Preparation and Reactions of Bis(isocyanide)(n⁵-indenyl)rhodium(I) Complexes[†]

Yasuhiro Yamamoto * and Hiroshi Yamazaki

Riken (The Institute of Physical and Chemical Research), Wako, Saitama 351-01, Japan

The bis(aryl isocyanide) (η^{s} -indenyl)rhodium(1) complexes [Rh(η -C₉H₇)(RNC)₂] [1; R = 4-Br-2,6-Me₂C₆H₂, 2,6-Me₂C₆H₃, or 2,4,6-Bu^t₃C₆H₂] were prepared by the reactions of [Rh(RNC)₃Cl] or a mixture of [{RhCl(cod)}₂] (cod = cyclo-octa-1,5-diene) and RNC with indenyl-lithium. Reaction of (1) with tetracyanoethylene (tcne) or methyl iodide gave an olefin complex, [Rh(η^{s} -C₉H₇)-(RNC)(tcne)], or an iminoacyl complex, [Rh(η^{s} -C₉H₇)(RNC){C(Me)=NR}I], respectively.

It has been reported that bis(isocyanide) complexes of η^{5} -pentamethylcyclopentadienyl- or η^{5} -indenyl-rhodium(1) play a role as a precursor in the activation of carbon-hydrogen bonds.¹ Methods of preparation of the complexes are (i) by the reaction of $[Rh(\eta^{5}-C_{9}H_{7})(C_{2}H_{4})_{2}]$ with isocyanide² and (ii) by the reduction of $[Rh(\eta^{5}-C_{5}Me_{5})(RNC)X_{2}]$ (R = Bu'CH₂) with sodium amalgam or with sodium dihydronaphthylide in the presence of isocyanide.¹ We report here a convenient synthesis of bis(isocyanide)(η^{5} -indenyl)rhodium(1) complexes by the reaction of indenyl-lithium with $[Rh(RNC)_{3}Cl]$ (R = aryl)³ or a mixture of $[{RhCl(cod)}_{2}]$ (cod = cycloocta-1,5-diene) and isocyanide.

Results and Discussion

Addition of indenyl-lithium to the appropriate chlorotris(isocyanide)rhodium(1) complex in a mixture of benzene and diethyl ether produced brownish yellow complex (1), formulated as $[Rh(\eta-C_9H_7)(RNC)_2]$ [R = 4-Br-2,6-Me_2C_6H_2 (1a), 2,6-Me_2C_6H_3 (1b), or 2,4,6-Bu¹_3C_6H_2 (1c)]. The i.r. spectrum showed two peaks near 2 100 cm⁻¹, assignable to terminal isocyanide groups. The ¹H n.m.r. spectrum in CDCl₃ showed a characteristic pattern of the indenyl group at δ 5.60 [d, J(HH) = 2.0] and 6.30 [q, J(HH) = J(RhH) = 2.0 Hz] which have been observed often in η^5 -indenyl complexes.⁴

The complexes were also obtained by treatment of a mixture of $[{RhCl(cod)}_2]$ and RNC with indenyl-lithium.

Treatment of (1a) with tetracyanoethylene (tcne) produced the olefin complex $[Rh(\eta^5-C_9H_7)(4-Br-2,6-Me_2C_6H_2NC)-(tcne)]$ (2a) in 90% yield. The i.r. spectrum showed two peaks at 2 219 and 2 157 cm⁻¹, assignable to v(C=N) and v(N=C) (cyanide and isocyanide) stretching bands respectively. Similar complexes, $[Rh(\eta^5-C_9H_7)(RNC)(tcne)]$ $[R = 2,6-Me_2C_6H_2$ (2b) or 2,4,6-Bu¹₃C₆H₂ (2c)] were prepared from complexes (1b) and (1c) respectively.

When methyl iodide was added to a solution of (1a) in benzene, an immediate reaction occurred to give the iminoacyl complex $[Rh(\eta^5-C_9H_7)(RNC)\{C(Me)=NR\}I]$ (3a; R = 4-Br-2,6-Me₂C₆H₂). The i.r. spectrum showed the presence of the terminal isocyanide and iminoacyl groups at 2 147 and 1 661 cm⁻¹ respectively.⁵

A similar type of complex, $[Rh(\eta^5-C_5Me_5){C(C_6H_4Me-4)}=$ NCH₂Bu^t $(PMe_3)]$, has been obtained from the reaction of $[Rh(\eta^5-C_5Me_5)(CNCH_2Bu^t)Br_2]$ with 4-MeC₆H₄MgBr, followed by addition of trimethylphosphine.¹

Experimental

The preparations were carried out under an atmosphere (*ca.* 10^5 Pa) of nitrogen. Infrared and ¹H n.m.r. spectra were measured on Shimazu IR-27G and JEOL C-60HL spectrometers respectively. The isocyanides ^{3b.6} and [Rh(RNC)₃Cl]³ were prepared by procedures described in the literature.

