Preparation and Reactions of Bis(isocyanide)(η^{5}-indenyl)rhodium(I) Complexes \dagger

Yasuhiro Yamamoto ${ }^{\bullet}$ and Hiroshi Yamazaki
Riken (The Institute of Physical and Chemical Research), Wako, Saitama 351-01, Japan

The bis(aryl isocyanide) (η^{5}-indenyl)rhodium(1) complexes $\left[R h\left(\eta-C_{9} H_{7}\right)(R N C)_{2}\right][1 ; R=4-B r-2,6-$ $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}, 2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, or $2,4,6-\mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$] were prepared by the reactions of [Rh(RNC) ${ }_{3} \mathrm{CI}$] or a mixture of $\left[\{\mathrm{RhCl}(\operatorname{cod})\}_{2}\right]$ (cod = cyclo-octa-1,5-diene) and RNC with indenyl-lithium. Reaction of (1) with tetracyanoethylene (tcne) or methyl iodide gave an olefin complex, [Rh($\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}$)(RNC) (tcne)], or an iminoacyl complex, $\left[R h\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)(R N C)\{C(\mathrm{Me})=\mathrm{NR}\} \mid\right]$, respectively.

It has been reported that bis(isocyanide) complexes of η^{5} -pentamethylcyclopentadienyl- or η^{5}-indenyl-rhodium(I) play a role as a precursor in the activation of carbon-hydrogen bonds. ${ }^{1}$ Methods of preparation of the complexes are (i) by the reaction of $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ with isocyanide ${ }^{2}$ and (ii) by the reduction of $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{RNC}) \mathrm{X}_{2}\right] \quad\left(\mathrm{R}=\mathrm{Bu}^{1} \mathrm{CH}_{2}\right)$ with sodium amalgam or with sodium dihydronaphthylide in the presence of isocyanide. ${ }^{1}$ We report here a convenient synthesis of bis(isocyanide)(η^{5}-indenyl)rhodium(I) complexes by the reaction of indenyl-lithium with $\left[\mathrm{Rh}(\mathrm{RNC})_{3} \mathrm{Cl}\right]$ ($\mathrm{R}=$ aryl) ${ }^{3}$ or a mixture of $\left[\{\mathrm{RhCl}(\operatorname{cod})\}_{2}\right](\operatorname{cod}=$ cyclo-octa-1,5-diene) and isocyanide.

Results and Discussion

Addition of indenyl-lithium to the appropriate chlorotris(isocyanide)rhodium(I) complex in a mixture of benzene and diethyl ether produced brownish yellow complex (1), formulated as $\left[\mathrm{Rh}\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)(\mathrm{RNC})_{2}\right] \quad\left[\mathrm{R}=4-\mathrm{Br}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \quad\right.$ (1a), 2,6$\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ (1b), or $2,4,6-\mathrm{Bu}^{1}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ (1c)]. The i.r. spectrum showed two peaks near $2100 \mathrm{~cm}^{-1}$, assignable to terminal isocyanide groups. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed a characteristic pattern of the indenyl group at $\delta 5.60$ [d, $J(\mathrm{HH})=2.0]$ and $6.30[\mathrm{q}, J(\mathrm{HH})=J(\mathrm{RhH})=2.0 \mathrm{~Hz}]$ which have been observed often in η^{5}-indenyl complexes. ${ }^{4}$

The complexes were also obtained by treatment of a mixture of $\left[\{\mathrm{RhCl}(\operatorname{cod})\}_{2}\right]$ and RNC with indenyl-lithium.

Treatment of (1a) with tetracyanoethylene (tcne) produced the olefin complex $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(4-\mathrm{Br}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NC}\right)\right.$ (tcne)] (2a) in 90% yield. The i.r. spectrum showed two peaks at 2219 and $2157 \mathrm{~cm}^{-1}$, assignable to $v(\mathrm{C} \equiv \mathrm{N})$ and $v(\mathrm{~N} \equiv \mathrm{C})$ (cyanide and isocyanide) stretching bands respectively. Similar complexes, $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)(\mathrm{RNC})(\right.$ tcne $\left.)\right] \quad\left[\mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right.$ (2b) or $\left.2,4,6-\mathrm{Bu}_{3}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}(2 \mathrm{c})\right]$ were prepared from complexes (1b) and (1c) respectively.

When methyl iodide was added to a solution of (1a) in benzene, an immediate reaction occurred to give the iminoacyl complex $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)(\mathrm{RNC})\{\mathrm{C}(\mathrm{Me})=\mathrm{NR}\} 1\right]$ (3a; $\mathrm{R}=4$ - $\mathrm{Br}-$ $2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$). The i.r. spectrum showed the presence of the terminal isocyanide and iminoacyl groups at 2147 and 1661 cm^{-1} respectively. ${ }^{5}$

A similar type of complex, $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)=\right.\right.$ $\left.\left.\mathrm{NCH}_{2} \mathrm{Bu}^{\prime}\right\}\left(\mathrm{PMe}_{3}\right)\right]$, has been obtained from the reaction of $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{CNCH}_{2} \mathrm{Bu}^{1}\right) \mathrm{Br}_{2}\right]$ with $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$, followed by addition of trimethylphosphine. ${ }^{1}$
\dagger Taken as 'Studies on Interactions of Isocyanides with Transition Metal Complexes. Part 31.' For Part 30, see Y. Yamamoto and H. Yamazaki, Inorg. Chem., 1986, 25, 3327.

