Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 59. ${ }^{1}$ Reactions of the Alkylidyne Compounds $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left[\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}\right.$, or W, $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{M e}-4 ; \mathbf{M}=\mathbf{W}$, $R=M e, H B(p z)_{3}=$ Hydrotris(pyrazol-1-yl)borate] with d^{10} Complexes; Crystal Structure of $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]^{*}$

Sigurd H. F. Becke, M. Dolores Bermúdez, N. Hoa Tran-Huy, Judith A. K. Howard, Owen Johnson, and F. Gordon A. Stone
Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1 TS

Abstract

Treatment of the compound $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left[\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}=\right.$ hydrotris (pyrazol-1-yl)borate] with [$\left.\mathrm{Ni}(\operatorname{cod})_{2}\right]$ (cod = cyclo-octa-1,5-diene) or $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ affords the trimetal complexes $\left[\mathrm{M}^{\prime} \mathrm{W}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]\left(\mathrm{M}^{\prime}=\mathrm{Ni}\right.$ or Pt$)$. Similarly, reactions between the species $\left[\mathrm{M}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}\right.$, or W) and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ yield the related compounds $\left[\mathrm{PtM}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$. The molecular structure of $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CMe})_{2}-\right.$ $(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}$] has been established by X-ray diffraction. The molecule has a nearly linear $\mathrm{W}-\mathrm{Pt}-\mathrm{W}$ spine $\left[172.8(1)^{\circ}\right]$, with mean $\mathrm{Pt}-\mathrm{W}$ separations of $2.716 \AA$. Each metal-metal bond is bridged by an ethylidyne group [mean values $\mu-\mathrm{C}-\mathrm{W} 1.885, \mu-\mathrm{C}-\mathrm{Pt} 2.040 \AA$] and semi-bridged by a carbonyl ligand [$\mathrm{W}-\mathrm{C}-\mathrm{O} 166^{\circ}$]. The dihedral angle between the two dimetallacyclopropene rings is 79°. Each tungsten atom carries a terminally bound CO ligand and a $\mathrm{HB}(\mathrm{pz})_{3}$ group. If the metalmetal bonds are ignored, each tungsten is in a pseudo-octahedral environment defined by the three nitrogen atoms of its associated $\mathrm{HB}(\mathrm{pz})_{3}$ ligand, the two CO groups and a $\mu-\mathrm{CMe}$ fragment. A gold salt $\left[\mathrm{AuW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$ has been obtained by treating $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}-\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ with $[\mathrm{AuCl}(\mathrm{tht})]$ (tht = tetrahydrothiophene) in the presence of TIPF T_{6}. Reactions between the complexes $\left[M(\equiv C R)(C O)_{2}\left\{H B(p z)_{3}\right\}\right]\left(M=C r, M o\right.$ or $W, R=C_{6} \mathrm{H}_{4} M e-4 ; M=W$, $R=\mathrm{Me})$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right.$] give dimetal compounds $\left[\mathrm{PtM}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}-\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$, but only the ethylidyne-bridged platinum-tungsten compound is reasonably stable in solution. A molybdenum-platinum salt formulated as $\left[\mathrm{PtMo}\left\{\mu-\sigma: \eta^{3}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}{ }^{-}\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left[\mathrm{BF}_{4}\right]$ has also been prepared. Spectroscopic data for the new compounds are reported.

Among the earliest reactions studied ${ }^{2}$ which demonstrated that the $\mathrm{C} \equiv \mathrm{W}$ group in the tolylmethylidynetungsten compound $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ could function as a 'ligand' were those involving the reagents $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right](\operatorname{cod}=$ cyclo-octa-1,5-diene $), \quad\left[\mathrm{Pd}\left(\eta-\mathrm{C}_{7} \mathrm{H}_{10}\right)_{3}\right] \quad\left(\mathrm{C}_{7} \mathrm{H}_{10}=\right.$ bicyclo[2.2.1]heptene) and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right] \cdot{ }^{3}$ The products are the trimetallic complexes $\left[\mathrm{M}^{\prime} \mathrm{W}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right.$] [$\mathrm{M}^{\prime}=$ Ni (1a), Pd (1b), or Pt (1c)]. The palladium compound (1b) proved to be a very labile species, unsuitable for further syntheses. However, the nickel and platinum complexes are stable, as are the related trimetal compounds (1d)-(10). ${ }^{4}$ Hence these species have been employed in the preparation of complexes with chains and rings of metal atoms. ${ }^{5}$
In this paper we describe an extension of this area of chemistry using the recently prepared ${ }^{6.7}$ compounds $[M(\equiv C R)$ $\left.(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left[\mathrm{M}=\mathrm{Cr}\right.$, Mo, or $\mathrm{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$; $\mathbf{M}=\mathbf{W}, \mathbf{R}=\mathbf{M e} ; \mathbf{H B}(\mathrm{pz})_{3}=$ hydrotris(pyrazol-1-yl)borate $]$ to obtain further examples of complexes of type (1). Also included herein is a description of some related dimetal species synthesised in the expectation that the presence of the hydro-tris(pyrazol-1-yl)borate group might lead to differences in properties compared with analogous compounds containing the ligands $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ or $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$. ${ }^{8}$

* 1,2;2,3-Di- μ-carbonyl-1,3-dicarbonyl-1,2;2,3-di- μ-(ethylidyne)-1,3-bis[hydrotris(pyrazol-1-yl)borato] platinumditungsten(2 $\mathrm{Pl}-\mathrm{W}$).
Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii-xx.

	M^{\prime}	M	R	L
(1a)	Ni	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(1b)	Pd	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(lc)	Pt	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(1d)	Ni	W	Me	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(1e)	Ni	W	Ph	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{5}$
(1)	Ni	W	Me	$\dagger-\mathrm{C}_{5} \mathrm{Me}_{5}$
(1g)	Ni	W	Ph	$\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$
(1h)	Ni	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$
(1i)	Ni	Mo	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(1)	Pt	W	Me	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(1k)	Pt	W	Ph	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(11)	Pt	W	Me	$\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$
(1m)	Pt	W	Ph	$\dagger-\mathrm{C}_{5} \mathrm{Me}_{5}$
(1n)	Pt	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\dagger-\mathrm{C}_{5} \mathrm{Me}_{5}$
(10)	Pt	Mo	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(1p)	Ni	W	Me	$\mathrm{HB}(\mathrm{pz})_{3}$
(19)	Pt	W	Me	$\mathrm{HB}(\mathrm{pz})_{3}$
(1r)	Pt	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\mathrm{HB}(\mathrm{pz})_{3}$
(1s)	Pt	Cr	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\mathrm{HB}(\mathrm{pz})_{3}$
(1t)	Pt	Mo	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\mathrm{HB}(\mathrm{pz})_{3}$

