(1)	C(21)	3 536(5)	882(6)	2 217(8)
$\mathrm{Cl}(1)$	-46(1)	2 228(1)	$2238(2)$	C(22)	3 196(5)	2143 (7)	$1081(8)$
$\mathrm{Cl}(2)$	$1386(1)$	3 347(1)	$1938(2)$	C(23)	$2883(5)$	$2180(6)$	2 965(8)
N	596(3)	2 563(4)	276(4)	C(31)	$1563(9)$	-601(6)	-16(9)
C(1)	$1165(6)$	$2755(5)$	-358(7)	C(32)	1948 (6)	801(6)	-823(6)
C(2)	198(5)	$1934(6)$	$-166(7)$	C(33)	2 898(8)	-59(9)	150(9)

* Invariant parameter.
solvent was removed and the resulting solid extracted with toluene ($30 \mathrm{~cm}^{3}$); reduction in volume and cooling to $-20^{\circ} \mathrm{C}$ yielded an orange powder ($0.66 \mathrm{~g}, 62 \%$), m.p. $152{ }^{\circ} \mathrm{C}$ (decomp.). I.r.: $1800 \mathrm{~m}, 1710 \mathrm{~m}, 1670 \mathrm{~s}, 1600 \mathrm{~m}, 1410 \mathrm{~m}, 1290 \mathrm{~m}, 1270 \mathrm{~s}$, $1115 \mathrm{br}, \mathrm{m}, 935 \mathrm{~s}, 895 \mathrm{~m}, 850 \mathrm{~m}, 715 \mathrm{~s}, 655 \mathrm{~s}$, and $450 \mathrm{~s} \mathrm{~cm}^{-1}$.

1,2;1,2;3,4;3,4-Tetra- μ-hydrido-1,1,1,2,3,4,4,4-octahydrido-2,3;2,3-bis- μ-propylideneamido-1,1,1,4,4,4-hexakis(trimethyl-phosphine)-2,3-dialuminium-1,4-ditungsten(IV), (B).-This complex was prepared as for (A) but using EtCN to give orange microcrystals (73%), m.p. $149{ }^{\circ} \mathrm{C}$ (decomp.). I.r.: 1780 m , $1700 \mathrm{~s}, 1660 \mathrm{~s}, 1630 \mathrm{~m}, 1580 \mathrm{~m}, 1295 \mathrm{~m}, 1270 \mathrm{~s}, 1145 \mathrm{~m}, 940 \mathrm{vs}$, $850 \mathrm{~m}, 715 \mathrm{~s}, 670 \mathrm{~s}$, and $450 \mathrm{~m} \mathrm{~cm}^{-1}$.

2,3-Dichloro-1,2;1,2;3,4;3,4-tetra- μ-hydrido-1,1,1,4,4,4-hexa-hydrido-2,3;2,3-bis(μ-propylideneamido)-1,1,1,4,4,4-hexakis-(trimethylphosphine)-2,3-dialuminium-1,4-ditungsten(iv), (C).To a suspension of $\mathrm{LiAlH}_{4}(0.82 \mathrm{~g}, 21.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(60 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3}(4.01 \mathrm{~g}, 7.24 \mathrm{mmol})$. The solution was stirred and warmed to room temperature over 3 h then stirred for a further 16 h . The filtered solution was evaporated to give a yellow oil. Dissolution of the oil in hexane ($30 \mathrm{~cm}^{3}$) followed by addition of $\mathrm{EtCN}\left(2 \mathrm{~cm}^{3}\right)$ resulted in a bright orange solution, cooling of which gave orange crystals $\left(1.12 \mathrm{~g}, 29 \%\right.$), m.p. $131{ }^{\circ} \mathrm{C}$ (decomp.). I.r.: $1780 \mathrm{~m}, 1700 \mathrm{~s}$, $1660 \mathrm{~s}, 1580 \mathrm{~m}, 1295 \mathrm{~m}, 1270 \mathrm{~s}, 1145 \mathrm{~m}, 940 \mathrm{vs}, 850 \mathrm{~m}, 715 \mathrm{~s}$, $670 \mathrm{~s}, 525 \mathrm{~m}$, and $450 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}_{4}(\mathrm{E})\right.$--To an $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$ solution of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2}(0.31 \mathrm{~g}, 0.34 \mathrm{mmol})$ was added $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}\left(0.7 \mathrm{~cm}^{3}, 0.95 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$). The colour rapidly changed from yellow to orange and a flocculent white precipitate formed. After stirring for 3 h the solvent was removed and the residue extracted with hexane $\left(2 \times 50 \mathrm{~cm}^{3}\right)$; reduction in volume and cooling ($-20^{\circ} \mathrm{C}$) gave yellow crystals. Further product can be obtained by reduction in volume of the mother-liquor. Yield: $0.21 \mathrm{~g}, 76 \%$. M.p. $115^{\circ} \mathrm{C}$ (decomp.). I.r.: $1750 \mathrm{~s}, 1680 \mathrm{br}, \mathrm{s}, 1555 \mathrm{~s}, 1420 \mathrm{~m}, 1295 \mathrm{~m}, 1275 \mathrm{~s}, 1145 \mathrm{~m}$, $1020 \mathrm{w}, 945 \mathrm{~s}, 855 \mathrm{~s}, 720 \mathrm{~m}, 710 \mathrm{~m}$, and $660 \mathrm{~m} \mathrm{~cm}^{-1}$.