Experimental

The preparations were carried out under an atmosphere (ca. 10^{5} Pa) of nitrogen. Infrared and ${ }^{1} \mathrm{H}$ n.m.r. spectra were measured on Shimazu IR-27G and JEOL C-60HL spectrometers respectively. The isocyanides ${ }^{3 b, 6}$ and $\left[\mathrm{Rh}(\mathrm{RNC})_{3} \mathrm{Cl}\right]^{3}$ were prepared by procedures described in the literature.

Preparation of $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)(\mathrm{RNC})_{2}\right]$ (1) and $\left[\mathrm{Rh}\left(\eta^{5}-\right.\right.$ $\mathrm{C}_{9} \mathrm{H}_{7}$)(RNC)(tene)] (2).-Representative examples are described.

Preparation of (1a). To a suspension of $[\mathrm{Rh}(4-\mathrm{Br}-2,6-$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NC}\right)_{3} \mathrm{Cl}\right](0.325 \mathrm{~g}, 0.42 \mathrm{mmol})$ in benzene-diethyl ether ($3: 2,25 \mathrm{~cm}^{3}$) was added $\mathrm{LiC}_{9} \mathrm{H}_{7}(0.16 \mathrm{mmol})$ in ether (3 cm^{3}). After stirring for 2 h at room temperature, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The organic layer was decanted and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and chromatographed on alumina (column height, 10 cm) (containing $10 \% \mathrm{H}_{2} \mathrm{O}$). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave an orange solution. Removal of the solvent and crystallization of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $0^{\circ} \mathrm{C}$ gave dark orange crystals of (1a), yield $0.16 \mathrm{~g}(59 \%)$, m.p. $160^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 50.8 ; \mathrm{H}, 3.65$; N, 4.35. Calc. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{~N}_{2}$ Rh: C, $50.8 ; \mathrm{H}, 3.65$; N, 4.40%). I.r. (Nujol): 2106 and $2038 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 2.44\left(\mathrm{~s}, 2,6-\mathrm{Me}_{2}\right), 5.59$ [d, $J(\mathrm{HH})=2.0], 6.30[\mathrm{q}, J(\mathrm{HH})=2.0, J(\mathrm{Rh}-\mathrm{H})=2.0 \mathrm{~Hz}], c a$. 7.0 (aromatic protons). Electronic spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\text {max. }} 391$ ($\varepsilon 11950$) and $315 \mathrm{~nm}\left(16360 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$).

The following complexes were prepared by similar procedures. $\quad\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)_{2}\right]$ (1b), yield 62%, m.p. $143-146^{\circ} \mathrm{C}$ (decomp.) (Found: C, 67.65; H, 5.25; N, 5.80. Calc. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{Rh}$: C, 67.5; H, $5.25 ; \mathrm{N}, 5.85 \%$). I.r. (Nujol): 2110 and $2045 \mathrm{~cm}^{-1}$. Electronic spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\text {max }} 390$ ($\varepsilon 18260$) and $315 \mathrm{~nm}\left(27390 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$). $\left[\operatorname{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(2,4,6-\mathrm{Bu}^{\mathrm{t}} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NC}\right)_{2}\right]$ (1c), yield 60%, m.p. $164-167^{\circ} \mathrm{C}$ (decomp.) (Found: C, 75.0; H, 9.05; N, 5.50. Calc. for $\mathrm{C}_{47} \mathrm{H}_{65} \mathrm{~N}_{2}$ Rh: C, $74.2 ; \mathrm{H}, 8.60$; N, 3.70%). I.r. (Nujol): 2054 and $2107 \mathrm{~cm}^{-1}$. N.m.r. (CDCl_{3}): $\delta 1.34$ (s, 4-Bu'), 1.50 (s, 2,6$\left.\mathrm{Bu}^{1}\right), 5.28[\mathrm{~d}, J(\mathrm{HH})=2.0], 6.39[\mathrm{q}, J(\mathrm{HH})=J(\mathrm{Rh}-\mathrm{H})=2.0$ Hz], and ca. 7.0 (aromatic protons). Electronic spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max. }} 397$ ($\varepsilon 6520$) and $268 \mathrm{~nm}\left(21180 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ cm^{-1}).

Preparation of $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(2,4,6-\mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NC}\right)(\right.$ tene $\left.)\right]$ (2c). A mixture of (1c) ($0.05 \mathrm{~g}, 0.66 \mathrm{mmol}$) and tene ($0.01 \mathrm{~g}, 0.078$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was stirred for 0.5 h at room temperature. Solvent was removed in vacuo and the residue was chromatographed on alumina (containing $10 \% \mathrm{H}_{2} \mathrm{O}$). Elution with benzene- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) gave a yellow solution. Crystallization from benzene-hexane gave orange crystals of (2c), yield $93^{\circ} \%$, m.p. $190^{\circ} \mathrm{C}$ (decomp.) (Found: C, 66.5; H, 5.95; N, 11.2.

Calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{5}$ Rh: C, 66.1; H, 5.90; N, 11.3\%). I.r. (Nujol): 2214 and $2149 \mathrm{~cm}^{-1}$. Electronic spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\text {max }} .441$ ($\varepsilon 3670$), 358 (3120), and $268 \mathrm{~nm}\left(25100 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$). [$\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(4-\mathrm{Br}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NC}\right)($ tene $\left.)\right]$ (2a), yield 90%, m.p. $220^{\circ} \mathrm{C}$ (decomp.) (Found C, 52.0; H, 2.75; N, 12.45. Calc. for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BrN}_{5} \mathrm{Rh}: \mathrm{C}, 51.8 ; \mathrm{H}, 2.70 ; \mathrm{N}, 12.6 \%$). I.r. (Nujol): 2219 and $2157 \mathrm{~cm}^{-1}$. Electronic spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max. }} 438$ ($\varepsilon 3770$), 367 (3110), 288 (21000), and $264 \mathrm{~nm}\left(21700 \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \quad \mathrm{~cm}^{-1}\right)$. [$\left.\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)(\mathrm{tcne})\right] \quad$ (2b), yield 75%, m.p. $206-209^{\circ} \mathrm{C}$ (decomp.) (Found: C, $61.4 ; \mathrm{H}, 13.5$; $\mathrm{N}, 15.2$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{Rh}$: C, $60.4 ; \mathrm{H}, 13.4 ; \mathrm{N}, 14.65 \%$). I.r. (Nujol): 2217 and $2160 \mathrm{~cm}^{-1}$. Electronic spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\text {max }} 451$ ($\varepsilon 5450$), 366 (3360), and $213 \mathrm{~nm}\left(20300 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ cm^{-1}.

Preparation of $\quad\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(4-\mathrm{Br}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NC}\right)\right.$ $\{\mathrm{C}(\mathrm{Me})=\mathrm{NR}\} \mathrm{I}] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{a})$.-A solution of (1a) $(0.1 \mathrm{~g}, 0.16$ mmol) and MeI ($0.1 \mathrm{~cm}^{3}$) in benzene ($10 \mathrm{~cm}^{3}$) was stirred at room temperature. The mixture was chromatographed on alumina (containing $10 \% \mathrm{H}_{2} \mathrm{O}$). Elution with benzene gave an orange solution. Orange crystals of (3a), yield $0.074 \mathrm{~g}(53 \%)$, m.p. $186-189^{\circ} \mathrm{C}$ (decomp.) were obtained by recrystal-
lization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Found: $\mathrm{C}, 40.5 ; \mathrm{H}, 3.25 ; \mathrm{N}, 3.20$. Calc. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{IN}_{2} \mathrm{Rh}: \mathrm{C}, 40.25 ; \mathrm{H}, 3.25 ; \mathrm{N}, 3.25 \%$). I.r. (Nujol): 2147 and $1661 \mathrm{~cm}^{-1}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 1.20$ (s, $\mathrm{C}-\mathrm{CH}_{3}$), 2.53 ($\mathrm{s}, \mathrm{CH}_{3}$ of RNC), 3.18 ($\mathrm{s}, \mathrm{CH}_{3}$ of $=\mathrm{NR}$), 5.60 $[J(\mathrm{HH})=2.0]$, and $6.33[\mathrm{q}, J(\mathrm{HH})=2.0, J(\mathrm{Rh}-\mathrm{H})=2.0 \mathrm{~Hz}]$.

References

1 W. D. Jones and F. J. Feher, Organometallics, 1983, 2, 686.
2 P. Caddy, M. Green, E. O'Brien, L. E. Smart, and P. Woodward, Angew. Chem., 1977, 89, 671.
3 (a) Y. Yamamoto and H. Yamazaki, J. Organomet. Chem., 1977, 140, C33; (b) Y. Yamamoto, K. Aoki, and H. Yamazaki, Inorg. Chem., 1979, 18, 1681; (c) Y. Yamamoto, Y. Wakatsuki, and H. Yamazaki, Organometallics, 1983, 2, 1604.
4 P. Caddy, M. Green, E. O’Brien, L. E. Smart, and P. Woodward, J. Chem. Soc., Dalton Trans., 1980, 962.
5 Y. Yamamoto and H. Yamazaki, Coord. Chem. Rev., 1972, 8, 225; P. M. Trichel, Adv. Organomet. Chem., 1973, 11, 21; E. Singleton and H. E. Oosthuizen, Adv. Organomet. Chem., 1983, 22, 209.

6 H. M. Walborsky and G. E. Niznik, J. Org. Chem., 1972, 37, 187.
Received 18th April 1986; Paper 6/753