Table 1. Analytical ${ }^{a}$ and physical data for the complexes

Compound		Yield (\%)	$v_{\text {max }}(\mathrm{CO})^{\mathrm{b}} / \mathrm{cm}^{-1}$	Analysis (\%)		
	Colour			C	H	N
(1p) $\left[\mathrm{NiW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$	Purple	60	$1933 \mathrm{vs}, 1788 \mathrm{~m}$	31.5 (30.7)	3.0 (2.6)	15.8 (16.5)
(1q) $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$	Red	85	1956 (sh), $1931 \mathrm{vs}, 1792 \mathrm{~m}$	27.9 (27.0)	2.5 (2.3)	14.4 (14.5)
(1r) $\left[\mathrm{PtW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$	Red	86	$\begin{aligned} & 1966 \text { (sh), } 1937 \mathrm{vs}, 1795 \mathrm{~m}, \\ & 1740 \mathrm{~m} \end{aligned}$	34.1 (34.9)	2.6 (2.6)	13.2 (12.9)
(1s) $\left[\mathrm{PtCr}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{\mathbf{2}}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$	Green	50	$\begin{aligned} & \text { '1998s, } 1979 \mathrm{vs}, 1830 \mathrm{~m}, \\ & 1817 \mathrm{~m} \end{aligned}$	43.1 (43.7)	3.7 (3.3)	15.1 (16.1)
(1t) $\left[\mathrm{PtMo}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$	Dark red	75	$\begin{aligned} & 1985 \mathrm{vs}, 1961 \mathrm{vs}, 1818 \mathrm{~m} \text {, } \\ & 1805 \mathrm{~m} \end{aligned}$	39.7 (40.3)	2.8 (3.0)	14.7 (14.9)
(2d) $\left[\mathrm{AuW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$	Yellow	80	$2013 \mathrm{vs}, 1929 \mathrm{vs}$	23.1 (24.0)	2.1 (2.0)	12.7 (12.9)
(3d) $\left[\mathrm{PtW}(\mu-\mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$	Red	30	$1903 \mathrm{vs}, 1768 \mathrm{~m}$	24.1 (24.7)	3.6 (3.3)	9.0 (9.1)
(3e) $\left[\mathrm{PtW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$	Red	20	1907vs, 1770 m			
(3) $\left[\mathrm{PtCr}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$	Brown	15	$1903 \mathrm{vs}, 1770 \mathrm{~m}$			
(3g) $\left[\mathrm{PtMo}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$	Red	40	$1926 \mathrm{vs}, 1771 \mathrm{~m}$			
(4b) $\left[\mathrm{PtMo}\left\{\mu-\sigma: \eta^{3}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2^{-}}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left[\mathrm{BF}_{4}\right]$	Green	93	1955 vs, 1872 vs	29.0 (30.0)	3.6 (3.6)	7.5 (8.4)

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b}$ Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. ${ }^{\text {c }}$ In hexane.

Table 2. Hydrogen-1 ${ }^{13} \mathrm{C}$, and ${ }^{195} \mathrm{Pt}$ n.m.r. data ${ }^{a}$ for the trimetal complexes

Complex	($\delta)^{b}$
(1p)	$\begin{aligned} & 2.80(\mathrm{~s}, 6 \mathrm{H}, \mu-\mathrm{CMe}), 6.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{4}\right), 7.69\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{3}\right. \\ & \text { or } \left.\mathrm{H}^{5}\right), 8.07\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{3} \text { or } \mathrm{H}^{5}\right) \end{aligned}$
(1q)	$\begin{aligned} & 3.03(\mathrm{~s}, 6 \mathrm{H}, \mu-\mathrm{CMe}), 6.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{4}\right), 7.72\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{3}\right. \\ & \text { or } \left.\mathrm{H}^{5}\right), 7.95\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{H}^{3} \text { or } \mathrm{H}^{5}\right) \end{aligned}$
(1r)	2.33 (s, $6 \mathrm{H}, \mathrm{Me}-4), 6.27\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{4}\right), 6.96,7.26\left[(\mathrm{AB})_{2}\right.$, $\left.8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right], 7.69\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{3}\right.$ or $\left.\mathrm{H}^{5}\right), 7.98(\mathrm{~m}, 4$ $\mathrm{H}, \mathrm{H}^{3}$ or H^{5})
(1s)	$\begin{aligned} & 2.35(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-4), 5.82,6.07,6.39\left(\mathrm{~s} \times 3,2 \mathrm{H}, \mathrm{H}^{4}\right), \\ & 6.95,7.05\left[(\mathrm{AB})_{2}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 7\right], 7.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right. \\ & \text { or } \left.\mathrm{H}^{5}\right), 7.64\left(\mathrm{~s}, 4 \mathrm{H}^{3} \mathrm{H}^{3} \text { or } \mathrm{H}^{5}\right), 7.67\left(\mathrm{~s}, 2{\left.\mathrm{H}, \mathrm{H}^{3} \text { or } \mathrm{H}^{5}\right),}_{7.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3} \text { or } \mathrm{H}^{5}\right), 8.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3} \text { or } \mathrm{H}^{5}\right)}\right. \end{aligned}$
(1t)	$2.33(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-4), 6.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{4}\right), 6.95,7.27$ [(AB) $)_{2}$, $\left.8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{~J}(\mathrm{AB}) 8\right], 7.69\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{3}\right.$ or $\left.\mathrm{H}^{5}\right), 7.99(\mathrm{~m}, 4$ $\mathrm{H}, \mathrm{H}^{3}$ or H^{5})
(2d)	$\begin{aligned} & 3.00(\mathrm{~s}, 6 \mathrm{H}, \mu-\mathrm{CMe}), 6.29\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{4}\right), 7.67\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{3}\right. \\ & \text { or } \left.\mathrm{H}^{5}\right), 7.97\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{3} \text { or } \mathrm{H}^{5}\right) \end{aligned}$