Preparation of $[Rh(\eta^5-C_9H_7)(RNC)_2]$ (1) and $[Rh(\eta^5-C_9H_7)(RNC)(tcne)]$ (2).—Representative examples are described.

Preparation of (1a). To a suspension of [Rh(4-Br-2,6- $Me_2C_6H_2NC)_3Cl$ (0.325 g, 0.42 mmol) in benzene-diethyl ether $(3:2, 25 \text{ cm}^3)$ was added LiC₉H₇ (0.16 mmol) in ether (3 cm³). After stirring for 2 h at room temperature, aqueous NH₄Cl was added. The organic layer was decanted and the aqueous layer was extracted twice with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and chromatographed on alumina (column height, 10 cm) (containing 10% H₂O). Elution with CH₂Cl₂ gave an orange solution. Removal of the solvent and crystallization of the residue from CH₂Cl₂-hexane at 0 °C gave dark orange crystals of (1a), yield 0.16 g (59%), m.p. 160 °C (decomp.) (Found: C, 50.8; H, 3.65; N, 4.35. Calc. for C₂₇H₂₃Br₂N₂Rh: C, 50.8; H, 3.65; N, 4.40%). I.r. (Nujol): 2 106 and 2038 cm⁻¹. N.m.r. (CDCl₃): 8 2.44 (s, 2,6-Me₂), 5.59 [d, J(HH) = 2.0], 6.30 [q, J(HH) = 2.0, J(Rh-H) = 2.0 Hz], ca. 7.0 (aromatic protons). Electronic spectrum (CH₂Cl₂): λ_{max} 391 (ɛ 11 950) and 315 nm (16 360 dm³ mol⁻¹ cm⁻¹).

The following complexes were prepared by similar procedures. $[Rh(\eta^5-C_9H_7)(2,6-Me_2C_6H_3NC)_2]$ (**1b**), yield 62%, m.p. 143—146 °C (decomp.) (Found: C, 67.65; H, 5.25; N, 5.80. Calc. for $C_{27}H_{25}N_2Rh$: C, 67.5; H, 5.25; N, 5.85%). I.r. (Nujol): 2 110 and 2 045 cm⁻¹. Electronic spectrum (CH₂Cl₂): λ_{max} . 390 (ϵ 18 260) and 315 nm (27 390 dm³ mol⁻¹ cm⁻¹). [Rh(η^5 -C₉H₇)(2,4,6-Bu'_3C_6H_2NC)_2] (**1c**), yield 60%, m.p. 164—167 °C (decomp.) (Found: C, 75.0; H, 9.05; N, 5.50. Calc. for C₄₇H₆₅N₂Rh: C, 74.2; H, 8.60; N, 3.70%). I.r. (Nujol): 2 054 and 2 107 cm⁻¹. N.m.r. (CDCl₃): δ 1.34 (s, 4-Bu'), 1.50 (s, 2,6-Bu'), 5.28 [d, J(HH) = 2.0], 6.39 [q, J(HH) = J(Rh-H) = 2.0 Hz], and *ca*. 7.0 (aromatic protons). Electronic spectrum (CH₂Cl₂): λ_{max} . 397 (ϵ 6 520) and 268 nm (21 180 dm³ mol⁻¹ cm⁻¹).

Preparation of $[Rh(\eta^5-C_9H_7)(2,4,6-Bu_3C_6H_2NC)(tcne)]$ (2c). A mixture of (1c) (0.05 g, 0.66 mmol) and tcne (0.01 g, 0.078 mmol) in CH₂Cl₂ (10 cm³) was stirred for 0.5 h at room temperature. Solvent was removed *in vacuo* and the residue was chromatographed on alumina (containing 10% H₂O). Elution with benzene-CH₂Cl₂ (2:1) gave a yellow solution. Crystallization from benzene-hexane gave orange crystals of (2c), yield 93%, m.p. 190 °C (decomp.) (Found: C, 66.5; H, 5.95; N, 11.2.