Di- μ-hydrido-1,1,1-trihydrido-2-(NNN' ${ }^{\prime}$ 'tetramethylethyl-enediamine)-1,1,1-tris(trimethylphosphine)-1-tungsten(IV)-2lithium, (\mathbf{F}).-Excess of tmen $\left(1.0 \mathrm{~cm}^{3}\right)$ was added to a toluene solution ($50 \mathrm{~cm}^{3}$) of $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}(0.35 \mathrm{~g}, 0.21 \mathrm{mmol})$. After 2 h the volume was reduced to $c a .10 \mathrm{~cm}^{3}$; cooling of the solution gave a yellow microcrystalline solid $(0.36 \mathrm{~g}, 80 \%)$, m.p. $98^{\circ} \mathrm{C}$ (decomp.). I.r.: $2800 \mathrm{~m}, 2750 \mathrm{w}, 1790 \mathrm{~s}, 1720 \mathrm{~s}, 1680 \mathrm{~s}$, $1560 \mathrm{~m}, 1420 \mathrm{~m}, 1300 \mathrm{~s}, 1200 \mathrm{vs}, 1150 \mathrm{~m}, 1130 \mathrm{~m}, 1030 \mathrm{~s}, 945 \mathrm{~s}$, $855 \mathrm{~s}, 720 \mathrm{~m}, 710 \mathrm{~m}$, and $650 \mathrm{~m} \mathrm{~cm}^{-1}$.

Dihydridoiodotris(trimethylphosphine)(trimethylsilyl)tungsten(IV), (G).-To a solution of $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{WH}_{5}\right] \mathrm{Li}\right\}_{4}(1.01$ $\mathrm{g}, 0.60 \mathrm{mmol})$ in hexane $\left(60 \mathrm{~cm}^{3}\right)$, was added $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{I}(1.3$ cm^{3}). The solution was stirred until all gas evolution had ceased ($c a .12 \mathrm{~h}$). The dark yellow solution was filtered, the volume reduced under vacuum to $c a .20 \mathrm{~cm}^{3}$, and cooled to $-20^{\circ} \mathrm{C}$ to give small yellow crystals which were collected and dried under vacuum. A further batch can be obtained on further cooling to $-78^{\circ} \mathrm{C}$. Yield: $0.98 \mathrm{~g}, 41 \%$. M.p. $145^{\circ} \mathrm{C}$ (decomp.). I.r.: 1950 w , $1860 \mathrm{w}, 1750 \mathrm{w}, 1620 \mathrm{w}, 1400 \mathrm{~m}, 1290 \mathrm{~m}, 1270 \mathrm{~m}, 1250 \mathrm{~s}$, $1145 \mathrm{~m}, 1095 \mathrm{~s}, 1020 \mathrm{br}, \mathrm{m}, 945 \mathrm{vs}, 850 \mathrm{~s}, 825 \mathrm{~m}, 705 \mathrm{~s}$, and 660 m cm^{-1}.