316.4 [$\mu-\mathrm{C}, J(\mathrm{WC}) 166], 230.1$ (CO), 225.0 [CO, $J(\mathrm{WC}) 160], 145.1-106.4\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right), 41.6(\mathrm{Me})$ $310.3[\mu-\mathrm{C}, J(\mathrm{PtC}) 700, J(\mathrm{WC}) 153], 229.9(\mathrm{CO}), \quad 1468$ [J(WPt) 117] 224.6 [CO, $J(W C)$ 180], $145.1-106.5\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$, 40.0 (Me)
$313.6[\mu-\mathrm{C}, J(\mathrm{PtC}) 720, J(\mathrm{WC}) 160], 229.0(\mathrm{CO}), \quad 1610$ [J(WPt) 107] 224.9 [CO, $J(\mathrm{WC})$ 143], 145.6-105.6 ($\mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$), 21.6 (Me-4)
$\left.\int 337.7{ }^{[\mu-C, J(P t C)} 716\right], 237.7,232.7$ (CO), 1661 151.8-104.8 ($\mathrm{C}_{6} \mathrm{H}_{4}$ and $\left.\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$, $21.8(\mathrm{Me}-4)$
$310.7[\mu-\mathrm{C}, J(\mathrm{PtC}) 694], 229.4,225.1(\mathrm{CO}), 145.6-\quad 1342$ $105.6\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ and $\left.\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$, 22.1 ($\mathrm{Me}-4$)
277.8 [$\mu-\mathrm{C}, J(\mathrm{WC}) 154], 217.1$ [CO; $J(\mathrm{WC}) 179]$, $147.8-106.6\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right), 42.1$ (Me)
${ }^{195} \mathrm{Pt}(\delta){ }^{d}$
${ }^{a}$ Chemical shifts (δ) in p.p.m., coupling constants in Hz ; measurements at room temperature, unless otherwise stated. ${ }^{b} \mathrm{Measured}$ in CDCl_{3}, unless otherwise stated. 'Hydrogen-1 decoupled; chemical shifts are positive to high frequency of SiMe ${ }_{4}$; measurements in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{d} \mathrm{Chemical}^{\text {Ch }}$ shifts are to high frequency of $\Xi\left({ }^{195} \mathrm{Pt}\right)=21.4 \mathrm{MHz}$; measurements in $\mathrm{CDCl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{e}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{\text {s }}$ Measured at $-50{ }^{\circ} \mathrm{C}$.

Results and Discussion

Treatment of a tetrahydrofuran (thf) solution of $[\mathrm{W}(\equiv \mathrm{CMe})$ $\left.(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ with $\left[\mathrm{Ni}(\mathrm{cod})_{2}\right]$ afforded the purple trimetal complex $\left[\mathrm{NiW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$ (1p). Similar reactions between the compounds $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ ($\mathrm{M}=\mathrm{Cr}$, Mo, or $\mathrm{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Me}$) and [$\left.\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ in light petroleum yielded the related complexes $\left[\mathrm{PtM}_{2}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](\mathbf{1 q})-(\mathbf{1 t})$. These new compounds were characterised by the data given in Tables 1 and 2. In particular, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r spectra showed characteristic resonances in the range ca. 310-338 p.p.m. for alkylidynecarbon nuclei bridging a metal-metal bond, as found previously in the spectra of compounds (1a)-(10). ${ }^{4}$ The alkylidyne-carbon resonance for the nickel compound (1p) at $\delta 316.4$ p.p.m. showed ${ }^{183} \mathrm{~W}$ satellite peaks with $J(\mathrm{WC})=166 \mathrm{~Hz}$. In the spectrum of the related compound (1f) the μ-CMe signal is at
326.1 p.p.m. with $J(W C) 174 \mathrm{~Hz}$. Interestingly, the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of the cyclopentadienyl complex (1d) could not be measured, due to its instability in solution. Evidently the $\mathrm{HB}(\mathrm{pz})_{3}$ and $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands stabilise the NiW_{2} species compared with the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. of the platinum-containing compounds (1q)-(1t) the μ-C signals display ${ }^{195} \mathrm{Pt}$ satellite peaks $[J(\mathrm{PtC}) c a .700 \mathrm{~Hz}]$. This coupling is somewhat smaller than those observed in the spectra of analogous complexes containing $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ or $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands: e.g. (1n), $J(\mathrm{PtC}) 786 \mathrm{~Hz}$, compared with 720 Hz for (1r).

The ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of (1q)-(1t) show resonances in the range $\delta 1342-1661$ p.p.m., with $J(\mathrm{WPt}) 107-117 \mathrm{~Hz}$. The corresponding data for the platinum-tungsten species with $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ or $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands are $\delta 1685-1740$ p.p.m., with $J($ WPt $) 166-196 \mathrm{~Hz} .^{4}$

In the previous studies ${ }^{2}$ the molecular structures of (1a) and

Table 3. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{\mathbf{4}}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$ (1q)

$\mathrm{W}(1)-\mathrm{C}(5)$	$1.888(8)$
$\mathrm{Pt}-\mathrm{C}(5)$	$2.034(8)$
$\mathrm{W}(1)-\mathrm{C}(1)$	$1.974(9)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.20(1)$
$\mathrm{W}(1)-\mathrm{N}(11)$	$2.262(7)$
$\mathrm{W}(2)-\mathrm{N}(51)$	$2.265(7)$

W(1)-Pt-W(2)	$172.8(1)$		
W(1)-Pt-C(5)	$44.0(2)$		
$\mathrm{W}(2)-\mathrm{Pt}-\mathrm{C}(7)$	$43.7(2)$	$\mathrm{C}(5)-\mathrm{Pt}-\mathrm{C}(7)$	$133.8(3)$
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(3)$	$91.9(4)$	$\mathrm{Pt}-\mathrm{W}(1)-\mathrm{C}(5)$	$48.5(2)$
$\mathrm{Pt}-\mathrm{W}(1)-\mathrm{N}(11)$	$139.9(2)$	$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{N}(11)$	$85.5(3)$
$\mathrm{Pt}-\mathrm{W}(1)-\mathrm{N}(21)$	$105.6(2)$	$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{N}(21)$	$96.2(3)$
$\mathrm{N}(11)-\mathrm{W}(1)-\mathrm{N}(21)$	$79.8(3)$	$\mathrm{Pt}-\mathrm{W}(1)-\mathrm{N}(31)$	$139.9(2)$
$\mathrm{C}(5)-\mathrm{W}(1)-\mathrm{N}(31)$	$92.2(3)$	$\mathrm{N}(11)-\mathrm{W}(1)-\mathrm{N}(31)$	$80.0(3)$
$\mathrm{Pt}-\mathrm{W}(2)-\mathrm{C}(4)$	$86.8(3)$	$\mathrm{C}(2)-\mathrm{W}(2)-\mathrm{C}(4)$	$87.4(4)$
$\mathrm{C}(4)-\mathrm{W}(2)-\mathrm{C}(7)$	$91.2(3)$	$\mathrm{Pt}-\mathrm{W}(2)-\mathrm{N}(41)$	$104.7(2)$
$\mathrm{C}(7)-\mathrm{W}(2)-\mathrm{N}(41)$	$100.7(3)$	$\mathrm{Pt}-\mathrm{W}(2)-\mathrm{N}(51)$	$144.4(2)$
$\mathrm{C}(7)-\mathrm{W}(2)-\mathrm{N}(51)$	$166.4(4)$	$\mathrm{N}(41)-\mathrm{W}(2)-\mathrm{N}(51)$	$80.5(3)$
$\mathrm{C}(4)-\mathrm{W}(2)-\mathrm{N}(61)$	$93.4(3)$	$\mathrm{C}(7)-\mathrm{W}(2)-\mathrm{N}(61)$	$89.1(3)$
$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$164.3(8)$	$\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	$167.4(8)$
$\mathrm{Pt}-\mathrm{C}(5)-\mathrm{W}(1)$	$87.5(3)$	$\mathrm{Pt}-\mathrm{C}(5)-\mathrm{C}(6)$	$117.1(6)$
$\mathrm{Pt}-\mathrm{C}(7)-\mathrm{C}(8)$	$116.5(6)$	$\mathrm{W}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$155.9(7)$

(1c) were established by X-ray diffraction. An X-ray diffraction study was therefore carried out on compound (1q), for which suitable crystals were available, in order to obtain comparative structural data. The results are summarised in Table 3, and the molecular structure is shown in the Figure.