[†] Taken as 'Studies on Interactions of Isocyanides with Transition Metal Complexes. Part 31.' For Part 30, see Y. Yamamoto and H. Yamazaki, *Inorg. Chem.*, 1986, **25**, 3327.

Calc. for $C_{34}H_{36}N_5Rh$: C, 66.1; H, 5.90; N, 11.3%). I.r. (Nujol): 2 214 and 2 149 cm⁻¹. Electronic spectrum (CH₂Cl₂): λ_{max} . 441 (ϵ 3 670), 358 (3 120), and 268 nm (25 100 dm³ mol⁻¹ cm⁻¹). [Rh(η^5 -C₉H₇)(4-Br-2,6-Me₂C₆H₂NC)(tcne)] (**2a**), yield 90%, m.p. 220 °C (decomp.) (Found C, 52.0; H, 2.75; N, 12.45. Calc. for C₂₄H₁₅BrN₅Rh: C, 51.8; H, 2.70; N, 12.6%). I.r. (Nujol): 2 219 and 2 157 cm⁻¹. Electronic spectrum (CH₂Cl₂): λ_{max} . 438

(ϵ 3 770), 367 (3 110), 288 (21 000), and 264 nm (217₂Cl₂), 700 dm³ mol⁻¹ cm⁻¹). [Rh(η⁵-C₉H₇)(2,6-Me₂C₆H₃NC)(tcne)] (**2b**), yield 75%, m.p. 206—209 °C (decomp.) (Found: C, 61.4; H, 13.5; N, 15.2. Calc. for C₂₄H₁₆N₅Rh: C, 60.4; H, 13.4; N, 14.65%). I.r. (Nujol): 2 217 and 2 160 cm⁻¹. Electronic spectrum (CH₂Cl₂): λ_{max} , 451 (ϵ 5 450), 366 (3 360), and 213 nm (20 300 dm³ mol⁻¹ cm⁻¹).

Preparation of $[Rh(\eta^5-C_9H_7)(4-Br-2,6-Me_2C_6H_2NC)-$ {C(Me)=NR}I]•CH₂Cl₂ (**3a**).—A solution of (**1a**) (0.1 g, 0.16 mmol) and MeI (0.1 cm³) in benzene (10 cm³) was stirred at room temperature. The mixture was chromatographed on alumina (containing 10% H₂O). Elution with benzene gave an orange solution. Orange crystals of (**3a**), yield 0.074 g (53%), m.p. 186—189 °C (decomp.) were obtained by recrystallization from CH₂Cl₂ (Found: C, 40.5; H, 3.25; N, 3.20. Calc. for $C_{29}H_{28}Br_2Cl_2IN_2Rh$: C, 40.25; H, 3.25; N, 3.25%). I.r. (Nujol): 2 147 and 1 661 cm⁻¹. N.m.r. (CDCl₃): δ 1.20 (s, C-CH₃), 2.53 (s, CH₃ of RNC), 3.18 (s, CH₃ of =NR), 5.60 [J(HH) = 2.0], and 6.33 [q, J(HH) = 2.0, J(Rh-H) = 2.0 Hz].

References

- 1 W. D. Jones and F. J. Feher, Organometallics, 1983, 2, 686.
- 2 P. Caddy, M. Green, E. O'Brien, L. E. Smart, and P. Woodward, Angew. Chem., 1977, 89, 671.
- 3 (a) Y. Yamamoto and H. Yamazaki, J. Organomet. Chem., 1977, 140, C33; (b) Y. Yamamoto, K. Aoki, and H. Yamazaki, Inorg. Chem., 1979, 18, 1681; (c) Y. Yamamoto, Y. Wakatsuki, and H. Yamazaki, Organometallics, 1983, 2, 1604.
- 4 P. Caddy, M. Green, E. O'Brien, L. E. Smart, and P. Woodward, J. Chem. Soc., Dalton Trans., 1980, 962.
- 5 Y. Yamamoto and H. Yamazaki, Coord. Chem. Rev., 1972, 8, 225; P. M. Trichel, Adv. Organomet. Chem., 1973, 11, 21; E. Singleton and H. E. Oosthuizen, Adv. Organomet. Chem., 1983, 22, 209.
- 6 H. M. Walborsky and G. E. Niznik, J. Org. Chem., 1972, 37, 187.

Received 18th April 1986; Paper 6/753