2,2-Dichloro-1,2;1,2;1,2-tri- μ-hydrido-1,1-dihydrido-2-tri-

 methylamine-1,1,1-tris(trimethylphosphine)-2-aluminium-1tungsten(iv), (H).-To a stirred solution of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\right.$ $\left.\left(\mathrm{AlH}_{4}\right)\right]_{2}(3.34 \mathrm{~g}, 3.74 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NMe}_{3} \mathrm{HCl}(1.43 \mathrm{~g}, 14.9 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. As the mixture warmed to room temperature gas was evolved. After $c a .4 \mathrm{~h}$ the solvent was removed under vacuum and the pale yellow residue extracted into toluene ($80 \mathrm{~cm}^{3}$); reduction in volume and cooling to $-20^{\circ} \mathrm{C}$ yielded pale yellow needles ($3.52 \mathrm{~g}, 87 \%$), m.p. 82° C. I.r.: $1805 \mathrm{~s}, 1700 \mathrm{~s}, 1660 \mathrm{~s}, 1402 \mathrm{~m}, 1290 \mathrm{~m}, 1280 \mathrm{~s}$, $1235 \mathrm{~m}, 1095 \mathrm{~m}, 1025 \mathrm{w}, 982 \mathrm{~s}, 938 \mathrm{vs}, 863 \mathrm{~s}, 855 \mathrm{~m}, 816 \mathrm{~s}, 725 \mathrm{~s}$, $715 \mathrm{~s}, 665 \mathrm{~s}, 520 \mathrm{~m}, 440 \mathrm{~m}$, and $415 \mathrm{~m} \mathrm{~cm}{ }^{-1}$.1,2;1,2-Di- μ-hydrido-2,2,2-trihydrido-1,1,1,1-tetrakis(tri-methylphosphine)-2-aluminium-1-tungsten(II), (I).-To a solution of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{3} \mathrm{~W}\left(\mathrm{AlH}_{4}\right)\right]_{2}(0.50 \mathrm{~g}, 0.56 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(75$ cm^{3}) containing $\mathrm{PMe}_{3}\left(0.5 \mathrm{~cm}^{3}\right.$) was added cyclohexanone (0.3 cm^{3}). On stirring overnight the solvent was removed under vacuum and the orange residue extracted with hexane $(2 \times 20$ cm^{3}); reduction in the volume yielded small yellow crystals $\left(0.16 \mathrm{~g}, 28 \%\right.$), m.p. $72^{\circ} \mathrm{C}$ (decomp.). I.r.: $1940 \mathrm{~m}, 1750 \mathrm{br}, \mathrm{m}$, $1600 \mathrm{br}, \mathrm{m}, 1420 \mathrm{~m}, 1295 \mathrm{~s}, 1275 \mathrm{~s}, 1255 \mathrm{~m}, 1140$ (sh), 1100 s , $1025 \mathrm{w}, 940 \mathrm{~s}, 855 \mathrm{~m}, 845 \mathrm{~m}, 800 \mathrm{w}, 720 \mathrm{~s}$, and $660 \mathrm{~m} \mathrm{~cm}^{-1}$.

X-Ray Crystallography.-Crystals of all compounds were sealed under argon in thin-walled glass capillaries. Orientation matrices and associated cell dimensions and intensity data were obtained following previously described procedures, ${ }^{15}$ using an Enraf-Nonius CAD4 diffractometer and graphite-monochrom-
atised Mo- K_{α} radiation $\left[\lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71069 \AA\right]$ at 293 K . The structures were solved via standard heavy-atom methods and refined by using full-matrix least squares, ${ }^{16}$ with scattering factors based on parameters in ref. 17. Details of the crystal data and structure analysis are given in Table 7. The refinements were mostly straightforward with only the location of hydrogen atoms in some cases causing difficulties. All non-hydrogen atoms were refined anisotropically. For compound (C) it was not possible to locate and refine the hydrogen atoms attached to W or Al , although the methyl hydrogens were located and successfully refined isotropically. For compound (E) all hydrogens bonded to tungsten and bridging to lithium were located and refined isotropically except for one, a terminal hydrogen attached to $W(1)$. This was not included in the refinement, although for the purposes of discussion and representation of the structure a position was calculated so as to make the two tungsten co-ordinations compatible. Methyl hydrogens could not be located and were included in idealised positions and refined using the AFIX facility in SHELX. For compounds (\mathbf{G}) and (\mathbf{H}) all hydrogens were located and freely refined isotropically.