The data confirm that the molecule has a $\mathrm{W}-\mathrm{Pt}-\mathrm{W}$ spine with each metal-metal bond bridged by an ethylidyne group, and semi-bridged by one CO ligand. The various mean internuclear separations and angles for (1q) are very similar to those previously found ${ }^{2}$ for (1c) (in parentheses): Pt-W 2.716 (2.713), $\mu-\mathrm{C}-\mathrm{W}, 1.885$ (1.91), $\mu-\mathrm{C}-\mathrm{Pt}, 2.040$ (2.015), Pt ... CO 2.27 (2.33 \AA); $\mathrm{Pt}-\mu-\mathrm{C}-\mathrm{W} 87.6$ (87.6), $\mathrm{W}-\mu-\mathrm{C}-\mathrm{O}, 166\left(167^{\circ}\right)$. The $\mathrm{W}-\mathrm{Pt}-\mathrm{W}$ spine of (1q) $\left[172.8(1)^{\circ}\right]$ deviates somewhat less from linearity than that of (1c) [165.5(0) ${ }^{\circ}$]. Moreover, the dihedral angle between the two dimetallacyclopropene rings in (1q) $\left(79^{\circ}\right)$ is appreciably less than that in (1c) $\left(97^{\circ}\right)$.

The band in the i.r. spectrum of (1q) at $1792 \mathrm{~cm}^{-1}$ may be assigned to the semi-bridging CO groups revealed by the X-ray diffraction study. In the i.r. spectra of ($\mathbf{1 j}$) and (11) these bands are at 1817 and $1793 \mathrm{~cm}^{-1}$, respectively. ${ }^{4}$

In the alkylidynetungsten compound [$\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ $\left.(\mathrm{CO})_{2}\left\{\mathrm{~B}(\mathrm{pz})_{4}\right\}\right]$ the $\mathrm{C} \equiv \mathrm{W}$ distance is $1.821(7) \AA^{6}$ Making the reasonable assumption that the carbon-tungsten triple bond in the related species $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ would be of very similar length, this dimension is perceptibly shorter than that found in (1q) (mean $1.885 \AA$), as expected. In (1q) each tungsten centre carries a linearly bound CO ligand, and a $\mathrm{HB}(\mathrm{pz})_{3}$ group. The dimensions of the $\mathrm{W}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}$ fragments are similar to those previously observed, ${ }^{6,8}$ and call for no comment. If the metal-metal bonds are ignored, the tungsten atoms show pseudo-octahedral geometry. Thus for the W(1) atom: $N(11), N(31), C(1)$, and $C(5)$ are coplanar, with $C(3)-$ $\mathrm{W}(1)-\mathrm{N}(21) 170^{\circ}$, while for the $\mathrm{W}(2)$ atom: $\mathrm{N}(51), \mathrm{N}(61), \mathrm{C}(2)$, and $\mathrm{C}(7)$ are coplanar, with $\mathrm{C}(4)-\mathrm{W}(2)-\mathrm{N}(41) 167^{\circ}$. The terminal carbonyl groups, $\mathrm{C}(3) \mathrm{O}(3)$ and $\mathrm{C}(4) \mathrm{O}(4)$, each lie almost perpendicular to the metal-metal bonds [C(3)-W(1)-Pt 84.3(3), $\left.\mathrm{C}(4)-\mathrm{W}(2)-\mathrm{Pt} 86.8(3)^{\circ}\right]$. The ethylidyne groups are on the same side of the $\mathrm{W}-\mathrm{Pt}-\mathrm{W}$ spine, with the angle $\mathrm{C}(5)-\mathrm{Pt}-\mathrm{C}(7)$ 133.8(3) ${ }^{\circ}$.
We have previously reported ${ }^{9}$ the copper, silver, and gold salts $\left[\mathrm{MW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right][\mathrm{X}](2, \mathrm{M}=\mathrm{Cu}$ or $\left.\mathrm{Au}, \mathrm{X}=\mathrm{PF}_{6} ; \mathrm{M}=\mathrm{Ag}, \mathrm{X}=\mathrm{BF}_{4}\right)$ in which the $\mathrm{M}^{+}\left(d^{10}\right)$ cations are 'complexed' by two $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{OC})_{2} \mathrm{~W} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$

Figure. The molecular structure of $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$ (1q) showing the atom-numbering scheme

	M	R	L	X
(2a)	Cu	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$	PF ${ }_{6}$
(2b)	Ag	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$	BF_{4}
(2c)	Au	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$	PF_{6}
(2d)	Au	Me	$\mathrm{HB}(\mathrm{pz})_{3}$	PF ${ }_{6}$

	M	R	$\mathrm{PR}^{\prime}{ }_{3}$	L
(3a)	W	Me	PMe_{3}	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(3b)	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\mathrm{PMe}{ }_{2} \mathrm{Ph}$	$\eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(3c)	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	PMe_{3}	$\mathrm{HB}(\mathrm{pz})_{3}$
(3d)	W	Me	$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{HB}(\mathrm{pz})_{3}$
(3e)	W	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{HB}(\mathrm{pz})_{3}$
(3)	Cr	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{HB}(\mathrm{pz})_{3}$
(3g)	Mo	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$	$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{HB}(\mathrm{pz})_{3}$

groups. It was therefore of interest to establish whether a similar salt could be formed from an alkylidynetungsten species containing a hydrotris(pyrazol-1-yl)borate ligand. Treatment of a thf solution of $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ with $[\mathrm{AuCl}(\mathrm{tht})]$ (tht $=$ tetrahydrothiophene), in the presence of TlPF ${ }_{6}$, afforded the yellow salt $\left[\mathrm{AuW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]\left[\mathrm{PF}_{6}\right](2 \mathrm{~d})$, data for which are given in Tables 1 and 2 . The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of ($\mathbf{2 d}$) shows a resonance for the bridging alkylidynecarbon nuclei at $\delta 277.8$ p.p.m. [$J(\mathrm{WC}) 154 \mathrm{~Hz}$]. The corresponding chemical shift for (2c) is 295.8 p.p.m. with $J(\mathbf{W C})$ $153 \mathrm{~Hz}{ }^{9}{ }^{9}$

The i.r. spectrum of (2d) shows two bands (2 013 and 1929 cm^{-1}) in the terminal CO region. The peaks in the spectrum of (2c) (at 2024 and $1969 \mathrm{~cm}^{-1}$) are at somewhat higher frequency, as expected if the $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv W(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ group is a less strong donor group to $A u^{\mathrm{I}}$ than the $\mathrm{MeC} \equiv \mathrm{W}(\mathrm{CO})_{2^{-}}$ $\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}$ fragment. An X-ray diffraction study ${ }^{9}$ on (2c) revealed that both CO ligands are terminally bound to the tungsten atoms, in contrast with the structures of (1a), (1c), and (1q) in which two strongly semi-bridging carbonyl groups are present.

In common with (2c), the salt (2d) shows in its ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum only one CO group resonance $[(2 \mathbf{c}), \delta 211.8$; (2d), 217.1 p.p.m.], and this must reflect site-exchange of these groups at room temperature on the n.m.r. time-scale. Like (2 c), compound (2d) does not appear to dissociate readily in solution, in contrast with (2a) and (2b). Indeed, the copper salt (2a), while stable as a solid, is completely dissociated in thf, and is only stable in non-donor solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for short periods. ${ }^{9}$

Attempts to obtain a neutral complex from (2d) by treatment with NaBH_{4} or $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$ were unsuccessful. Reactions with these reagents produced only gold mirrors.

An important feature of the chemistry of the complexes $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Me$)$ is their ability to displace ethylene from the reagents $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]$ ($\mathrm{R}^{\prime}=$ alkyl or aryl) to form stable dimetal compounds $\left[\mathrm{PtW}(\mu-\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{10}$ Typical of several known species of this type are the complexes (3a) and (3b), which have an extensive derivative chemistry. Previously we reported ${ }^{6}$ the preparation of the compound $[\mathrm{PtW}(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ (3c) obtained by treating $\left[\mathrm{W}\left(=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]$. In view of this result, reactions between the complexes $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left(\mathrm{M}=\mathrm{Cr}\right.$ or $\mathrm{Mo}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$; $\mathbf{M}=\mathbf{W}, \quad \mathbf{R}=\mathbf{M e})$ and the reagents $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]$ $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or Et) and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left\{\mathrm{P}\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]$ were investigated. Surprisingly, the only products obtained were the trimetal complexes (1q), (1s), and (1t). Evidently if dimetal compounds with $\mathrm{M}-\mathrm{Pt}(\mathbf{M}=\mathbf{C r}, \mathrm{Mo}$, or W$)$ bonds are formed the PR_{3}^{\prime} or $\mathrm{P}\left(\text { cyclo }-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ groups are subsequently displaced by an $\mathrm{RC} \equiv \mathrm{M}(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}$ fragment. The latter apparently functions as a better ligand towards Pt° than do the tertiary phosphines.

Since the stability of dimetal compounds of the type $[\operatorname{PtM}(\mu-$ $\mathrm{CR})(\mathrm{CO})_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}$] is likely to be strongly influenced by the relative σ-donor and π-acceptor properties of the group PR_{3}^{\prime}, reactions with the reagent $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$, generated in situ from $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$, were studied. It was thought that if the alkylidyne\{hydrotris(pyrazol-1-yl)borato \}metal compounds were relatively strong σ donors via their $\mathrm{C} \equiv \mathrm{W}$ bonds towards Pt^{0}, the presence of π-acceptor $\mathrm{P}(\mathrm{OMe})_{3}$ groups in a $\mathrm{Pt}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}$ fragment might afford kinetically stable dimetal compounds.

Treatment of $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ in light petroleum gave a chromatographically separable mixture of (1q) and the red complex [PtW $(\mu-\mathrm{CMe})$ $\left.(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](3 \mathrm{~d})$. Data for the latter are given in Table 1. Compound (3d) decomposes in solution affording

the trimetal compound (1q) and $\left[\mathrm{Pt}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{4}\right]$. Hence the formation of $(\mathbf{1 q})$ in the synthesis of $(\mathbf{3 d})$ is explained. Although decomposition of ($\mathbf{3 d}$) in solution prevented measurement of meaningful ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum (in CDCl_{3}) could be recorded. Resonances characteristic ${ }^{10}$ for a cis $-\mathrm{Pt}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}$ fragment were observed as two doublet signals at $\delta 12.2[J(\mathrm{PP}) 17, J(\mathrm{PtP}) 4180]$ and 13.7 p.p.m. [$J(\mathrm{PP}$) $17, J(\mathrm{PtP}) 5400, J(\mathrm{WP}) 39 \mathrm{~Hz}]$, respectively. The corresponding data for (3c) are $\delta-12.1[J(\mathrm{PP}) 10, J(\mathrm{PtP})$ 3793] and -20.9 p.p.m. [$J(\mathrm{PP}) 10, J(\mathrm{PtP}) 2849 \mathrm{~Hz}] .{ }^{6}$

Reactions between $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ and $\left[\mathrm{M}\left(\equiv \mathrm{CC}_{6}{ }^{-}\right.\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right] \quad(\mathrm{M}=\mathrm{Cr}$, Mo, or W$)$ afforded the compounds $\left[\mathrm{PtM}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\{\mathrm{HB}-\right.$ $\left.\left.(\mathrm{pz})_{3}\right\}\right](\mathbf{3 e})-(\mathbf{3 g})$. The chromium-containing species ${ }^{\circ}(\mathbf{3 f})$ was formed only in low yield, and the reactions producing (3e) and $(\mathbf{3 g})$ also afforded the trimetal compounds (1r) and (1t), respectively. The three compounds (3e)-(3g) were characterised only via their i.r. spectra (Table 1), since satisfactory microanalytical data could not be obtained.

We have previously reported that protonation of (3a) with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ affords the salt $\left[\mathrm{PtW}\left\{\mu-\sigma: \eta^{3}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.\right.\right.$ 4) $\left.\}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BF}_{4}\right]$ (4a), the formulation of which was established by an X-ray diffraction study. ${ }^{11}$ In view of this result, it seemed possible that one or other of the species (3d)-(3g) might be protonated to give a stable derivative. Reaction between (3d) and $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in diethyl ether led to decomposition of the dimetal compound and release of $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$. However, treatment of $(\mathbf{3 g})$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ afforded the green salt $\left[\operatorname{PtMo}\left\{\mu-\sigma: \eta^{3}-\right.\right.$ $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}\left(\mathrm{pz}_{3}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (4b) in essentially quantitative yield. This salt was more robust than $(\mathbf{3 g})$ and hence microanalytical data could be obtained (Table 1), and the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The spectrum confirmed the presence of the cis $-\mathrm{Pt}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}$ group with two doublet resonances at $\delta 8.3$ [J(PP) 17, J(PtP) 3 977] and 10.8 p.p.m. [$J(\mathrm{PP}) 17, J(\mathrm{PtP}) 5382 \mathrm{~Hz}$]. Unfortunately ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of $(\mathbf{4 b})$ could not be recorded, due to decomposition, and hence formulation of the salt as being structurally akin to (4a) rests on the analytical, i.r., and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data.