Final atomic positional parameters are given in Table 8.

Acknowledgements

We thank the S.E.R.C. for support of X-ray studies and for a studentship (to A. R. B.), and Miss Sue Johnson and Mr. R. N. Sheppard for assistance with ${ }^{27} \mathrm{Al}$ n.m.r. measurements.

References

1 A. R. Barron, D. Lyons, G. Wilkinson, M. Motevalli, A. J. Howes, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1986, 279.
2 A. R. Barron and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1986, 287.

3 A. R. Barron, J. E. Salt, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1986, 1329.
4 E. Wiberg and E. Amberger, 'Hydrides of the Elements of Main Groups I-IV,' Elsevier, London, 1971.
5 D. Lyons and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1985, 587.
6 G. S. Girolami, C. G. Howard, G. Wilkinson, H. M. Dawes, M. Thornton-Pett, M. Motevalli, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1985, 921.
7 B. M. Bulychev, S. E. Tokareva, G. L. Soloveichick, and E. V. Evodkimova, J. Organomet. Chem., 1979, 179, 263.
8 K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Gales, M. B. Hursthouse, and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1981, 1204.

9 A. R. Barron, M. Motevalli, M. B. Hursthouse, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1986, 81.
10 J. A. Bandy, A. Berry, M. L. H. Green, and K. Prout, J. Chem. Soc., Chem. Commun., 1985, 1462.
11 D. Lyons, G. Wilkinson, M. Thornton-Pett, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1984, 695.

12 H. Sakurai, A. Hosnomi, and H. Kumada, Chem. Commun., 1970, 767.

13 A. Storr and B. S. Thomas, Can. J. Chem., 1971, 49, 2504.
14 J. W. Bruno, J. C. Huffman, and K. G. Caulton, J. Am. Chem. Soc., 1984, 106, 444.
15 M. B. Hursthouse, R. A. Jones, K. M. A. Malik, and G. Wilkinson, J. Am. Chem. Soc., 1979, 101, 4128.
16 SHELX 76, G. M. Sheldrick, University of Cambridge, 1976.
17 'International Tables for \boldsymbol{X}-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: \dagger 2,3-Dichloro-1,2;1,2;3,4;3,4-tetra- μ-hydrido-1,1,1,4,4,4-hexahydrido-2,3;2,3-bis(μ-propylideneamido)-1,1,1,4,4,4-hexakis(trimethylphos-phine)-2,3-dialuminium-1,4-ditungsten(Iv), $1,2,8 ; 2,3,4 ; 4,5,6 ; 6,7,8$ -tetra- μ_{3}-hydrido- 1,$2 ; 1,8 ; 2,3 ; 3,4 ; 4,5 ; 5,6 ; 6,7 ; 7,8$-octa- μ-hydrido-1,1,3,3,5,5,7,7-octahydrido-1,1,1,3,3,3,5,5,5,7,7,7-dodeca(trimethyl-phosphine)-cyclo-1,3,5,7-tetratungsten(Iv)-2,4,6,8-tetralithium, dihydridoiodotris(trimethylphosphine)(trimethylsilyl)tungsten(iv), and 2,2-dichloro-1,2;1,2;1,2-tri- μ-hydrido-1,1-dihydrido-2-trimethylamine-1,1,1-tris(trimethylphosphine)-2-aluminium-1-tungsten(IV).
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii-xx.

[^1]: + Where there is an imbalance in the population of the hydride sites, i.e., $\mathrm{M}-\mathrm{H} / \mathrm{M}(\mu-\mathrm{H}) \neq 1$, two values of ΔG^{\ddagger} are found: for convenience the numerical average is quoted.

 $$
 \mathrm{M}-\mathrm{H} \underset{\Delta G_{\mathrm{B}}{ }^{\ddagger}}{\stackrel{\Delta G_{\mathrm{A}}}{ }} \mathrm{M}(\mu-\mathrm{H}) \mathrm{Al}
 $$