The results described herein show that in their respective reactions with d^{10} complexes, the compounds $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2^{-}}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left(\mathbf{M}=\mathrm{Cr}\right.$, Mo, or $\mathbf{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathbf{M}=\mathrm{W}$, $\mathbf{R}=\mathbf{M e}$) display both similarities and differences compared with related species with $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ or $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands. Thus the ready formation of the reactively stable trimetal compounds (1p)-(1t) and (2d) is in common with the previous studies leading to (1a)-(10) and (2c). However, with compounds of type (3) the situation is complicated, relative stabilities presumably depending on the electronic and steric properties of the fragments $\left[\mathrm{CR}, \mathrm{W}(\mathrm{CO})_{2} \mathrm{~L}\right.$, and PR_{3}^{\prime}] ligating the platinum atom.

As mentioned above, an analogue of (3a) containing an $\mathrm{HB}(\mathrm{pz})_{3}$ ligand could not be isolated whereas (3d), with $\mathrm{P}(\mathrm{OMe})_{3}$ instead of PMe_{3} groups present, could be prepared.

This is qualitatively explicable if it is assumed that the $\mathrm{MeC} \equiv \mathrm{W}(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}$ fragment is a superior σ donor and weaker π acceptor than $\mathrm{MeC} \equiv \mathrm{W}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, so that excess electron density at the Pt centre is relieved by back-bonding to the $\mathrm{P}(\mathrm{OMe})_{3}$ ligands. The latter would be superior in this respect to PMe_{3}. Similarly, the relative stability sequence (3c) $>$ (3d) $>$ (3e) may be due to the fragment $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{W}(\mathrm{CO})_{2}-$ $\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}$ being a poorer σ donor and better π acceptor than $\mathrm{MeC} \equiv \mathrm{W}(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}$. Steric effects are also likely to play a role. The $\mathrm{HB}(\mathrm{pz})_{3}$ group is significantly larger than $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{12}$ although the cone angles for $\mathrm{P}(\mathrm{OMe})_{3}\left(107^{\circ}\right)$ and $\mathrm{PMe}_{3}\left(118^{\circ}\right)$ are not appreciably different.

Experimental

The experimental procedures employed and the instrumentation used have been described earlier. ${ }^{4}$ Phosphorus-31 chemical shifts (p.p.m.) are positive to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external). Light petroleum refers to that fraction of b.p. $40-$ $60^{\circ} \mathrm{C}$. The compound $\left[\mathrm{Ni}(\mathrm{cod})_{2}\right]$ was purchased from Strem Chemicals Inc., and $\left[\mathrm{Pt}(\mathrm{cod})_{2}\right]^{13}$ and $[\mathrm{AuCl}(\text { tht })]^{14}$ were prepared as described elsewhere, as were the alkylidyne compounds $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}\right.$, or $\mathrm{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$ $\mathrm{Me}-4 ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Me}) .{ }^{6.7}$ Analytical and other data for the new compounds are given in Table 1.

Synthesis of the Trimetal Complexes $\left[\mathrm{NiW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$ and $\left[\mathrm{PtM}_{2}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](\mathrm{M}=\mathrm{Cr}$, Mo, or $\mathrm{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Me}$).-Method (i). A thf $\left(10 \mathrm{~cm}^{3}\right)$ solution of $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.15 \mathrm{~g}$, $0.30 \mathrm{mmol})$ was treated with solid $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right](0.04 \mathrm{~g}, 0.15$ mmol). After stirring the mixture for 2 h at room temperature, solvent was removed in vacuo, and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $5 \mathrm{~cm}^{3}$) and chromatographed on an alumina column (ca. $2 \times 10 \mathrm{~cm}$). Elution with dichloromethane-light petroleum ($1: 4$) removed first a yellow band containing $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.05 \mathrm{~g})$, and then a dark red eluate. Removal of solvent in vacuo afforded purple microcrystals of $\left[\mathrm{NiW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](1 \mathrm{p})(0.09 \mathrm{~g})$.
Method (ii). A light petroleum ($50 \mathrm{~cm}^{3}$) solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right](0.50 \mathrm{mmol})$ was generated in situ at $0^{\circ} \mathrm{C}$ from $\left[\mathrm{Pt}(\mathrm{cod})_{2}\right]$ and treated with $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.48$ $\mathrm{g}, 1.00 \mathrm{mmol}$) in the same solvent $\left(60 \mathrm{~cm}^{3}\right)$. After stirring (30 min), solvent was decanted, and the residue washed with light petroleum ($3 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo giving red microcrystals of $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](1 q)(0.49 \mathrm{~g})$.

Method (iii). In a similar manner, $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ at $0{ }^{\circ} \mathrm{C}$ in light petroleum ($15 \mathrm{~cm}^{3}$) was treated with $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2^{-}}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in the same solvent $\left(15 \mathrm{~cm}^{3}\right)$. A red precipitate appeared after ca. 5 min . After stirring for 30 min, solvent was removed with a syringe and the residue was washed with light petroleum ($3 \times 5 \mathrm{~cm}^{3}$) and dried in vacuo to afford red microcrystals of $\left[\mathrm{PtW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}-\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](\mathbf{1 r})(0.10 \mathrm{~g})$.

Method (ic). A light petroleum ($20 \mathrm{~cm}^{3}$) solution of [Pt$\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right](0.15 \mathrm{mmol})$, prepared in situ from $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$ in the usual manner, ${ }^{4}$ was treated with $\left[\mathrm{Cr}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2^{-}}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.13 \mathrm{~g}, 0.30 \mathrm{mmol})$ in the same solvent $\left(80 \mathrm{~cm}^{3}\right)$. After stirring the mixture for 10 min , solvent was removed in vacuo. The dark green residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 cm^{3}), and chromatographed on alumina. Elution with dichloro-methane-light petroleum ($1: 2$) gave a green eluate, which after removal of solvent yielded microcrystals of $\left[\mathrm{PtCr}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4}\right.\right.$ -$\left.\mathrm{Me}-4)_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](1 \mathrm{~s})(0.08 \mathrm{~g})$.

Method (v). Similarly, $\left[\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right](0.25 \mathrm{mmol})$ in light petroleum ($15 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$ with $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2^{-}}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.23 \mathrm{~g}, 0.50 \mathrm{mmol})$ also in light petroleum $\left(10 \mathrm{~cm}^{3}\right)$ gave, after chromatography on alumina, eluting with dichloro-
methane-light petroleum (1:4), red microcrystals of $\left[\mathrm{PtMo}_{2}-\right.$ $\left.\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](\mathbf{1 t})(0.20 \mathrm{~g})$.

Synthesis of the Salt $\left[\mathrm{AuW}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]$ -$\left[\mathrm{PF}_{6}\right]$.-A thf $\left(10 \mathrm{~cm}^{3}\right)$ solution of $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ $(0.60 \mathrm{~g}, 1.2 \mathrm{mmol})$ was treated with solid [$\mathrm{AuCl}(\mathrm{tht})](0.20 \mathrm{~g}$, $0.60 \mathrm{mmol})$ and $\mathrm{TlPF}_{6}(0.20 \mathrm{~g}, 0.60 \mathrm{mmol})$. The mixture was stirred for 30 min , after which it was filtered through a Celite column ($c a .3 \times 10 \mathrm{~cm}$) affording a yellow solution. Solvent was reduced in volume to ca. $5 \mathrm{~cm}^{3}$, and $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ was slowly added, precipitating yellow microcrystals of $\left[\mathrm{AuW}_{2}(\mu-\right.$ $\left.\mathrm{CMe})_{2}(\mathrm{CO})_{4}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right]\left[\mathrm{PF}_{6}\right](\mathbf{2 d})(0.60 \mathrm{~g})$.

Preparation of the Compounds $\left[\mathrm{PtM}(\mu-\mathrm{CR})(\mathrm{CO})_{2}-\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}\right.$, or $\mathrm{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$; $\mathbf{M}=\mathrm{W}, \mathrm{R}=\mathrm{Me})$. $-\operatorname{Method}(\mathrm{i})$. The compound $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right](0.90 \mathrm{mmol})$ was prepared in situ from $\left[\mathrm{Pt}(\mathrm{cod})_{2}\right]$ in light petroleum $\left(100 \mathrm{~cm}^{3}\right)$ saturated with ethylene at $0^{\circ} \mathrm{C}$. The platinum complex prepared in this manner ${ }^{10}$ was added to $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.43 \mathrm{~g}, 0.90 \mathrm{mmol})$ in the same solvent ($100 \mathrm{~cm}^{3}$). A red precipitate appeared, and the mixture was stirred for 15 min . Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ and chromatographed on an alumina column ($c a .3 \times 10 \mathrm{~cm}$). Elution with dichloro-methane-light petroleum ($1: 4$) gave a red eluate containing compound (1 q) ($0.62 \mathrm{~g}, 60 \%$), followed by a dark red solution. Removal of solvent to a volume of $c a .5 \mathrm{~cm}^{3}$, with cooling to $-70^{\circ} \mathrm{C}$, gave red microcrystals of $\left[\mathrm{PtW}(\mu-\mathrm{CMe})(\mathrm{CO})_{2^{-}}\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ (3d) $(0.27 \mathrm{~g})$. After ca. 30 min , solutions of (3d) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afford complex (1q) and $\left[\mathrm{Pt}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{4}\right]$.
Method (ii). In a similar manner, the compound $[\operatorname{PtW}(\mu-$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](3 \mathrm{e})(0.10 \mathrm{~g})$ was prepared from $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right](0.50 \mathrm{mmol})$ and $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.25 \mathrm{~g}, 0.50 \mathrm{mmol})$. The reaction also produced compound (1r) (ca. 0.16 g), and unreacted $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]($ ca. 0.05 g$)$.

Method (iii). A light petroleum ($50 \mathrm{~cm}^{3}$) solution of [$\mathrm{Pt}-$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right](0.50 \mathrm{mmol})$ was added to $\left[\mathrm{Cr}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.20 \mathrm{~g}, 0.50 \mathrm{mmol})$ in the same solvent $\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h , solvent was removed in vacuo. The residue was dissolved in the minimum quantity of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $2 \mathrm{~cm}^{3}$) and chromatographed on an alumina column $(3 \times 15 \mathrm{~cm})$. Elution with dichloromethane-light petroleum ($1: 4$) afforded in the first eluate $\left[\mathrm{Cr}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ $\left.(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.10 \mathrm{~g})$, and from the second eluate brown microcrystals of $\left[\mathrm{PtCr}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}-\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](3 \mathrm{f})(0.04 \mathrm{~g})$.

Method (iv). Similarly, $\left[\mathrm{Pt}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right](0.40 \mathrm{mmol})$ in light petroleum ($50 \mathrm{~cm}^{3}$) was added to $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4}\right.\right.$ -$\left.\mathrm{Me}-4)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.20 \mathrm{~g}, 0.40 \mathrm{mmol})$ in light petroleum ($50 \mathrm{~cm}^{3}$). After stirring for 4 h at room temperature, solvent was removed, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $2 \mathrm{~cm}^{3}$), and chromatographed. Elution with dichloromethane-light petroleum (1:4) gave fractions from which $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](0.03 \mathrm{~g})$, (1 tt) $(0.18 \mathrm{~g})$, and red oily microcrystals of $\left[\mathrm{PtMo}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2^{-}}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](3 \mathrm{~g})(0.14 \mathrm{~g})$ were obtained.

Protonation of $\left[\mathrm{PtMo}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}-\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right](3 \mathrm{~g})-\mathrm{AEt}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ solution of $(\mathbf{3 g})(0.04 \mathrm{~g}$, 0.04 mmol) was treated with excess of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(25 \mu \mathrm{l}, 0.09$ mmol), affording a green precipitate. Solvent was removed with a syringe, and the residue washed with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 5 \mathrm{~cm}^{3}\right)$ to give green microcrystals of $\left[\mathrm{PtMo}\left\{\mu-\sigma: \eta^{3}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}\right.$ (CO) $\left.2\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (4b) (0.038 g).

Crystal Structure Determination of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{CMe})_{2}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}\right](1 \mathrm{q})$.-A suitable spherical crystal (ca. 0.2 mm$)$ of

Table 4. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) for ($\mathbf{1 q}$), with estimated deviations in parentheses

Atom	x	y	z	Atom	x	y	z
Pt	4 223(1)	338(1)	$1156(1)$	C(24)	$9498(11)$	4(10)	533(3)
W(1)	$5538(1)$	$2113(1)$	793(1)	C(25)	8 208(10)	124(8)	697(2)
W(2)	3 274(1)	-1492(1)	$1571(1)$	N(31)	5 374(8)	2 870(6)	221(2)
C(1)	$6061(11)$	$1785(8)$	$1338(3)$	N(32)	6 642(9)	3 299(7)	95(2)
$\mathrm{O}(1)$	6 595(9)	$1833(7)$	1 669(2)	C(33)	6 161(14)	3 722(9)	$-260(3)$
C(2)	5 168(10)	- 1 588(8)	1344 (3)	C(34)	4 579(12)	3 577(10)	-368(3)
$\mathrm{O}(2)$	6 308(8)	-1864(7)	$1238(2)$	C(35)	4 144(12)	3 063(8)	-59(3)
C(3)	3 668(11)	3 099(9)	845(3)	B(2)	$3165(17)$	-2 901(11)	2 393(3)
$\mathrm{O}(3)$	2570 (8)	3 665(7)	856(2)	N(41)	4 609(9)	-1183(7)	2 148(2)
C(4)	2 074(11)	-2 158(8)	$1092(3)$	N(42)	4 376(11)	$-1864(8)$	2451 (2)
$\mathrm{O}(4)$	$1426(9)$	- 2 582(6)	812(2)	C(43)	5 403(16)	- $1492(12)$	2750 (3)
C(5)	4 262(9)	752(7)	612(2)	C(44)	$6312(15)$	-579(12)	2 653(3)
C(6)	3 593(11)	- 173(8)	324(2)	C(45)	$5775(12)$	-401(10)	2 275(3)
C(7)	2 474(10)	101(8)	1 449(2)	$\mathrm{N}(51)$	3 684(9)	-3476(6)	$1759(2)$
C(8)	1380 (11)	$1159(9)$	$1448(3)$	N(52)	3 631(10)	- 3 849(7)	2115 (2)
B(1)	8 271(13)	3 254(9)	348(3)	C(53)	3 901(15)	-5 048(10)	2 144(4)
N(11)	$7215(8)$	3 716(6)	920(2)	C(54)	4 142(15)	-5 487(11)	$1803(4)$
N(12)	8 257(9)	$4008(7)$	700(2)	C(55)	$4028(13)$	-4473(9)	1 579(3)
C(13)	9 168(11)	$4925(9)$	864(4)	N(61)	$1337(10)$	$-1826(7)$	$1878(2)$
C(14)	$8718(12)$	5 270(10)	$1188(3)$	N(62)	$1557(11)$	-2 404(7)	2 217(2)
C(15)	$7517(11)$	4 492(8)	1 206(3)	C(63)	167(16)	-2 591(9)	$2308(3)$
$\mathrm{N}(21)$	7 678(8)	$1266(6)$	659(2)	C(64)	-976(15)	-2097(10)	2039(4)
$\mathrm{N}(22)$	8 619(8)	$1880(7)$	463(2)	C(65)	-206(11)	-1641(9)	$1772(3)$
C(23)	$9737(11)$	$1115(10)$	390(3)				

(1q) was grown from dichloromethane-light petroleum (1:5). Diffracted intensities were collected on a Nicolet $P 3 m$ diffractometer at room temperature using the $\omega-2 \theta$ scan mode ($2.9 \leqslant$ $2 \theta \leqslant 55^{\circ}$).

Crystal data. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{PtW}_{2}, M=1$ 155.0, monoclinic, $a=8.737(2), \quad b=10.843(2), \quad c=36.345(5) \AA, \quad \beta=$ $101.44(1)^{\circ}, U=3375(1) \AA^{3}, Z=4, D_{\mathrm{m}}=2.24 \mathrm{~g} \mathrm{~cm}^{-3}, D_{\mathrm{c}}=$ $2.27 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2135$, space group $P 2_{1} / n$ (no. 14, non-standard setting), Mo- $K_{\alpha} X$-radiation (graphite monochromator), $\bar{\lambda}=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=111.78 \mathrm{~cm}^{-1}$.

Data were corrected for Lorentz and polarisation effects and an empirical correction was applied for X-ray absorption based on an ellipsoidal model with azimuthal scan data. ${ }^{15}$ Of 7456 unique reflections, 4827 had $I \geqslant 3 \sigma(I)$, and only these were used in the structure solution and refinement. The structure was solved by conventional heavy-atom and electron-density difference methods, and was refined by blocked-cascade, fullmatrix least-squares methods, with anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atoms were included at fixed positions ($\mathrm{B}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}, 0.960 \AA$) with isotropic thermal parameters equal to 1.2 times the equivalent isotropic thermal parameters of the attached carbon or boron atoms. A weighting scheme of the form $w=\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.0.0002 \mid F_{\mathrm{o}}{ }^{2}\right]^{-1}$ gave a satisfactory weight analysis. The final electron-density difference synthesis showed no peaks $> \pm 1 \mathrm{e}$ \AA^{-3} and those located were near the metal atoms. Refinement converged at $R=0.035$ ($R^{\prime}=0.033$). Scattering factors were from ref. 16. All computations were carried out on a Data General 'Eclipse' computer with the SHELXTL system of programs. ${ }^{15}$ The atomic co-ordinates are listed in Table 4.

Acknowledgements

We thank the British Council and the Spanish Ministry of Education and Science for the award of a Fleming Fellowship (to M. D. B.), the Royal Society and the C.N.R.S. for a Fellowship under the European Exchange Program (to N. H. T-H.), and the Deutscher Akademischer Austauschdienst for a studentship (to S. H. F. B.).

References

1 Part 58, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, preceding paper.
2 T. V. Ashworth, M. J. Chetcuti, J. A. K. Howard, F. G. A. Stone, S. J. Wisbey, and P. Woodward, J. Chem. Soc., Dalton Trans., 1981, 763.
3 F. G. A. Stone, 'Inorganic Chemistry: Towards the 21st Century,' ed. M. H. Chisholm, ACS Symp. Ser., 1983, 211, 383; Angew. Chem., Int. Ed. Engl., 1984, 23, 89.
4 G. P. Elliott, J. A. K. Howard, T. Mise, I. Moore, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 2091; S. J. Davies, and F. G. A. Stone, unpublished work.
5 G. P. Elliott, J. A. K. Howard, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1986, 431; G. P. Elliott, J. A. K. Howard, T. Mise, C. M. Nunn, and F. G. A. Stone, Angew: Chem., Int. Ed. Engl., 1986, 25, 190.
6 M. Green, J. A. K. Howard, A. P. James, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 187.
7 M. D. Bermudez, E. Delgado, G. P. Elliott, N. H. Tran-Huy, F. Mayor-Real, F. G. A. Stone, and M. J. Winter, following paper. 8 M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 1697.
9 G. A. Carriedo, J. A. K. Howard, K. Marsden, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1589; M. MüllerGliemann, S. V. Hoskins, A. G. Orpen, A. L. Ratermann, and F. G. A. Stone, Polyhedron, 1986, 5, 791.
10 T. V. Ashworth, J. A. K. Howard, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1609; M. J. Chetcuti, K. Marsden, I. Moore, F. G. A. Stone, and P. Woodward, ibid., 1982, 1749; M. J. Chetcuti, J. A. K. Howard, R. M. Mills, F. G. A. Stone, and P. Woodward, ibid, p. 1757; M. R. Awang, J. C. Jeffery, and F. G. A. Stone, ibid., 1986, 165.

11 J. C. Jeffery, J. C. V. Laurie, I. Moore, H. Razay, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1984, 1563.

12 K-B. Shiu, M. D. Curtis, and J. C. Huffman, Organometallics, 1983, 2, 936.

13 J. L. Spencer, Inorg. Synth., 1979, 19, 213.
14 R. Uson, A. Laguna, and J. Vicente, J. Organomet. Chem., 1977, 131, 471.
$15 \mathrm{G} . \mathrm{M}$. Sheldrick, SHELXTL programs for use with the Nicolet X-ray system, University of Cambridge, 1976; updated Göttingen, 1981.

16 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

